Injecting hope: the potential of intratumoral immunotherapy for locally advanced and metastatic cancer
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Z01 HD008735
Intramural NIH HHS - United States
PubMed
39850897
PubMed Central
PMC11754201
DOI
10.3389/fimmu.2024.1479483
Knihovny.cz E-zdroje
- Klíčová slova
- advanced and metastatic cancer, cancer, combination therapy, immunotherapy, intratumoral,
- MeSH
- imunoterapie * metody MeSH
- kombinovaná terapie MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádorové mikroprostředí imunologie MeSH
- nádory * terapie imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite enormous progress, advanced cancers are still one of the most serious medical problems in current society. Although various agents and therapeutic strategies with anticancer activity are known and used, they often fail to achieve satisfactory long-term patient outcomes and survival. Recently, immunotherapy has shown success in patients by harnessing important interactions between the immune system and cancer. However, many of these therapies lead to frequent side effects when administered systemically, prompting treatment modifications or discontinuation or, in severe cases, fatalities. New therapeutic approaches like intratumoral immunotherapy, characterized by reduced side effects, cost, and systemic toxicity, offer promising prospects for future applications in clinical oncology. In the context of locally advanced or metastatic cancer, combining diverse immunotherapeutic and other treatment strategies targeting multiple cancer hallmarks appears crucial. Such combination therapies hold promise for improving patient outcomes and survival and for promoting a sustained systemic response. This review aims to provide a current overview of immunotherapeutic approaches, specifically focusing on the intratumoral administration of drugs in patients with locally advanced and metastatic cancers. It also explores the integration of intratumoral administration with other modalities to maximize therapeutic response. Additionally, the review summarizes recent advances in intratumoral immunotherapy and discusses novel therapeutic approaches, outlining future directions in the field.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czechia
Department of Pathological Physiology Faculty of Medicine Masaryk University Brno Czechia
Department of Physiology Faculty of Medicine Masaryk University Brno Czechia
Zobrazit více v PubMed
Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. (2021) 127:3029–30. doi: 10.1002/cncr.33587 PubMed DOI
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. . Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660 PubMed DOI
Society AC . What are advanced and metastatic cancers? (2024). Available online at: https://www.cancer.org/cancer/managing-cancer/advanced-cancer/what-is.html:~:text=But%20other%20locally%20advanced%20cancers,cured%20or%20controlled%20with%20treatment (Accessed August 4, 2024).
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal transduction targeted Ther. (2020) 5:28. doi: 10.1038/s41392-020-0134-x PubMed DOI PMC
Surveillance E, and results program, in: Cancer stat facts: female breast cancer . Available online at: https://seer.cancer.gov/statfacts/html/breast.html (Accessed November 16, 2024). National Cancer Institute.
Parker AL, Benguigui M, Fornetti J, Goddard E, Lucotti S, Insua-Rodriguez J, et al. . Current challenges in metastasis research and future innovation for clinical translation. Clin Exp Metastasis. (2022) 39:263–77. doi: 10.1007/s10585-021-10144-5 PubMed DOI PMC
Parisi C, Tagliamento M, Belcaid L, Aldea M, Bayle A, Remon-Masip J, et al. . Circulating tumor DNA in clinical trials for solid tumors: Challenges and current applications. J Liquid Biopsy. (2023) 100007. doi: 10.1016/j.jlb.2023.100007 DOI
Institute NC. Cancer staging (2022). Available online at: https://www.cancer.gov/about-cancer/diagnosis-staging/staging (Accessed July 19, 2024).
Gennari A, André F, Barrios C, Cortes J, de Azambuja E, DeMichele A, et al. . ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer☆. Ann Oncol. (2021) 32:1475–95. doi: 10.1016/j.annonc.2021.09.019 PubMed DOI
Dingemans A-M, Früh M, Ardizzoni A, Besse B, Faivre-Finn C, Hendriks L, et al. . Small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up☆. Ann Oncol. (2021) 32:839–53. doi: 10.1016/j.annonc.2021.03.207 PubMed DOI PMC
Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, et al. . Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. (2017) 28:iv1–iv21. doi: 10.1093/annonc/mdx222 PubMed DOI
Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R, Keilholz U. clinicalguidelines@esmo.org EGCEa. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann Oncol. (2019) 30:1884–901. doi: 10.1093/annonc/mdz411 PubMed DOI
Cervantes A, Adam R, Roselló S, Arnold D, Normanno N, Taïeb J, et al. . Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Ann Oncol. (2023) 34:10–32. doi: 10.1016/j.annonc.2022.10.003 PubMed DOI
Parker C, Castro E, Fizazi K, Heidenreich A, Ost P, Procopio G, et al. . Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. (2020) 31:1119–34. doi: 10.1016/j.annonc.2020.06.011 PubMed DOI
Institute NC. Systemic therapy . Available online at: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/systemic-therapy (Accessed August 4, 2024).
Institute NC. Local therapy . Available online at: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/local-therapy (Accessed August 4, 2024).
Palumbo MO, Kavan P, Miller WH, Jr., Panasci L, Assouline S, Johnson N, et al. . Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol. (2013) 4:57. doi: 10.3389/fphar.2013.00057 PubMed DOI PMC
Min HY, Lee HY. Molecular targeted therapy for anticancer treatment. Exp Mol Med. (2022) 54:1670–94. doi: 10.1038/s12276-022-00864-3 PubMed DOI PMC
Ganesh K, Massague J. Targeting metastatic cancer. Nat Med. (2021) 27:34–44. doi: 10.1038/s41591-020-01195-4 PubMed DOI PMC
Hendriks LE, Kerr KM, Menis J, Mok TS, Nestle U, Passaro A, et al. . Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. (2023) 34:339–57. doi: 10.1016/j.annonc.2022.12.009 PubMed DOI
Fassnacht M, Assie G, Baudin E, Eisenhofer G, de la Fouchardiere C, Haak HR, et al. . Adrenocortical carcinomas and Malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. (2020) 31:1476–90. doi: 10.1016/j.annonc.2020.08.2099 PubMed DOI
Agency EM. Foscan (2016). Available online at: https://www.ema.europa.eu/en/medicines/human/EPAR/foscan (Accessed August 4, 2024).
Gabriele N, Burnet NG, Shankar S, WM LA, Hegi-Johnson F. Radiotherapy toxicity (Primer). Nat Reviews: Dis Primers. (2019) 5. doi: 10.1038/s41572-019-0064-5 PubMed DOI
Dharmarajan KV, Rich SE, Johnstone CA, Hertan LM, Wei R, Colbert LE, et al. . Top 10 tips palliative care clinicians should know about radiation oncology. J palliative Med. (2018) 21:383–8. doi: 10.1089/jpm.2018.0009 PubMed DOI PMC
Carr C, Ng J, Wigmore T. The side effects of chemotherapeutic agents. Curr Anaesthesia Crit Care. (2008) 19:70–9. doi: 10.1016/j.cacc.2008.01.004 DOI
Conroy M, Naidoo J. Immune-related adverse events and the balancing act of immunotherapy. Nat Commun. (2022) 13:392. doi: 10.1038/s41467-022-27960-2 PubMed DOI PMC
Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. . Combination therapy in combating cancer. Oncotarget. (2017) 8:38022. doi: 10.18632/oncotarget.16723 PubMed DOI PMC
Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. (2004) 21:137–48. doi: 10.1016/j.immuni.2004.07.017 PubMed DOI
Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. (2004) 22:329–60. doi: 10.1146/annurev.immunol.22.012703.104803 PubMed DOI
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. (2002) 3:991–8. doi: 10.1038/ni1102-991 PubMed DOI
Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol. (2001) 2:293–9. doi: 10.1038/86297 PubMed DOI
Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. . Ann Oncol. (2012) 23 Suppl 8:viii6–9. doi: 10.1093/annonc/mds256 PubMed DOI PMC
Zhou Z, Ni K, Deng H, Chen X. Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug delivery Rev. (2020) 158:73–90. doi: 10.1016/j.addr.2020.06.006 PubMed DOI
Institute NC. Immunotherapy . Available online at: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/immunotherapy (Accessed August 4, 2024).
