A Cyclic Pentamethinium Salt Induces Cancer Cell Cytotoxicity through Mitochondrial Disintegration and Metabolic Collapse
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-07822S
Grantová Agentura České Republiky
RVO-VFN 64165/2012
Ministerstvo Zdravotnictví Ceské Republiky
NPS I - LO1413, NPS II - LQ1604
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015062, LM2015064
EATRIS-CZ
PubMed
31466233
PubMed Central
PMC6747461
DOI
10.3390/ijms20174208
PII: ijms20174208
Knihovny.cz E-zdroje
- Klíčová slova
- autophagy, cancer therapy, glucose metabolism, mitochondria,
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- chinazoliny chemie farmakologie MeSH
- karbocyaniny chemie MeSH
- kinasy AMP aktivovaných proteinkinas MeSH
- kvartérní amoniové sloučeniny chemie farmakologie MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- mitofagie * MeSH
- nádorové buněčné linie MeSH
- proteinkinasy metabolismus MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky MeSH
- chinazoliny MeSH
- karbocyaniny MeSH
- kinasy AMP aktivovaných proteinkinas MeSH
- kvartérní amoniové sloučeniny MeSH
- proteinkinasy MeSH
- TOR serin-threoninkinasy MeSH
Cancer cells preferentially utilize glycolysis for ATP production even in aerobic conditions (the Warburg effect) and adapt mitochondrial processes to their specific needs. Recent studies indicate that altered mitochondrial activities in cancer represent an actionable target for therapy. We previously showed that salt 1-3C, a quinoxaline unit (with cytotoxic activity) incorporated into a meso-substituted pentamethinium salt (with mitochondrial selectivity and fluorescence properties), displayed potent cytotoxic effects in vitro and in vivo, without significant toxic effects to normal tissues. Here, we investigated the cytotoxic mechanism of salt 1-3C compared to its analogue, salt 1-8C, with an extended side carbon chain. Live cell imaging demonstrated that salt 1-3C, but not 1-8C, is rapidly incorporated into mitochondria, correlating with increased cytotoxicity of salt 1-3C. The accumulation in mitochondria led to their fragmentation and loss of function, accompanied by increased autophagy/mitophagy. Salt 1-3C preferentially activated AMP-activated kinase and inhibited mammalian target of rapamycin (mTOR) signaling pathways, sensors of cellular metabolism, but did not induce apoptosis. These data indicate that salt 1-3C cytotoxicity involves mitochondrial perturbation and disintegration, and such compounds are promising candidates for targeting mitochondria as a weak spot of cancer.
BIOCEV 1st Faculty of Medicine Charles University Průmyslová 595 252 50 Vestec Czech Republic
General University Hospital U nemocnice 2 128 08 Prague 2 Czech Republic
Zobrazit více v PubMed
Saraste M. Oxidative phosphorylation at the fin de siecle. Science. 1999;283:1488–1493. doi: 10.1126/science.283.5407.1488. PubMed DOI
Pavlova N.N., Thompson C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23:27–47. doi: 10.1016/j.cmet.2015.12.006. PubMed DOI PMC
Wallace D.C. Mitochondria and cancer. Nat. Rev. Cancer. 2012;12:685–698. doi: 10.1038/nrc3365. PubMed DOI PMC
Wang J.Y. Regulation of cell death by the Abl tyrosine kinase. Oncogene. 2000;19:5643–5650. doi: 10.1038/sj.onc.1203878. PubMed DOI
Mazel S., Burtrum D., Petrie H.T. Regulation of cell division cycle progression by bcl-2 expression: A potential mechanism for inhibition of programmed cell death. J. Exp. Med. 1996;183:2219–2226. doi: 10.1084/jem.183.5.2219. PubMed DOI PMC
Li G., Lin Q., Sun L., Feng C., Zhang P., Yu B., Chen Y., Wen Y., Wang H., Ji L., et al. A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and in vivo. Biomaterials. 2015;53:285–295. doi: 10.1016/j.biomaterials.2015.02.106. PubMed DOI
Weinberg S.E., Chandel N.S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015;11:9–15. doi: 10.1038/nchembio.1712. PubMed DOI PMC
Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem. Rev. 2017;117:10043–10120. doi: 10.1021/acs.chemrev.7b00042. PubMed DOI PMC
Johnson L.V., Walsh M.L., Chen L.B. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA. 1980;77:990–994. doi: 10.1073/pnas.77.2.990. PubMed DOI PMC
Heller A., Brockhoff G., Goepferich A. Targeting drugs to mitochondria. Eur. J. Pharm. Biopharm. 2012;82:1–18. doi: 10.1016/j.ejpb.2012.05.014. PubMed DOI
