Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders

. 2018 Sep 26 ; 8 (1) : 14428. [epub] 20180926

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30258093

Grantová podpora
17-02836S Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
LO1220 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports) - International

Odkazy

PubMed 30258093
PubMed Central PMC6158244
DOI 10.1038/s41598-018-32776-6
PII: 10.1038/s41598-018-32776-6
Knihovny.cz E-zdroje

The monitoring of intracellular cholesterol homeostasis and trafficking is of great importance because their imbalance leads to many pathologies. Reliable tools for cholesterol detection are in demand. This study presents the design and synthesis of fluorescent probes for cholesterol recognition and demonstrates their selectivity by a variety of methods. The construction of dedicated library of 14 probes was based on heterocyclic (pyridine)-sterol derivatives with various attached fluorophores. The most promising probe, a P1-BODIPY conjugate FP-5, was analysed in detail and showed an intensive labelling of cellular membranes followed by intracellular redistribution into various cholesterol rich organelles and vesicles. FP-5 displayed a stronger signal, with faster kinetics, than the commercial TF-Chol probe. In addition, cells with pharmacologically disrupted cholesterol transport, or with a genetic mutation of cholesterol transporting protein NPC1, exhibited strong and fast FP-5 signal in the endo/lysosomal compartment, co-localizing with filipin staining of cholesterol. Hence, FP-5 has high potential as a new probe for monitoring cholesterol trafficking and its disorders.

Zobrazit více v PubMed

Garcia-Ruiz C, et al. Mitochondrial cholesterol in health and disease. Histol Histopathol. 2009;24:117–132. doi: 10.14670/HH-24.117. PubMed DOI

Hu J, Zhang Z, Shen WJ, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 2010;7:47. doi: 10.1186/1743-7075-7-47. PubMed DOI PMC

Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9:125–138. doi: 10.1038/nrm2336. PubMed DOI

Solanko KA, Modzel M, Solanko LM. & Wustner, D. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport. Lipid Insights. 2015;8:95–114. doi: 10.4137/LPI.S31617. PubMed DOI PMC

Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–438. doi: 10.1161/ATVBAHA.108.179564. PubMed DOI PMC

Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 10.1146/annurev-biochem-062917-011852 (2017). PubMed PMC

Maxfield FR, Wustner D. Intracellular cholesterol transport. J Clin Invest. 2002;110:891–898. doi: 10.1172/JCI16500. PubMed DOI PMC

Chang TY, Chang CC, Ohgami N, Yamauchi Y. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol. 2006;22:129–157. doi: 10.1146/annurev.cellbio.22.010305.104656. PubMed DOI

Liu JP, et al. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci. 2010;43:33–42. doi: 10.1016/j.mcn.2009.07.013. PubMed DOI

Neefjes J, van der Kant R. Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 2014;37:66–76. doi: 10.1016/j.tins.2013.11.006. PubMed DOI

Arenas F, Garcia-Ruiz C, Fernandez-Checa JC. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration. Front Mol Neurosci. 2017;10:382. doi: 10.3389/fnmol.2017.00382. PubMed DOI PMC

Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog Lipid Res. 2013;52:175–191. doi: 10.1016/j.plipres.2012.11.002. PubMed DOI

Mari M, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4:185–198. doi: 10.1016/j.cmet.2006.07.006. PubMed DOI

Maxfield FR, Wustner D. Analysis of cholesterol trafficking with fluorescent probes. Methods Cell Biol. 2012;108:367–393. doi: 10.1016/B978-0-12-386487-1.00017-1. PubMed DOI PMC

Mukherjee S, Zha X, Tabas I, Maxfield FR. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 1998;75:1915–1925. doi: 10.1016/S0006-3495(98)77632-5. PubMed DOI PMC

Arthur JR, Heinecke KA, Seyfried TN. Filipin recognizes both GM1 and cholesterol in GM1 gangliosidosis mouse brain. J Lipid Res. 2011;52:1345–1351. doi: 10.1194/jlr.M012633. PubMed DOI PMC

Gimpl G, Gehrig-Burger K. Probes for studying cholesterol binding and cell biology. Steroids. 2011;76:216–231. doi: 10.1016/j.steroids.2010.11.001. PubMed DOI

Sezgin E, et al. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J Lipid Res. 2016;57:299–309. doi: 10.1194/jlr.M065326. PubMed DOI PMC