Lopes A, Vandermeulen G, Preat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. (2019) 38:146. doi: 10.1186/s13046-019-1154-7 PubMed DOI PMC
Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy. Front Immunol. (2022) 13:1029069. doi: 10.3389/fimmu.2022.1029069 PubMed DOI PMC
Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, et al. . Oncolytic viruses as therapeutic cancer vaccines. Mol cancer. (2013) 12:1–16. doi: 10.1186/1476-4598-12-103 PubMed DOI PMC
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. (2020) 17:807–21. doi: 10.1038/s41423-020-0488-6 PubMed DOI PMC
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol. (2023) 16:97. doi: 10.1186/s13045-023-01492-8 PubMed DOI PMC
Du S, Yan J, Xue Y, Zhong Y, Dong Y. Adoptive cell therapy for cancer treatment. In: Exploration. Wiley Online Library; (2023) 3(4):20210058. doi: 10.1002/EXP.20210058 PubMed DOI PMC
Immunomodulators CRI. Checkpoint inhibitors, cytokines, agonists, and adjuvants . Available online at: https://www.cancerresearch.org/treatment-types/immunomodulators (Accessed November 16, 2024).
Baxter D. Active and passive immunization for cancer. Hum Vaccin Immunother. (2014) 10:2123–9. doi: 10.4161/hv.29604 PubMed DOI PMC
Liu R, Peng L, Zhou L, Huang Z, Zhou C, Huang C. Oxidative stress in cancer immunotherapy: molecular mechanisms and potential applications. Antioxidants (Basel). (2022) 11. doi: 10.3390/antiox11050853 PubMed DOI PMC
Institute NC. Targeted therapy to treat cancer (2022). Available online at: https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies (Accessed August 4, 2024).
Institute NC. Monoclonal antibodies (2019). Available online at: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/monoclonal-antibodies:~:text=They%20are%20a%20type%20of,the%20immune%20system%20against%20cancer (Accessed August 4, 2024).
Gerstberger S, Jiang Q, Ganesh K. Metastasis. Cell. (2023) 186:1564–79. doi: 10.1016/j.cell.2023.03.003 PubMed DOI PMC
Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. (2021) 18:558–76. doi: 10.1038/s41571-021-00507-y PubMed DOI PMC
Cann SH, Van Netten J, Van Netten C, Glover D. Spontaneous regression: a hidden treasure buried in time. Med hypotheses. (2002) 58:115–9. doi: 10.1054/mehy.2001.1469 PubMed DOI
Hajdu SI. A note from history: landmarks in history of cancer, part 1. Cancer. (2011) 117:1097–102. doi: 10.1002/cncr.25553 PubMed DOI
Binder M, Roberts C, Spencer N, Antoine D, Cartwright C. On the antiquity of cancer: evidence for metastatic carcinoma in a young man from ancient Nubia (c. 1200 BC). PloS One. (2014) 9:e90924. doi: 10.1371/journal.pone.0090924 PubMed DOI PMC
Center MSKC. Historical timeline . Available online at: https://www.mskcc.org/about/history-milestones/historical-timeline (Accessed August 4, 2024).
Oelschlaeger TA. Bacteria as tumor therapeutics? Bioengineered bugs. (2010) 1:146–7. doi: 10.4161/bbug.1.2.11248 PubMed DOI PMC
Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg. (1891) 14:199–220. doi: 10.1097/00000658-189112000-00015 PubMed DOI PMC
Coley WB. The treatment of Malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res. (1991) 262):3–11. PubMed
Akhtar M, Haider A, Rashid S, Al-Nabet ADM. Paget’s “seed and soil” theory of cancer metastasis: an idea whose time has come. Adv anatomic pathology. (2019) 26:69–74. doi: 10.1097/PAP.0000000000000219 PubMed DOI
Hajdu SI. A note from history: landmarks in history of cancer, part 4. Cancer. (2012) 118:4914–28. doi: 10.1002/cncr.27509 PubMed DOI
Kardamakis D, Baatout S, Bourguignon M, Foray N, Socol Y. History of radiation biology. In: Baatout S, editor. Radiobiology textbook, vol. p . Springer International Publishing, Cham: (2023). p. 1–24.
Giacobbe A, Abate-Shen C. Modeling metastasis in mice: a closer look. Trends cancer. (2021) 7:916–29. doi: 10.1016/j.trecan.2021.06.010 PubMed DOI PMC
Hanahan D, Weinberg RA. The hallmarks of cancer. cell. (2000) 100:57–70. doi: 10.1016/S0092-8674(00)81683-9 PubMed DOI
Jiang S, Liu Y, Zheng H, Zhang L, Zhao H, Sang X, et al. . Evolutionary patterns and research frontiers in neoadjuvant immunotherapy: a bibliometric analysis. Int J Surgery. (2023) 109:2774–83. doi: 10.1097/JS9.0000000000000492 PubMed DOI PMC
Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother Science. (2013) 342:1432–3. doi: 10.1126/science.342.6165.1432 PubMed DOI
Goldmacher GV, Khilnani AD, Andtbacka RH, Luke JJ, Hodi FS, Marabelle A, et al. . Response criteria for intratumoral immunotherapy in solid tumors: itRECIST. J Clin Oncol. (2020) 38:2667–76. doi: 10.1200/JCO.19.02985 PubMed DOI PMC
Prise KM, O'Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. (2009) 9:351–60. doi: 10.1038/nrc2603 PubMed DOI PMC
Kingsley D. An interesting case of possible abscopal effect in Malignant melanoma. Br J radiology. (1975) 48:863–6. doi: 10.1259/0007-1285-48-574-863 PubMed DOI
Marabelle A, Tselikas L, De Baere T, Houot R. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol. (2017) 28:xii33–43. doi: 10.1093/annonc/mdx683 PubMed DOI
DAILYMED . YERVOY- ipilimumab injection (2023). Available online at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=2265ef30-253e-11df-8a39-0800200c9a66 (Accessed August 4, 2024).
DAILYMED . AMTAGVI- lifileucel suspension (2024). Available online at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=91b0c63a-9a7e-46d0-a562-dc0d7d7867f3 (Accessed August 5, 2024).
DAILYMED . IMLYGIC- talimogene laherparepvec injection, suspension (2023). Available online at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=64ffb680-ea8c-42fc-9649-9e8c0eb77ddb (Accessed August 5, 2024).
Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, et al. . Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. (2022) 28:1630–9. doi: 10.1038/s41591-022-01897-x PubMed DOI PMC
Yi L, Ning Z, Xu L, Shen Y, Zhu X, Yu W, et al. . The combination treatment of oncolytic adenovirus H101 with nivolumab for refractory advanced hepatocellular carcinoma: An open-label, single-arm, pilot study. ESMO Open. (2024) 9:102239. doi: 10.1016/j.esmoop.2024.102239 PubMed DOI PMC
Marabelle A, Andtbacka R, Harrington K, Melero I, Leidner R, de Baere T, et al. . Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Ann Oncol. (2018) 29:2163–74. doi: 10.1093/annonc/mdy423 PubMed DOI PMC
Champiat S, Tselikas L, Farhane S, Raoult T, Texier M, Lanoy E, et al. . Intratumoral immunotherapy: from trial design to clinical practice. Clin Cancer Res. (2021) 27:665–79. doi: 10.1158/1078-0432.CCR-20-0473 PubMed DOI
Mullins SR, Vasilakos JP, Deschler K, Grigsby I, Gillis P, John J, et al. . Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J immunotherapy cancer. (2019) 7:1–18. doi: 10.1186/s40425-019-0724-8 PubMed DOI PMC
Osorio JC, Knorr DA, Weitzenfeld P, Yao N, Baez M, DiLillo M, et al. . Intratumoral Fc-optimized agonistic CD40 antibody induces tumor rejection and systemic antitumor immunity in patients with metastatic cancer. Res Sq. (2024). doi: 10.21203/rs.3.rs-4244833/v1 DOI
Floros T, Tarhini AA. Anticancer cytokines: biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21, and IL-12. In: Seminars in oncology. Elsevier; (2015) 42(4):539–48. doi: 10.1053/j.seminoncol.2015.05.015 PubMed DOI PMC
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. . Cytokines in clinical cancer immunotherapy. Br J cancer. (2019) 120:6–15. doi: 10.1038/s41416-018-0328-y PubMed DOI PMC