Onoe S., Temma T., Shimizu Y., Ono M., Saji H. Investigation of cyanine dyes for in vivo optical imaging of altered mitochondrial membrane potential in tumors. Cancer Med. 2014;3:775–786. doi: 10.1002/cam4.252. PubMed DOI PMC
Briza T., Kejik Z., Cisarova I., Kralova J., Martasek P., Kral V. Optical sensing of sulfate by polymethinium salt receptors: Colorimetric sensor for heparin. Chem. Commun. 2008:1901–1903. doi: 10.1039/b718492a. PubMed DOI
Rimpelova S., Briza T., Kralova J., Zaruba K., Kejik Z., Cisarova I., Martasek P., Ruml T., Kral V. Rational design of chemical ligands for selective mitochondrial targeting. Bioconjugate Chem. 2013;24:1445–1454. doi: 10.1021/bc400291f. PubMed DOI
Briza T., Kralova J., Dolensky B., Rimpelova S., Kejik Z., Ruml T., Hajduch M., Dzubak P., Mikula I., Martasek P., et al. Striking antitumor activity of a methinium system with incorporated quinoxaline unit obtained by spontaneous cyclization. Chembiochem. 2015;16:555–558. doi: 10.1002/cbic.201402662. PubMed DOI
Yang N.J., Hinner M.J. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Methods Mol Biol. 2015;1266:29–53. doi: 10.1007/978-1-4939-2272-7_3. PubMed DOI PMC
Okatsu K., Saisho K., Shimanuki M., Nakada K., Shitara H., Sou Y.S., Kimura M., Sato S., Hattori N., Komatsu M., et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells. 2010;15:887–900. doi: 10.1111/j.1365-2443.2010.01426.x. PubMed DOI PMC
Tung Y.T., Hsu W.M., Lee H., Huang W.P., Liao Y.F. The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin. Cell. Mol. Neurobiol. 2010;30:795–806. doi: 10.1007/s10571-010-9507-y. PubMed DOI
Wang Y., Xu W., Yan Z., Zhao W., Mi J., Li J., Yan H. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. 2018;37:63. doi: 10.1186/s13046-018-0731-5. PubMed DOI PMC
Yoo S.M., Jung Y.K. A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol. Cells. 2018;41:18–26. doi: 10.14348/molcells.2018.2277. PubMed DOI PMC
Perfettini J.L., Roumier T., Kroemer G. Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol. 2005;15:179–183. doi: 10.1016/j.tcb.2005.02.005. PubMed DOI
Arnoult D. Mitochondrial fragmentation in apoptosis. Trends Cell Biol. 2007;17:6–12. doi: 10.1016/j.tcb.2006.11.001. PubMed DOI
Suen D.F., Norris K.L., Youle R.J. Mitochondrial dynamics and apoptosis. Genes Dev. 2008;22:1577–1590. doi: 10.1101/gad.1658508. PubMed DOI PMC
Scorrano L., Ashiya M., Buttle K., Weiler S., Oakes S.A., Mannella C.A., Korsmeyer S.J. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell. 2002;2:55–67. doi: 10.1016/S1534-5807(01)00116-2. PubMed DOI
Kisfalvi K., Eibl G., Sinnett-Smith J., Rozengurt E. Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res. 2009;69:6539–6545. doi: 10.1158/0008-5472.CAN-09-0418. PubMed DOI PMC
Bartolome A., Garcia-Aguilar A., Asahara S.I., Kido Y., Guillen C., Pajvani U.B., Benito M. MTORC1 Regulates both General Autophagy and Mitophagy Induction after Oxidative Phosphorylation Uncoupling. Mol. Cell. Biol. 2017:e00441-17. doi: 10.1128/MCB.00441-17. PubMed DOI PMC
Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009;10:307–318. doi: 10.1038/nrm2672. PubMed DOI
Dranka B.P., Benavides G.A., Diers A.R., Giordano S., Zelickson B.R., Reily C., Zou L., Chatham J.C., Hill B.G., Zhang J., et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic. Biol. Med. 2011;51:1621–1635. doi: 10.1016/j.freeradbiomed.2011.08.005. PubMed DOI PMC
Ross M.F., Kelso G.F., Blaikie F.H., James A.M., Cocheme H.M., Filipovska A., Da Ros T., Hurd T.R., Smith R.A., Murphy M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem. Biokhimiia. 2005;70:222–230. doi: 10.1007/s10541-005-0104-5. PubMed DOI
Maiuri M.C., Zalckvar E., Kimchi A., Kroemer G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007;8:741–752. doi: 10.1038/nrm2239. PubMed DOI
Chen Q., Kang J., Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct. Target. Ther. 2018;3:18. doi: 10.1038/s41392-018-0018-5. PubMed DOI PMC
Kimura S., Noda T., Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct. Funct. 2008;33:109–122. doi: 10.1247/csf.08005. PubMed DOI
Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 2009;324:1029–1033. doi: 10.1126/science.1160809. PubMed DOI PMC
Muller P., Ceskova P., Vojtesek B. Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: Implications for cancer therapy. J. Biol. Chem. 2005;280:6682–6691. doi: 10.1074/jbc.M412767200. PubMed DOI