Influence of fluorophore and linker length on the localization and trafficking of fluorescent sterol probes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33328481
PubMed Central
PMC7745015
DOI
10.1038/s41598-020-78085-9
PII: 10.1038/s41598-020-78085-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fluorescent sterol probes, comprising a fluorophore connected to a sterol backbone by means of a linker, are promising tools for enabling high-resolution imaging of intracellular cholesterol. In this study, we evaluated how the size of the linker, site of its attachment and nature of the fluorophore, affect the localization and trafficking properties of fluorescent sterol probes. Varying lengths of linker using the same fluorophore affected cell penetration and retention in specific cell compartments. A C-4 linker was confirmed as optimal. Derivatives of heterocyclic sterol precursors attached with identical C-4 linker to different fluorophores at diverse positions also showed significant differences in their binding properties to various intracellular compartments and kinetics of trafficking. Two novel red-emitting probes with good cell permeability, fast intracellular labelling and slightly different distribution displayed very promising characteristics for sterol probes. These probes also strongly labelled endo/lysosomal compartment in cells with pharmacologically disrupted cholesterol transport, or with a genetic mutation of cholesterol transporting protein NPC1, that overlapped with filipin staining of cholesterol. Overall, the present study demonstrates that the physicochemical properties of the fluorophore/linker pairing determine the kinetics of uptake and distribution and subsequently influence the applicability of final probes.
Zobrazit více v PubMed
Baker JG, et al. Influence of fluorophore and linker composition on the pharmacology of fluorescent adenosine A1 receptor ligands. Br. J. Pharmacol. 2010;159:772–786. doi: 10.1111/j.1476-5381.2009.00488.x. PubMed DOI PMC
Hao M, et al. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J. Biol. Chem. 2002;277:609–617. doi: 10.1074/jbc.M108861200. PubMed DOI
Solanko KA, Modzel M, Solanko LM, Wustner D. Fluorescent sterols and cholesteryl esters as probes for intracellular cholesterol transport. Lipid Insights. 2015;8:95–114. doi: 10.4137/LPI.S31617. PubMed DOI PMC
Marks DL, Bittman R, Pagano RE. Use of BODIPY-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem. Cell Biol. 2008;130:819–832. doi: 10.1007/s00418-008-0509-5. PubMed DOI PMC
Gimpl G, Gehrig-Burger K. Probes for studying cholesterol binding and cell biology. Steroids. 2011;76:216–231. doi: 10.1016/j.steroids.2010.11.001. PubMed DOI
Sezgin E, et al. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 2016;57:299–309. doi: 10.1194/jlr.M065326. PubMed DOI PMC
Maxfield FR, Wustner D. Intracellular cholesterol transport. J. Clin. Invest. 2002;110:891–898. doi: 10.1172/JCI16500. PubMed DOI PMC
Králová J, Jurášek M, et al. Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders. Sci. Rep. 2018;8:14428. doi: 10.1038/s41598-018-32776-6. PubMed DOI PMC
Bajaj A, Kondiah P, Bhattacharya S. Design, synthesis, and in vitro gene delivery efficacies of novel cholesterol-based gemini cationic lipids and their serum compatibility: a structure-activity investigation. J. Med. Chem. 2007;50:2432–2442. doi: 10.1021/jm0611253. PubMed DOI
Cooper AG, et al. Alkyl indole-based cannabinoid type 2 receptor tools: exploration of linker and fluorophore attachment. Eur. J. Med. Chem. 2018;145:770–789. doi: 10.1016/j.ejmech.2017.11.076. PubMed DOI