He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. (2020) 30:660–9. doi: 10.1038/s41422-020-0343-4 PubMed DOI PMC
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. (2012) 12:252–64. doi: 10.1038/nrc3239 PubMed DOI PMC
Wu Y-Y, Sun T-K, Chen M-S, Munir M, Liu H-J. Oncolytic viruses-modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response. Front Cell Infection Microbiol. (2023) 13:1142172. doi: 10.3389/fcimb.2023.1142172 PubMed DOI PMC
Hong WX, Haebe S, Lee AS, Westphalen CB, Norton JA, Jiang W, et al. . Intratumoral immunotherapy for early-stage solid tumors. Clin Cancer Res. (2020) 26:3091–9. doi: 10.1158/1078-0432.CCR-19-3642 PubMed DOI PMC
Brito-Orama S, Sheth RA. The contemporary landscape and future directions of intratumoral immunotherapy. J Immunotherapy Precis Oncol. (2023) 6:84–90. doi: 10.36401/JIPO-22-8 PubMed DOI PMC
Ghosn M, Tselikas L, Champiat S, Deschamps F, Bonnet B, Carre É, et al. . Intratumoral immunotherapy: is it ready for prime time? Curr Oncol Rep. (2023) 25:857–67. doi: 10.1007/s11912-023-01422-4 PubMed DOI
Janku F, Fu S, Murthy R, Karp D, Hong D, Tsimberidou A, et al. . 383 First-in-man clinical trial of intratumoral injection of clostridium Novyi-NT spores in combination with pembrolizumab in patients with treatment-refractory advanced solid tumors. J ImmunoTherapy Cancer. (2020) 8:A233–A. doi: 10.1136/jitc-2020-SITC2020.0383 DOI
Papa S, Adami A, Metoudi M, Beatson R, George MS, Achkova D, et al. . Intratumoral pan-ErbB targeted CAR-T for head and neck squamous cell carcinoma: interim analysis of the T4 immunotherapy study. J Immunother Cancer. (2023) 11:e007162. doi: 10.1136/jitc-2023-007162 PubMed DOI PMC
Zawit M, Swami U, Awada H, Arnouk J, Milhem M, Zakharia Y. Current status of intralesional agents in treatment of Malignant melanoma. Ann Trans Med. (2021) 9. doi: 10.21037/atm-21-491 PubMed DOI PMC
El-Sayes N, Vito A, Mossman K. Tumor heterogeneity: a great barrier in the age of cancer immunotherapy. Cancers. (2021) 13:806. doi: 10.3390/cancers13040806 PubMed DOI PMC
Som A, Rosenboom JG, Chandler A, Sheth RA, Wehrenberg-Klee E. Image-guided intratumoral immunotherapy: Developing a clinically practical technology. Adv Drug Delivery Rev. (2022) 189:114505. doi: 10.1016/j.addr.2022.114505 PubMed DOI PMC
Pohl H, Robertson DJ. Colorectal cancers detected after colonoscopy frequently result from missed lesions. Clin Gastroenterol Hepatology. (2010) 8:858–64. doi: 10.1016/j.cgh.2010.06.028 PubMed DOI
Hovda T, Larsen M, Romundstad L, Sahlberg KK, Hofvind S. Breast cancer missed at screening; hindsight or mistakes? Eur J Radiol. (2023) 165:110913. doi: 10.1016/j.ejrad.2023.110913 PubMed DOI
Shimauchi A, Jansen SA, Abe H, Jaskowiak N, Schmidt RA, Newstead GM. Breast cancers not detected at MRI: review of false-negative lesions. Am J Roentgenology. (2010) 194:1674–9. doi: 10.2214/AJR.09.3568 PubMed DOI
Xia Y, Yang R, Zhu J, Wang H, Li Y, Fan J, et al. . Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Front Bioengineering Biotechnol. (2022) 10:890257. doi: 10.3389/fbioe.2022.890257 PubMed DOI PMC
Aznar MA, Planelles L, Perez-Olivares M, Molina C, Garasa S, Etxeberría I, et al. . Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer. (2019) 7:116. doi: 10.1186/s40425-019-0568-2 PubMed DOI PMC
Duewell P, Steger A, Lohr H, Bourhis H, Hoelz H, Kirchleitner S, et al. . RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death Differentiation. (2014) 21:1825–37. doi: 10.1038/cdd.2014.96 PubMed DOI PMC
Shieh J-J, Huang S-W. The TLR7 agonist imiquimod triggers immunogenic cell death in cancer cells. Ann Oncol. (2017) 28:ix102. doi: 10.1093/annonc/mdx621.031 DOI
See WA, Zhang G, Chen F, Cao Y, Langenstroer P, Sandlow J. Bacille-Calmette Guerin induces caspase-independent cell death in urothelial carcinoma cells together with release of the necrosis-associated chemokine high molecular group box protein 1. BJU Int. (2009) 103:1714–20. doi: 10.1111/j.1464-410X.2008.08274.x PubMed DOI
Bommareddy PK, Zloza A, Rabkin SD, Kaufman HL. Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. Oncoimmunology. (2019) 8:e1591875. doi: 10.1080/2162402X.2019.1591875 PubMed DOI PMC
Araki H, Tazawa H, Kanaya N, Kajiwara Y, Yamada M, Hashimoto M, et al. . Oncolytic virus-mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer. Mol Therapy-Oncolytics. (2022) 27:3–13. doi: 10.1016/j.omto.2022.09.003 PubMed DOI PMC
Annels NE, Simpson GR, Denyer M, Arif M, Coffey M, Melcher A, et al. . Oncolytic reovirus-mediated recruitment of early innate immune responses reverses immunotherapy resistance in prostate tumors. Mol Therapy-Oncolytics. (2021) 20:434–46. doi: 10.1016/j.omto.2020.09.010 PubMed DOI PMC
Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, et al. . Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J cancer. (2015) 136:E313–E25. doi: 10.1002/ijc.29202 PubMed DOI
Wang M, Duan Y, Yang M, Guo Y, Li F, Wang J, et al. . The analysis of immunogenic cell death induced by ablation at different temperatures in hepatocellular carcinoma cells. Front Cell Dev Biol. (2023) 11:1146195. doi: 10.3389/fcell.2023.1146195 PubMed DOI PMC
Yu Z, Geng J, Zhang M, Zhou Y, Fan Q, Chen J. Treatment of osteosarcoma with microwave thermal ablation to induce immunogenic cell death. Oncotarget. (2014) 5:6526. doi: 10.18632/oncotarget.2310 PubMed DOI PMC
Korbelik M, Zhang W, Merchant S. Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunology Immunother. (2011) 60:1431–7. doi: 10.1007/s00262-011-1047-x PubMed DOI PMC
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, Brock RM, Huie KE, Coutermarsh-Ott S, et al. . High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine. (2019) 44:112–25. doi: 10.1016/j.ebiom.2019.05.036 PubMed DOI PMC
Bugaut H, Bruchard M, Berger H, Derangère V, Odoul L, Euvrard R, et al. . Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PloS One. (2013) 8:e65181. doi: 10.1371/journal.pone.0065181 PubMed DOI PMC
Novosiadly R, Schaer D, Amaladas N, Rasmussen E, Lu ZH, Sonyi A, et al. . Abstract 4549: Pemetrexed enhances anti-tumor efficacy of PD1 pathway blockade by promoting intra tumor immune response via immunogenic tumor cell death and T cell intrinsic mechanisms. Cancer Res. (2018) 78:4549–. doi: 10.1158/1538-7445.Am2018-4549 DOI
Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. . Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. (2010) 29:482–91. doi: 10.1038/onc.2009.356 PubMed DOI
Li C, Sun H, Wei W, Liu Q, Wang Y, Zhang Y, et al. . Mitoxantrone triggers immunogenic prostate cancer cell death via p53-dependent PERK expression. Cell Oncol (Dordr). (2020) 43:1099–116. doi: 10.1007/s13402-020-00544-2 PubMed DOI
Lau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, et al. . Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res. (2020) 8:1099–111. doi: 10.1158/2326-6066.CIR-19-0616 PubMed DOI
Lau T-S, Chan LK-Y, Man GC-W, Kwong J. Abstract 1232: Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4-independent and dependent pathways. Cancer Res. (2019) 79:1232. doi: 10.1158/1538-7445.Am2019-1232 DOI
Gulla A, Morelli E, Samur MK, Botta C, Hideshima T, Bianchi G, et al. . Bortezomib induces anti–multiple myeloma immune response mediated by cGAS/STING pathway activation. Blood Cancer discovery. (2021) 2:468–83. doi: 10.1158/2643-3230.BCD-21-0047 PubMed DOI PMC
Pozzi C, Cuomo A, Spadoni I, Magni E, Silvola A, Conte A, et al. . The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med. (2016) 22:624–31. doi: 10.1038/nm.4078 PubMed DOI