Wustner D, Lund FW, Rohrl C, Stangl H. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells. Chem Phys Lipids. 2016;194:12–28. doi: 10.1016/j.chemphyslip.2015.08.007. PubMed DOI

Modzel M, Lund FW, Wustner D. Synthesis and Live-Cell Imaging of Fluorescent Sterols for Analysis of Intracellular Cholesterol Transport. Methods Mol Biol. 2017;1583:111–140. doi: 10.1007/978-1-4939-6875-6_10. PubMed DOI

Jao CY, et al. Bioorthogonal probes for imaging sterols in cells. Chembiochem. 2015;16:611–617. doi: 10.1002/cbic.201402715. PubMed DOI PMC

Hofmann K, et al. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. J Lipid Res. 2014;55:583–591. doi: 10.1194/jlr.D044727. PubMed DOI PMC

Mizuno H, et al. Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chem Sci. 2011;2:1548–1553. doi: 10.1039/c1sc00169h. DOI

Mukai M, Glover KJ, Regen SL. Evidence for Surface Recognition by a Cholesterol-Recognition Peptide. Biophys J. 2016;110:2577–2580. doi: 10.1016/j.bpj.2016.05.007. PubMed DOI PMC

Scott LJ. Abiraterone Acetate: A Review in Metastatic Castration-Resistant Prostrate Cancer. Drugs. 2017;77:1565–1576. doi: 10.1007/s40265-017-0799-9. PubMed DOI

Han CS, Patel R, Kim IY. Pharmacokinetics, pharmacodynamics and clinical efficacy of abiraterone acetate for treating metastatic castration-resistant prostate cancer. Expert Opin Drug Met. 2015;11:967–975. doi: 10.1517/17425255.2015.1041918. PubMed DOI

Ceulemans M, Nuyts K, De Borggraeve WM, Parac-Vogt TN. Gadolinium(III)-DOTA Complex Functionalized with BODIPY as a Potential Bimodal Contrast Agent for MRI and Optical Imaging. Inorganics. 2015;3:516–533. doi: 10.3390/inorganics3040516. DOI

Holtta-Vuori M, et al. BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic. 2008;9:1839–1849. doi: 10.1111/j.1600-0854.2008.00801.x. PubMed DOI

Holtta-Vuori M, Sezgin E, Eggeling C, Ikonen E. Use of BODIPY-Cholesterol (TF-Chol) for Visualizing Lysosomal Cholesterol Accumulation. Traffic. 2016;17:1054–1057. doi: 10.1111/tra.12414. PubMed DOI PMC

Wustner D, et al. Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol. Chem Phys Lipids. 2011;164:221–235. doi: 10.1016/j.chemphyslip.2011.01.004. PubMed DOI

Malmersjo S, Meyer T. Inside-out connections: the ER meets the plasma membrane. Cell. 2013;153:1423–1424. doi: 10.1016/j.cell.2013.05.054. PubMed DOI PMC

Chang CL, Chen YJ, Liou J. ER-plasma membrane junctions: Why and how do we study them? Biochim Biophys Acta. 2017;1864:1494–1506. doi: 10.1016/j.bbamcr.2017.05.018. PubMed DOI PMC

Helle SC, et al. Organization and function of membrane contact sites. Biochim Biophys Acta. 2013;1833:2526–2541. doi: 10.1016/j.bbamcr.2013.01.028. PubMed DOI

English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol. 2013;5:a013227. doi: 10.1101/cshperspect.a013227. PubMed DOI PMC

Jansen M, et al. Role of ORPs in sterol transport from plasma membrane to ER and lipid droplets in mammalian cells. Traffic. 2011;12:218–231. doi: 10.1111/j.1600-0854.2010.01142.x. PubMed DOI

Sere Y, Johansen J, Beh C, Menon A. Role of membrane contact sites in PM-ER sterol transport (606.7) FASEB J. 2014;28(S606):607.

Ikonen E, Holtta-Vuori M. Cellular pathology of Niemann-Pick type C disease. Semin Cell Dev Biol. 2004;15:445–454. doi: 10.1016/j.semcdb.2004.03.001. PubMed DOI

Lloyd-Evans E, et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med. 2008;14:1247–1255. doi: 10.1038/nm.1876. PubMed DOI

Peake KB, Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett. 2010;584:2731–2739. doi: 10.1016/j.febslet.2010.04.047. PubMed DOI

Torres S, et al. Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease. Front Physiol. 2017;8:982. doi: 10.3389/fphys.2017.00982. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...