Kubankova M, et al. Linker length affects photostability of protein-targeted sensor of cellular microviscosity. Methods Appl. Fluoresc. 2019;7:044004. doi: 10.1088/2050-6120/ab481f. PubMed DOI
Murphy MP. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta. 2008;1777:1028–1031. doi: 10.1016/j.bbabio.2008.03.029. PubMed DOI
Krejcir R, et al. A Cyclic pentamethinium salt induces cancer cell cytotoxicity through mitochondrial disintegration and metabolic collapse. Int. J. Mol. Sci. 2019 doi: 10.3390/ijms20174208. PubMed DOI PMC
O’Connor D, Byrne A, Keyes TE. Linker length in fluorophore-cholesterol conjugates directs phase selectivity and cellular localisation in GUVs and live cells. RSC Adv. 2019;9:22805–22816. doi: 10.1039/c9ra03905h. PubMed DOI PMC
Li Z, Mintzer E, Bittman R. First synthesis of free cholesterol-BODIPY conjugates. J. Org. Chem. 2006;71:1718–1721. doi: 10.1021/jo052029x. PubMed DOI
Li ZG, Bittman R. Synthesis and spectral properties of cholesterol- and FTY720-containing boron dipyrromethene dyes. J. Org. Chem. 2007;72:8376–8382. doi: 10.1021/jo701475q. PubMed DOI PMC
Rihn S, Retailleau P, Bugsaliewicz N, De Nicola A, Ziessel R. Versatile synthetic methods for the engineering of thiophene-substituted BODIPY dyes. Tetrahedron Lett. 2009;50:7008–7013. doi: 10.1016/j.tetlet.2009.09.163. DOI
Zhang M, et al. One-pot efficient synthesis of pyrrolyl BODIPY dyes from pyrrole and acyl chloride. RSC Adv. 2012;2:11215–11218. doi: 10.1039/c2ra22203e. DOI
Awuah SG, Das SK, D'Souza F, You Y. Thieno-pyrrole-fused BODIPY intermediate as a platform to multifunctional NIR agents. Chem. Asian J. 2013;8:3123–3132. doi: 10.1002/asia.201300855. PubMed DOI PMC
Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev. 2007;107:4891–4932. doi: 10.1021/cr078381n. PubMed DOI
Liu Z, et al. Synthesis of cholesterol analogues bearing BODIPY fluorophores by Suzuki or Liebeskind-Srogl cross-coupling and evaluation of their potential for visualization of cholesterol pools. ChemBioChem. 2014;15:2087–2096. doi: 10.1002/cbic.201402042. PubMed DOI PMC
Bergstrom F, et al. Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology. J. Am. Chem. Soc. 2002;124:196–204. doi: 10.1021/ja010983f. PubMed DOI
Ohsaki Y, Shinohara Y, Suzuki M, Fujimoto T. A pitfall in using BODIPY dyes to label lipid droplets for fluorescence microscopy. Histochem. Cell Biol. 2010;133:477–480. doi: 10.1007/s00418-010-0678-x. PubMed DOI
Andrade LD. Understanding the role of cholesterol in cellular biomechanics and regulation of vesicular trafficking: the power of imaging. Biomed. Spectrosc. Ima. 2016;5:S101–S117. doi: 10.3233/Bsi-160157. DOI
Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 2008;9:125–138. doi: 10.1038/nrm2336. PubMed DOI
Elustondo P, Martin LA, Karten B. Mitochondrial cholesterol import. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 1862;90–101:2017. doi: 10.1016/j.bbalip.2016.08.012. PubMed DOI
Mesmin B, Kovacs D, D'Angelo G. Lipid exchange and signaling at ER-Golgi contact sites. Curr. Opin. Cell. Biol. 2019;57:8–15. doi: 10.1016/j.ceb.2018.10.002. PubMed DOI
Thelen AM, Zoncu R. Emerging roles for the lysosome in lipid metabolism. Trends Cell Biol. 2017;27:843–860. doi: 10.1016/j.tcb.2017.07.006. PubMed DOI PMC
Meng Y, Heybrock S, Neculai D, Saftig P. Cholesterol handling in lysosomes and beyond. Trends Cell Biol. 2020;30:452–466. doi: 10.1016/j.tcb.2020.02.007. PubMed DOI
van Meer G. Caveolin, cholesterol, and lipid droplets? J. Cell Biol. 2001;152:F29–34. doi: 10.1083/jcb.152.5.f29. PubMed DOI PMC