Hossain DMS, Javaid S, Cai M, Zhang C, Sawant A, Hinton M, et al. . Dinaciclib induces immunogenic cell death and enhances anti-PD1–mediated tumor suppression. J Clin Invest. (2018) 128:644–54. doi: 10.1172/JCI94586 PubMed DOI PMC
Liu P, Zhao L, Pol J, Levesque S, Petrazzuolo A, Pfirschke C, et al. . Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun. (2019) 10:1486. doi: 10.1038/s41467-019-09415-3 PubMed DOI PMC
Jarauta V, Jaime P, Gonzalo O, de Miguel D, Ramírez-Labrada A, Martínez-Lostao L, et al. . Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo . Cancer Lett. (2016) 382:1–10. doi: 10.1016/j.canlet.2016.08.019 PubMed DOI
Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. (2014) 3:e28518. doi: 10.4161/onci.28518 PubMed DOI PMC
Sequeira GR, Sahores A, Dalotto-Moreno T, Perrotta RM, Pataccini G, Vanzulli SI, et al. . Enhanced antitumor immunity via endocrine therapy prevents mammary tumor relapse and increases immune checkpoint blockade sensitivity. Cancer Res. (2021) 81:1375–87. doi: 10.1158/0008-5472.CAN-20-1441 PubMed DOI
Chen M, Linstra R, van Vugt MA. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Acta (BBA)-Reviews Cancer. (2022) 1877:188661. doi: 10.1016/j.bbcan.2021.188661 PubMed DOI
Wang B, Li R, Wu S, Liu X, Ren J, Li J, et al. . Breast cancer resistance to cyclin-dependent kinases 4/6 inhibitors: intricacy of the molecular mechanisms. Front Oncol. (2021) 11:651541. doi: 10.3389/fonc.2021.651541 PubMed DOI PMC
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, et al. . CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. (2021) 11:1913–35. PubMed PMC
Feehley T, O’Donnell CW, Mendlein J, Karande M, McCauley T. Drugging the epigenome in the age of precision medicine. Clin Epigenetics. (2023) 15:6. doi: 10.1186/s13148-022-01419-z PubMed DOI PMC
Costa P, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SSA, Pessoa CdÓ, et al. . Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol. (2023) 11:1116805. doi: 10.3389/fcell.2023.1116805 PubMed DOI PMC
Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev. (2020) 34:360–94. doi: 10.1101/gad.334516.119 PubMed DOI PMC
Bai Y, Wang W, Wang J. Targeting DNA repair pathways: Mechanisms and potential applications in cancer therapy. Genome Instability Disease. (2020) 1:318–38. doi: 10.1007/s42764-020-00026-7 DOI
Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, et al. . Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol. (2015) 35:S5–S24. doi: 10.1016/j.semcancer.2015.03.005 PubMed DOI PMC
Garrett MD, Collins I. Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci. (2011) 32:308–16. doi: 10.1016/j.tips.2011.02.014 PubMed DOI
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, et al. . CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther. (2023) 8:36. doi: 10.1038/s41392-023-01309-7 PubMed DOI PMC
Eso Y, Shimizu T, Takeda H, Takai A, Marusawa H. Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J gastroenterology. (2020) 55:15–26. doi: 10.1007/s00535-019-01620-7 PubMed DOI PMC
Yang M, Olaoba OT, Zhang C, Kimchi ET, Staveley-O’Carroll KF, Li G. Cancer immunotherapy and delivery system: an update. Pharmaceutics. (2022) 14:1630. doi: 10.3390/pharmaceutics14081630 PubMed DOI PMC
Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduction Targeted Ther. (2023) 8:9. doi: 10.1038/s41392-022-01270-x PubMed DOI PMC
Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discovery. (2023) 22:476–95. doi: 10.1038/s41573-023-00671-z PubMed DOI
Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. (2020) 17:395–417. doi: 10.1038/s41571-020-0341-y PubMed DOI PMC
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. (2022) 22:45–64. doi: 10.1038/s41568-021-00407-4 PubMed DOI
Gandalovičová A, Rosel D, Fernandes M, Veselý P, Heneberg P, Čermák V, et al. . Migrastatics—anti-metastatic and anti-invasion drugs: promises and challenges. Trends cancer. (2017) 3:391–406. doi: 10.1016/j.trecan.2017.04.008 PubMed DOI PMC
Raudenska M, Petrlakova K, Jurinakova T, Leischner Fialova J, Fojtu M, Jakubek M, et al. . Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer. (2023) 9:293–308. doi: 10.1016/j.trecan.2023.01.001 PubMed DOI
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. (2018) 18:533–48. doi: 10.1038/s41568-018-0038-z PubMed DOI PMC
Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation—have anti-inflammatory therapies come of age? Nat Rev Clin Oncol. (2021) 18:261–79. doi: 10.1038/s41571-020-00459-9 PubMed DOI PMC
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer. (2022) 22:515–32. doi: 10.1038/s41568-022-00490-1 PubMed DOI
Keith WN, Bilsland A, Hardie M, Evans TJ. Drug Insight: cancer cell immortality—telomerase as a target for novel cancer gene therapies. Nat Clin Pract Oncol. (2004) 1:88–96. doi: 10.1038/ncponc0044 PubMed DOI
Lythgoe MP, Mullish BH, Frampton AE, Krell J. Polymorphic microbes: a new emerging hallmark of cancer. Trends Microbiol. (2022) 30:1131–4. doi: 10.1016/j.tim.2022.08.004 PubMed DOI
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol. (2022) 19:619–36. doi: 10.1038/s41571-022-00668-4 PubMed DOI PMC
Fanelli GN, Naccarato AG, Scatena C. Recent advances in cancer plasticity: cellular mechanisms, surveillance strategies, and therapeutic optimization. Front Oncol. (2020) 10:569. doi: 10.3389/fonc.2020.00569 PubMed DOI PMC
Gu Y, Zhang Z, Ten Dijke P. Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol Immunol. (2023) 20:318–40. doi: 10.1038/s41423-023-00980-8 PubMed DOI PMC
Bhat GR, Sethi I, Sadida HQ, Rah B, Mir R, Algehainy N, et al. . Cancer cell plasticity: From cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev. (2024) 43:197–228. doi: 10.1007/s10555-024-10172-z PubMed DOI PMC
Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discovery. (2022) 21:141–62. doi: 10.1038/s41573-021-00339-6 PubMed DOI PMC
Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomedicine Pharmacotherapy. (2023) 161:114491. doi: 10.1016/j.biopha.2023.114491 PubMed DOI
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. (2011) 144:646–74. doi: 10.1016/j.cell.2011.02.013 PubMed DOI
Hanahan D. Hallmarks of cancer: new dimensions. Cancer discovery. (2022) 12:31–46. doi: 10.1158/2159-8290.CD-21-1059 PubMed DOI
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. immunity. (2013) 39:1–10. doi: 10.1016/j.immuni.2013.07.012 PubMed DOI
Senders ZJ, Martin RCG, 2nd. Intratumoral immunotherapy and tumor ablation: A local approach with broad potential. Cancers (Basel). (2022) 14:1754. doi: 10.3390/cancers14071754 PubMed DOI PMC
Gu C, Wang X, Wang K, Xie F, Chen L, Ji H, et al. . Cryoablation triggers type I interferon-dependent antitumor immunity and potentiates immunotherapy efficacy in lung cancer. J Immunotherapy Cancer. (2024) 12:e008386. doi: 10.1136/jitc-2023-008386 PubMed DOI PMC
Carbone C, Piro G, Agostini A, Delfino P, De Sanctis F, Nasca V, et al. . Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. J Immunother Cancer. (2021) 9:e002876. doi: 10.1136/jitc-2021-002876 PubMed DOI PMC
Yap TA, Omlin A, De Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. (2013) 31:1592–605. doi: 10.1200/JCO.2011.37.6418 PubMed DOI
Sochacka-Ćwikła A, Mączyński M, Regiec A. FDA-approved small molecule compounds as drugs for solid cancers from early 2011 to the end of 2021. Molecules. (2022) 27:2259. doi: 10.3390/molecules27072259 PubMed DOI PMC
Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell. (2018) 33:581–98. doi: 10.1016/j.ccell.2018.03.005 PubMed DOI PMC
Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. (2014) 4:74. doi: 10.3389/fonc.2014.00074 PubMed DOI PMC
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, et al. . Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. (2020) 8:e000337. doi: 10.1136/jitc-2019-000337 PubMed DOI PMC
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, et al. . Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death disease. (2020) 11:1013. doi: 10.1038/s41419-020-03221-2 PubMed DOI PMC
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. (2019) 29:347–64. doi: 10.1038/s41422-019-0164-5 PubMed DOI PMC
Shi F, Huang X, Hong Z, Lu N, Huang X, Liu L, et al. . Improvement strategy for immune checkpoint blockade: A focus on the combination with immunogenic cell death inducers. Cancer Lett. (2023) 562:216167. doi: 10.1016/j.canlet.2023.216167 PubMed DOI
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol. (2023) 14:1294434. doi: 10.3389/fimmu.2023.1294434 PubMed DOI PMC
Kepp O, Marabelle A, Zitvogel L, Kroemer G. Oncolysis without viruses—inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol. (2020) 17:49–64. doi: 10.1038/s41571-019-0272-7 PubMed DOI
Gujar S, Pol JG, Kroemer G. Heating it up: Oncolytic viruses make tumors ‘hot’and suitable for checkpoint blockade immunotherapies. Taylor Francis;. (2018) p:e1442169. doi: 10.1080/2162402X.2018.1442169 PubMed DOI PMC
Melero I, Gato M, Shekarian T, Aznar A, Valsesia-Wittmann S, Caux C, et al. . Repurposing infectious disease vaccines for intratumoral immunotherapy. J Immunotherapy Cancer. (2020) 8:e000443. doi: 10.1136/jitc-2019-000443 PubMed DOI PMC
Herrada AA, Rojas-Colonelli N, González-Figueroa P, Roco J, Oyarce C, Ligtenberg MA, et al. . Harnessing DNA-induced immune responses for improving cancer vaccines. Hum Vaccines immunotherapeutics. (2012) 8:1682–93. doi: 10.4161/hv.22345 PubMed DOI PMC
Kaczmarek M, Poznańska J, Fechner F, Michalska N, Paszkowska S, Napierała A, et al. . Cancer vaccine therapeutics: limitations and effectiveness—A literature review. Cells. (2023) 12:2159. doi: 10.3390/cells12172159 PubMed DOI PMC
Janes ME, Gottlieb AP, Park KS, Zhao Z, Mitragotri S. Cancer vaccines in the clinic. Bioengineering Trans Med. (2024) 9:e10588. doi: 10.1002/btm2.10588 PubMed DOI PMC
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduction Targeted Ther. (2023) 8:450. doi: 10.1038/s41392-023-01674-3 PubMed DOI PMC
Xia Y, Sun M, Huang H, Jin W-L. Drug repurposing for cancer therapy. Signal Transduction Targeted Ther. (2024) 9:92. doi: 10.1038/s41392-024-01808-1 PubMed DOI PMC
Vandeborne L, Pantziarka P, Van Nuffel AMT, Bouche G. Repurposing infectious diseases vaccines against cancer. Front Oncol. (2021) 11:688755. doi: 10.3389/fonc.2021.688755 PubMed DOI PMC
Newman JH, Chesson CB, Herzog NL, Bommareddy PK, Aspromonte SM, Pepe R, et al. . Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc Natl Acad Sci U S A. (2020) 117:1119–28. doi: 10.1073/pnas.1904022116 PubMed DOI PMC
Aznar MA, Molina C, Teijeira A, Rodriguez I, Azpilikueta A, Garasa S, et al. . Repurposing the yellow fever vaccine for intratumoral immunotherapy. EMBO Mol Med. (2020) 12:e10375. doi: 10.15252/emmm.201910375 PubMed DOI PMC
Fu R, Qi R, Xiong H, Lei X, Jiang Y, He J, et al. . Combination therapy with oncolytic virus and T cells or mRNA vaccine amplifies antitumor effects. Signal Transduction Targeted Ther. (2024) 9:118. doi: 10.1038/s41392-024-01824-1 PubMed DOI PMC
Yan Z, Zhang Z, Chen Y, Xu J, Wang J, Wang Z. Enhancing cancer therapy: the integration of oncolytic virus therapy with diverse treatments. Cancer Cell Int. (2024) 24:242. doi: 10.1186/s12935-024-03424-z PubMed DOI PMC
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, et al. . Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J immunotherapy cancer. (2019) 7:1–21. doi: 10.1186/s40425-018-0495-7 PubMed DOI PMC
Liu Z, Ravindranathan R, Kalinski P, Guo ZS, Bartlett DL. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. (2017) 8:14754. doi: 10.1038/ncomms14754 PubMed DOI PMC
Chen C-Y, Wang P-Y, Hutzen B, Sprague L, Swain HM, Love JK, et al. . Cooperation of oncolytic herpes virotherapy and PD-1 blockade in murine rhabdomyosarcoma models. Sci Rep. (2017) 7:2396. doi: 10.1038/s41598-017-02503-8 PubMed DOI PMC
Wang G, Kang X, Chen KS, Jehng T, Jones L, Chen J, et al. . An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun. (2020) 11:1395. doi: 10.1038/s41467-020-15229-5 PubMed DOI PMC
Bazan-Peregrino M, Garcia-Carbonero R, Laquente B, Álvarez R, Mato-Berciano A, Gimenez-Alejandre M, et al. . VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects. J Immunother Cancer. (2021) 9:e003254. doi: 10.1136/jitc-2021-003254 PubMed DOI PMC
Garcia-Carbonero R, Bazan-Peregrino M, Gil-Martín M, Álvarez R, Macarulla T, Riesco-Martinez MC, et al. . Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors. J Immunother Cancer. (2022) 10:e003255. doi: 10.1136/jitc-2021-003255 PubMed DOI PMC
Perez MC, Miura JT, Naqvi SMH, Kim Y, Holstein A, Lee D, et al. . Talimogene laherparepvec (TVEC) for the treatment of advanced melanoma: A single-institution experience. Ann Surg Oncol. (2018) 25:3960–5. doi: 10.1245/s10434-018-6803-0 PubMed DOI PMC
Soliman H, Hogue D, Han H, Mooney B, Costa R, Lee MC, et al. . Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial. Nat Med. (2023) 29:450–7. doi: 10.1038/s41591-023-02210-0 PubMed DOI
Hecht JR, Pless M, Cubillo A, Calvo A, Chon HJ, Liu C, et al. . Early safety from a phase I, multicenter, open-label clinical trial of talimogene laherparepvec (T-VEC) injected (inj) into liver tumors in combination with pembrolizumab (pem). J Clin Oncol. (2020) 38:3015. doi: 10.1200/JCO.2020.38.15_suppl.3015 DOI
Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Therapy-Oncolytics. (2019) 15:234–47. doi: 10.1016/j.omto.2019.10.007 PubMed DOI PMC
Garcia-Carbonero R, Salazar R, Duran I, Osman-Garcia I, Paz-Ares L, Bozada JM, et al. . Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J immunotherapy cancer. (2017) 5:1–13. doi: 10.1186/s40425-017-0277-7 PubMed DOI PMC
Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. (2014) 15:e257–67. doi: 10.1016/s1470-2045(13)70585-0 PubMed DOI
Abd-Aziz N, Poh CL. Development of peptide-based vaccines for cancer. J Oncol. (2022) 2022:9749363. doi: 10.1155/2022/9749363 PubMed DOI PMC
Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomedicine Pharmacotherapy. (2023) 164:114954. doi: 10.1016/j.biopha.2023.114954 PubMed DOI
Spicer J, Marabelle A, Baurain JF, Jebsen NL, Jøssang DE, Awada A, et al. . Safety, antitumor activity, and T-cell responses in a dose-ranging phase I trial of the oncolytic peptide LTX-315 in patients with solid tumors. Clin Cancer Res. (2021) 27:2755–63. doi: 10.1158/1078-0432.Ccr-20-3435 PubMed DOI
Pellegatta S, Poliani PL, Stucchi E, Corno D, Colombo CA, Orzan F, et al. . Intra-tumoral dendritic cells increase efficacy of peripheral vaccination by modulation of glioma microenvironment. Neuro-Oncology. (2010) 12:377–88. doi: 10.1093/neuonc/nop024 PubMed DOI PMC
Institute CR. Immunomodulators: checkpoint inhibitors, cytokines, agonists, and adjuvants . Available online at: https://www.cancerresearch.org/treatment-types/immunomodulators (Accessed July 15, 2024).
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR agonists as mediators of trained immunity: mechanistic insight and immunotherapeutic potential to combat infection. Front Immunol. (2021) 11:622614. doi: 10.3389/fimmu.2020.622614 PubMed DOI PMC
Shekarian T, Valsesia-Wittmann S, Brody J, Michallet MC, Depil S, Caux C, et al. . Pattern recognition receptors: immune targets to enhance cancer immunotherapy. Ann Oncol. (2017) 28:1756–66. doi: 10.1093/annonc/mdx179 PubMed DOI
Le Naour J, Zitvogel L, Galluzzi L, Vacchelli E, Kroemer G. Trial watch: STING agonists in cancer therapy. Oncoimmunology. (2020) 9:1777624. doi: 10.1080/2162402X.2020.1777624 PubMed DOI PMC
Marritt KL, Hildebrand KM, Hildebrand KN, Singla AK, Zemp FJ, Mahoney DJ, et al. . Intratumoral STING activation causes durable immunogenic tumor eradication in the KP soft tissue sarcoma model. Front Immunol. (2022) 13:1087991. doi: 10.3389/fimmu.2022.1087991 PubMed DOI PMC
Harrington K, Brody J, Ingham M, Strauss J, Cemerski S, Wang M, et al. . Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann Oncol. (2018) 29:viii712. doi: 10.1093/annonc/mdy424.015 DOI
Rolfo C, Giovannetti E, Martinez P, McCue S, Naing A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis Oncol. (2023) 7:26. doi: 10.1038/s41698-023-00364-1 PubMed DOI PMC
Liu B, Zhou H, Tan L, Siu KTH, Guan X-Y. Exploring treatment options in cancer: tumor treatment strategies. Signal Transduction Targeted Ther. (2024) 9:175. doi: 10.1038/s41392-024-01856-7 PubMed DOI PMC
Adams S. Toll-like receptor agonists in cancer therapy. Immunotherapy. (2009) 1:949–64. doi: 10.2217/imt.09.70 PubMed DOI PMC
Karapetyan L, Luke JJ, Davar D. Toll-like receptor 9 agonists in cancer. OncoTargets Ther. (2020) 13:10039–60. doi: 10.2147/OTT.S247050 PubMed DOI PMC
Ribas A, Medina T, Kummar S, Amin A, Kalbasi A, Drabick JJ, et al. . SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase ib, multicenter study. Cancer Discovery. (2018) 8:1250–7. doi: 10.1158/2159-8290.CD-18-0280 PubMed DOI PMC
Milhem M, Zakharia Y, Davar D, Buchbinder E, Medina T, Daud A, et al. . 304 Intratumoral injection of CMP-001, a toll-like receptor 9 (TLR9) agonist, in combination with pembrolizumab reversed programmed death receptor 1 (PD-1) blockade resistance in advanced melanoma. BMJ Specialist Journals. (2020) 8. doi: 10.1136/jitc-2020-SITC2020.0304 DOI
Uher O, Caisova V, Padoukova L, Kvardova K, Masakova K, Lencova R, et al. . and anti-CD40 immunotherapy in established murine pancreatic adenocarcinoma: understanding therapeutic potentials and limitations. Cancer Immunology Immunother. (2021) 70:3303–12. doi: 10.1007/s00262-021-02920-9 PubMed DOI PMC
Medina R, Wang H, Caisová V, Cui J, Indig IH, Uher O, et al. . Induction of immune response against metastatic tumors via vaccination of mannan-BAM, TLR ligands and anti-CD40 antibody (MBTA). Adv Ther (Weinh). (2020) 3. doi: 10.1002/adtp.202000044 PubMed DOI PMC
Janku F, Zhang HH, Pezeshki A, Goel S, Murthy R, Wang-Gillam A, et al. . Intratumoral injection of clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clin Cancer Res. (2021) 27:96–106. doi: 10.1158/1078-0432.Ccr-20-2065 PubMed DOI
Fu Y, Tang R, Zhao X. Engineering cytokines for cancer immunotherapy: a systematic review. Front Immunol. (2023) 14:1218082. doi: 10.3389/fimmu.2023.1218082 PubMed DOI PMC
Hotz C, Wagenaar TR, Gieseke F, Bangari DS, Callahan M, Cao H, et al. . Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci Transl Med. (2021) 13:eabc7804. doi: 10.1126/scitranslmed.abc7804 PubMed DOI
Neo SY, Xu S, Chong J, Lam K-P, Wu J. Harnessing novel strategies and cell types to overcome immune tolerance during adoptive cell therapy in cancer. J Immunotherapy Cancer. (2023) 11:e006434. doi: 10.1136/jitc-2022-006434 PubMed DOI PMC
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. (2021) 11:69. doi: 10.1038/s41408-021-00459-7 PubMed DOI PMC
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol. (2024) 21:1089–108. doi: 10.1038/s41423-024-01207-0 PubMed DOI PMC
Loureiro LR, Feldmann A, Bergmann R, Koristka S, Berndt N, Máthé D, et al. . Extended half-life target module for sustainable UniCAR T-cell treatment of STn-expressing cancers. J Exp Clin Cancer Res. (2020) 39:77. doi: 10.1186/s13046-020-01572-4 PubMed DOI PMC
Gu X, Zhang Y, Zhou W, Wang F, Yan F, Gao H, et al. . Infusion and delivery strategies to maximize the efficacy of CAR-T cell immunotherapy for cancers. Exp Hematol Oncol. (2024) 13:70. doi: 10.1186/s40164-024-00542-2 PubMed DOI PMC
Hirooka Y, Kawashima H, Ohno E, Ishikawa T, Kamigaki T, Goto S, et al. . Comprehensive immunotherapy combined with intratumoral injection of zoledronate-pulsed dendritic cells, intravenous adoptive activated T lymphocyte and gemcitabine in unresectable locally advanced pancreatic carcinoma: a phase I/II trial. Oncotarget. (2018) 9:2838–47. doi: 10.18632/oncotarget.22974 PubMed DOI PMC
Yu B, Kusmartsev S, Cheng F, Paolini M, Nefedova Y, Sotomayor E, et al. . Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clin Cancer Res. (2003) 9:285–94. PubMed
Tanaka F, Yamaguchi H, Ohta M, Mashino K, Sonoda H, Sadanaga N, et al. . Intratumoral injection of dendritic cells after treatment of anticancer drugs induces tumor-specific antitumor effect in vivo . Int J Cancer. (2002) 101:265–9. doi: 10.1002/ijc.10597 PubMed DOI
Saji H, Song W, Furumoto K, Kato H, Engleman EG. Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy. Clin Cancer Res. (2006) 12:2568–74. doi: 10.1158/1078-0432.Ccr-05-1986 PubMed DOI
Schwarze JK, Tijtgat J, Awada G, Cras L, Vasaturo A, Bagnall C, et al. . Intratumoral administration of CD1c (BDCA-1)(+) and CD141 (BDCA-3)(+) myeloid dendritic cells in combination with talimogene laherparepvec in immune checkpoint blockade refractory advanced melanoma patients: a phase I clinical trial. J Immunother Cancer. (2022) 10:e005141. doi: 10.1136/jitc-2022-005141 PubMed DOI PMC
Tijtgat J, Geeraerts X, Boisson A, Stevens L, Vounckx M, Dirven I, et al. . Intratumoral administration of the immunologic adjuvant AS01(B) in combination with autologous CD1c (BDCA-1)(+)/CD141 (BDCA-3)(+) myeloid dendritic cells plus ipilimumab and intravenous nivolumab in patients with refractory advanced melanoma. J Immunother Cancer. (2024) 12:e008148. doi: 10.1136/jitc-2023-008148 PubMed DOI PMC
Fonkoua LK, Wang P, Hallemeier C, Atwell T, Tran N, Mahipal A, et al. . Preliminary results of a pilot study of intratumoral injection of autologous dendritic cells after high-dose conformal external beam radiotherapy in unreseltable primary liver cancers. BMJ Specialist Journals. (2022) 10. doi: 10.1136/jitc-2022-SITC2022.0689 DOI
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, et al. . Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol. (2022) 13:915094. doi: 10.3389/fimmu.2022.915094 PubMed DOI PMC
Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. (2022) 19:254–67. doi: 10.1038/s41571-022-00600-w PubMed DOI PMC
Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, et al. . Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. (2019) 16:563–80. doi: 10.1038/s41571-019-0218-0 PubMed DOI
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, et al. . Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials. (2024) 122463. doi: 10.1016/j.biomaterials.2023.122463 PubMed DOI
Walsh RJ, Sundar R, Lim JS. Immune checkpoint inhibitor combinations—current and emerging strategies. Br J Cancer. (2023) 128:1415–7. doi: 10.1038/s41416-023-02181-6 PubMed DOI PMC
De Lombaerde E, De Wever O, De Geest BG. Delivery routes matter: Safety and efficacy of intratumoral immunotherapy. Biochim Biophys Acta (BBA) - Rev Cancer. (2021) 1875:188526. doi: 10.1016/j.bbcan.2021.188526 PubMed DOI
Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. (2020) 20:173–85. doi: 10.1038/s41577-019-0224-6 PubMed DOI PMC
Liu HC, Viswanath DI, Pesaresi F, Xu Y, Zhang L, Di Trani N, et al. . Potentiating antitumor efficacy through radiation and sustained intratumoral delivery of anti-CD40 and anti-PDL1. Int J Radiat Oncol Biol Phys. (2021) 110:492–506. doi: 10.1016/j.ijrobp.2020.07.2326 PubMed DOI PMC
Yuan Y, Zhang J, Kessler J, Rand J, Modi B, Chaurasiya S, et al. . Phase I study of intratumoral administration of CF33-HNIS-antiPDL1 in patients with metastatic triple negative breast cancer. J Clin Oncol. (2022) 40:e13070–e. doi: 10.1200/JCO.2022.40.16_suppl.e13070 DOI
Jhawar SR, Wang S-J, Thandoni A, Bommareddy PK, Newman JH, Giurini EF, et al. . Combination oncolytic virus, radiation therapy, and immune checkpoint inhibitor treatment in anti-PD-1-refractory cancer. J immunotherapy Cancer. (2023) 11:e006780. doi: 10.1136/jitc-2023-006780 PubMed DOI PMC
Banstola A, Poudel K, Emami F, Ku SK, Jeong JH, Kim JO, et al. . Localized therapy using anti-PD-L1 anchored and NIR-responsive hollow gold nanoshell (HGNS) loaded with doxorubicin (DOX) for the treatment of locally advanced melanoma. Nanomedicine. (2021) 33:102349. doi: 10.1016/j.nano.2020.102349 PubMed DOI
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. . Mutations associated with acquired resistance to PD-1 blockade in melanoma. New Engl J Med. (2016) 375:819–29. doi: 10.1056/NEJMoa1604958 PubMed DOI PMC
Karasarides M, Cogdill AP, Robbins PB, Bowden M, Burton EM, Butterfield LH, et al. . Hallmarks of resistance to immune-checkpoint inhibitors. Cancer Immunol Res. (2022) 10:372–83. doi: 10.1158/2326-6066.CIR-20-0586 PubMed DOI PMC
Weber R, Fleming V, Hu X, Nagibin V, Groth C, Altevogt P, et al. . Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol. (2018) 9:1310. doi: 10.3389/fimmu.2018.01310 PubMed DOI PMC
Márquez-Rodas I, Longo F, Rodriguez-Ruiz ME, Calles A, Ponce S, Jove M, et al. . Intratumoral nanoplexed poly I:C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumors. . Sci Transl Med. (2020) 12:eabb0391. doi: 10.1126/scitranslmed.abb0391 PubMed DOI
Wang S, Campos J, Gallotta M, Gong M, Crain C, Naik E, et al. . Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci. (2016) 113:E7240–E9. doi: 10.1073/pnas.1608555113 PubMed DOI PMC
Gao Y, Bi D, Xie R, Li M, Guo J, Liu H, et al. . Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct Target Ther. (2021) 6:398. doi: 10.1038/s41392-021-00795-x PubMed DOI PMC
Chen J-S, Hsieh Y-C, Chou C-H, Wu Y-H, Yang M-H, Chu S-H, et al. . Chidamide plus tyrosine kinase inhibitor remodel the tumor immune microenvironment and reduce tumor progression when combined with immune checkpoint inhibitor in naïve and anti-PD-1 resistant CT26-bearing mice. Int J Mol Sci. (2022) 23:10677. doi: 10.3390/ijms231810677 PubMed DOI PMC
Nayyar N, de Sauvage MA, Chuprin J, Sullivan EM, Singh M, Torrini C, et al. . CDK4/6 inhibition sensitizes intracranial tumors to PD-1 blockade in preclinical models of brain metastasis. Clin Cancer Res. (2024) 30:420–35. doi: 10.1158/1078-0432.CCR-23-0433 PubMed DOI PMC
Jian C-Z, Lin L, Hsu C-L, Chen Y-H, Hsu C, Tan C-T, et al. . A potential novel cancer immunotherapy: agonistic anti-CD40 antibodies. Drug Discovery Today. (2024) 103893. doi: 10.1016/j.drudis.2024.103893 PubMed DOI
Van Meir H, Nout R, Welters M, Loof N, De Kam M, Van Ham J, et al. . Impact of (chemo) radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology. (2017) 6:e1267095. doi: 10.1080/2162402X.2016.1267095 PubMed DOI PMC
McMahon RA, D'Souza C, Neeson PJ, Siva S. Innate immunity: Looking beyond T-cells in radiation and immunotherapy combinations. Neoplasia. (2023) 46:100940. doi: 10.1016/j.neo.2023.100940 PubMed DOI PMC
Mikhail AS, Morhard R, Mauda-Havakuk M, Kassin M, Arrichiello A, Wood BJ. Hydrogel drug delivery systems for minimally invasive local immunotherapy of cancer. Adv Drug Delivery Rev. (2023) 202:115083. doi: 10.1016/j.addr.2023.115083 PubMed DOI PMC
Munoz NM, Williams M, Dixon K, Dupuis C, McWatters A, Avritscher R, et al. . Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J Immunother Cancer. (2021) 9. doi: 10.1136/jitc-2020-001800 PubMed DOI PMC
Sheth RA, Murthy R, Hong DS, Patel S, Overman MJ, Diab A, et al. . Assessment of image-guided intratumoral delivery of immunotherapeutics in patients with cancer. JAMA Netw Open. (2020) 3:e207911. doi: 10.1001/jamanetworkopen.2020.7911 PubMed DOI
Lau T-S, Chan LK-Y, Man GC-W, Kwong J. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4-independent and dependent pathways. Cancer Res. (2019) 79:1232. doi: 10.1158/2326-6066.CIR-19-0616 DOI
Szabados B, van Dijk N, Tang YZ, van der Heijden MS, Wimalasingham A, de Liano AG, et al. . Response rate to chemotherapy after immune checkpoint inhibition in metastatic urothelial cancer. Eur urology. (2018) 73:149–52. doi: 10.1016/j.eururo.2017.08.022 PubMed DOI
Yao W, Zhao X, Gong Y, Zhang M, Zhang L, Wu Q, et al. . Impact of the combined timing of PD-1/PD-L1 inhibitors and chemotherapy on the outcomes in patients with refractory lung cancer. ESMO Open. (2021) 6:100094. doi: 10.1016/j.esmoop.2021.100094 PubMed DOI PMC
Cash E, Sephton S, Woolley C, Elbehi AM, Ri A, Ekine-Afolabi B, et al. . The role of the circadian clock in cancer hallmark acquisition and immune-based cancer therapeutics. J Exp Clin Cancer Res. (2021) 40:1–14. doi: 10.1186/s13046-021-01919-5 PubMed DOI PMC
Wang C, Barnoud C, Cenerenti M, Sun M, Caffa I, Kizil B, et al. . Dendritic cells direct circadian anti-tumour immune responses. Nature. (2023) 614:136–43. doi: 10.1038/s41586-022-05605-0 PubMed DOI PMC
Karaboué A, Innominato PF, Wreglesworth NI, Duchemann B, Adam R, Lévi FA. Why does circadian timing of administration matter for immune checkpoint inhibitors’ efficacy? Br J Cancer. (2024) 131:1–14. doi: 10.1038/s41416-024-02704-9 PubMed DOI PMC
Landré T, Karaboué A, Buchwald Z, Innominato P, Qian D, Assié J, et al. . Effect of immunotherapy-infusion time of day on survival of patients with advanced cancers: a study-level meta-analysis. ESMO Open. (2024) 9:102220. doi: 10.1016/j.esmoop.2023.102220 PubMed DOI PMC
Wang AX, Ong XJ, D’Souza C, Neeson PJ, Zhu JJ. Combining chemotherapy with CAR-T cell therapy in treating solid tumors. Front Immunol. (2023) 14:1140541. doi: 10.3389/fimmu.2023.1140541 PubMed DOI PMC
Van der Veldt AA, Lubberink M, Bahce I, Walraven M, de Boer MP, Greuter HN, et al. . Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell. (2012) 21:82–91. doi: 10.1016/j.ccr.2011.11.023 PubMed DOI
Beaver JA, Kluetz PG, Pazdur R. Metastasis-free survival—a new end point in prostate cancer trials. New Engl J Med. (2018) 378:2458–60. doi: 10.1056/NEJMp1805966 PubMed DOI
Booth CM, Eisenhauer EA, Gyawali B, Tannock IF. Progression-free survival should not be used as a primary end point for registration of anticancer drugs. J Clin Oncol. (2023) 41:4968–72. doi: 10.1200/JCO.23.01423 PubMed DOI
Abou-Alfa GK, Galle PR, Chao Y, Erinjeri J, Heo J, Borad MJ, et al. . PHOCUS: A phase 3, randomized, open-label study of sequential treatment with pexa-vec (JX-594) and sorafenib in patients with advanced hepatocellular carcinoma. Liver Cancer. (2024) 13:248–64. doi: 10.1159/000533650 PubMed DOI PMC
Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. (2020) 17:657–74. doi: 10.1038/s41571-020-0410-2 PubMed DOI
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, et al. . Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem. (2024) 7:180. doi: 10.1038/s42004-024-01256-6 PubMed DOI PMC
Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer. (2021) 9. doi: 10.1136/jitc-2020-001926 PubMed DOI PMC
Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. (2006) 6:535–45. doi: 10.1038/nrc1894 PubMed DOI PMC
Zhou H, Tang D, Yu Y, Zhang L, Wang B, Karges J, et al. . Theranostic imaging and multimodal photodynamic therapy and immunotherapy using the mTOR signaling pathway. Nat Commun. (2023) 14:5350. doi: 10.1038/s41467-023-40826-5 PubMed DOI PMC
Liang X, Chen M, Bhattarai P, Hameed S, Dai Z. Perfluorocarbon@Porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer. ACS Nano. (2020) 14:13569–83. doi: 10.1021/acsnano.0c05617 PubMed DOI
Lima-Sousa R, Melo BL, Alves CG, Moreira AF, Mendonça AG, Correia IJ, et al. . Combining photothermal-photodynamic therapy mediated by nanomaterials with immune checkpoint blockade for metastatic cancer treatment and creation of immune memory. Advanced Funct Materials. (2021) 31:2010777. doi: 10.1002/adfm.202010777 DOI
Institute NC. Neoadjuvant therapy . Available online at: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/neoadjuvant-therapy (Accessed July 25, 2024).
Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. (2020) 367:eaax0182. doi: 10.1126/science.aax0182 PubMed DOI PMC
Patel SP, Othus M, Chen Y, Wright GP, Jr., Yost KJ, Hyngstrom JR, et al. . Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N Engl J Med. (2023) 388:813–23. doi: 10.1056/NEJMoa2211437 PubMed DOI PMC
Yotsukura M, Nakagawa K, Suzuki K, Takamochi K, Ito H, Okami J, et al. . Recent advances and future perspectives in adjuvant and neoadjuvant immunotherapies for lung cancer. Japanese J Clin Oncol. (2021) 51:28–36. doi: 10.1093/jjco/hyaa187 PubMed DOI
Fountzila E, Ignatiadis M. Neoadjuvant immunotherapy in breast cancer: a paradigm shift? Ecancermedicalscience. (2020) 14. doi: 10.3332/ecancer.2020.1147 PubMed DOI PMC
Chalabi M, Verschoor YL, Tan PB, Balduzzi S, Van Lent AU, Grootscholten C, et al. . Neoadjuvant immunotherapy in locally advanced mismatch repair–deficient colon cancer. New Engl J Med. (2024) 390:1949–58. doi: 10.1056/NEJMoa2400634 PubMed DOI
Hong WX, Sagiv-Barfi I, Czerwinski DK, Sallets A, Levy R. Neoadjuvant intratumoral immunotherapy with TLR9 activation and anti-OX40 antibody eradicates metastatic cancer. Cancer Res. (2022) 82:1396–408. doi: 10.1158/0008-5472.Can-21-1382 PubMed DOI PMC
Solomon J, Raskova M, Rosel D, Brabek J, Gil-Henn H. Are we ready for migrastatics? Cells. (2021) 10:1845. doi: 10.3390/cells10081845 PubMed DOI PMC
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer. (2020) 6:942–50. doi: 10.1016/j.trecan.2020.06.005 PubMed DOI
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. (2022) 15:129. doi: 10.1186/s13045-022-01347-8 PubMed DOI PMC
Wang H, Guo S, Kim S-J, Shao F, Ho JWK, Wong KU, et al. . Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics. (2021) 11:2442. doi: 10.7150/thno.46460 PubMed DOI PMC
Caino MC, Ghosh JC, Chae YC, Vaira V, Rivadeneira DB, Faversani A, et al. . PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci. (2015) 112:8638–43. doi: 10.1073/pnas.1500722112 PubMed DOI PMC
Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, et al. . Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol cancer. (2021) 20:1–22. doi: 10.1186/s12943-021-01431-6 PubMed DOI PMC
Wang S-W, Gao C, Zheng Y-M, Yi L, Lu J-C, Huang X-Y, et al. . Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol cancer. (2022) 21:57. doi: 10.1186/s12943-022-01518-8 PubMed DOI PMC
Torikai H, Cooper LJ. Translational implications for off-the-shelf immune cells expressing chimeric antigen receptors. Mol Ther. (2016) 24:1178–86. doi: 10.1038/mt.2016.106 PubMed DOI PMC
Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. . CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. (2016) 6:20070. doi: 10.1038/srep20070 PubMed DOI PMC
Zhang Y, Zhang X, Cheng C, Mu W, Liu X, Li N, et al. . CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front Med. (2017) 11:554–62. doi: 10.1007/s11684-017-0543-6 PubMed DOI
Jang G, Kweon J, Kim Y. CRISPR prime editing for unconstrained correction of oncogenic KRAS variants. Commun Biol. (2023) 6:681. doi: 10.1038/s42003-023-05052-1 PubMed DOI PMC
Depil S, Duchateau P, Grupp S, Mufti G, Poirot L. [amp]]lsquo;Off-the-shelf’allogeneic CAR T cells: development and challenges. Nat Rev Drug discovery. (2020) 19:185–99. doi: 10.1038/s41573-019-0051-2 PubMed DOI
Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J advanced Res. (2019) 15:1–18. doi: 10.1016/j.jare.2018.06.005 PubMed DOI PMC
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol. (2023) 14:1111991. doi: 10.3389/fphar.2023.1111991 PubMed DOI PMC
Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. (2015) 21:223–32. doi: 10.1016/j.molmed.2015.01.001 PubMed DOI PMC
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, et al. . Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol. (2024) 15:1328145. doi: 10.3389/fimmu.2024.1328145 PubMed DOI PMC
Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-drug conjugates and their targets in advanced cancer therapies. Front Chem. (2020) 8:571. doi: 10.3389/fchem.2020.00571 PubMed DOI PMC
Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat nanotechnology. (2021) 16:748–59. doi: 10.1038/s41565-021-00931-2 PubMed DOI
Zhao L, Zhao J, Zhong K, Tong A, Jia D. Targeted protein degradation: mechanisms, strategies and application. Signal transduction targeted Ther. (2022) 7:113. doi: 10.1038/s41392-022-00966-4 PubMed DOI PMC
Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, et al. . Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids Surfaces B: Biointerfaces. (2022) 215:112503. doi: 10.1016/j.colsurfb.2022.112503 PubMed DOI
Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics. (2015) 5:863–81. doi: 10.7150/thno.11852 PubMed DOI PMC
Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, et al. . Treating metastatic cancer with nanotechnology. Nat Rev Cancer. (2012) 12:39–50. doi: 10.1038/nrc3180 PubMed DOI
Zhu W, Wei T, Xu Y, Jin Q, Chao Y, Lu J, et al. . Non-invasive transdermal delivery of biomacromolecules with fluorocarbon-modified chitosan for melanoma immunotherapy and viral vaccines. Nat Commun. (2024) 15:820. doi: 10.1038/s41467-024-45158-6 PubMed DOI PMC
Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, et al. . In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat nanotechnology. (2019) 14:89–97. doi: 10.1038/s41565-018-0319-4 PubMed DOI
Yun WS, Kim J, Lim D-K, Kim D-H, Jeon SI, Kim K. Recent studies and progress in the intratumoral administration of nano-sized drug delivery systems. Nanomaterials. (2023) 13:2225. doi: 10.3390/nano13152225 PubMed DOI PMC
Wang C, Sun W, Wright G, Wang A, Gu Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Advanced materials (Deerfield Beach Fla). (2016) 28:8912. doi: 10.1002/adma.201506312 PubMed DOI PMC
Qian G, Wang X, Li X, Ito A, Sogo Y, Ye J. An immuno-potentiating vehicle made of mesoporous silica-zinc oxide micro-rosettes with enhanced doxorubicin loading for combined chemoimmunotherapy. Chem Commun. (2019) 55:961–4. doi: 10.1039/C8CC09044K PubMed DOI
Bahmani B, Gong H, Luk BT, Haushalter KJ, DeTeresa E, Previti M, et al. . Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun. (2021) 12:1999. doi: 10.1038/s41467-021-22311-z PubMed DOI PMC
Jiang X, Wang J, Zheng X, Liu Z, Zhang X, Li Y, et al. . Intratumoral administration of STING-activating nanovaccine enhances T cell immunotherapy. J Immunother Cancer. (2022) 10(5):e003960. doi: 10.1136/jitc-2021-00396 PubMed DOI PMC