Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-02836S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
LO1220
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports) - International
PubMed
30258093
PubMed Central
PMC6158244
DOI
10.1038/s41598-018-32776-6
PII: 10.1038/s41598-018-32776-6
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- buněčná membrána chemie metabolismus MeSH
- buněčné linie MeSH
- cholesterol analýza metabolismus MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie metody MeSH
- lidé MeSH
- lyzozomální nemoci z ukládání diagnóza metabolismus MeSH
- pyridiny chemie MeSH
- sloučeniny boru chemie MeSH
- steroly chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene MeSH Prohlížeč
- cholesterol MeSH
- fluorescenční barviva MeSH
- pyridine MeSH Prohlížeč
- pyridiny MeSH
- sloučeniny boru MeSH
- steroly MeSH
The monitoring of intracellular cholesterol homeostasis and trafficking is of great importance because their imbalance leads to many pathologies. Reliable tools for cholesterol detection are in demand. This study presents the design and synthesis of fluorescent probes for cholesterol recognition and demonstrates their selectivity by a variety of methods. The construction of dedicated library of 14 probes was based on heterocyclic (pyridine)-sterol derivatives with various attached fluorophores. The most promising probe, a P1-BODIPY conjugate FP-5, was analysed in detail and showed an intensive labelling of cellular membranes followed by intracellular redistribution into various cholesterol rich organelles and vesicles. FP-5 displayed a stronger signal, with faster kinetics, than the commercial TF-Chol probe. In addition, cells with pharmacologically disrupted cholesterol transport, or with a genetic mutation of cholesterol transporting protein NPC1, exhibited strong and fast FP-5 signal in the endo/lysosomal compartment, co-localizing with filipin staining of cholesterol. Hence, FP-5 has high potential as a new probe for monitoring cholesterol trafficking and its disorders.
Zobrazit více v PubMed
Garcia-Ruiz C, et al. Mitochondrial cholesterol in health and disease. Histol Histopathol. 2009;24:117–132. doi: 10.14670/HH-24.117. PubMed DOI
Hu J, Zhang Z, Shen WJ, Azhar S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 2010;7:47. doi: 10.1186/1743-7075-7-47. PubMed DOI PMC
Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9:125–138. doi: 10.1038/nrm2336. PubMed DOI
Solanko KA, Modzel M, Solanko LM. & Wustner, D. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport. Lipid Insights. 2015;8:95–114. doi: 10.4137/LPI.S31617. PubMed DOI PMC
Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–438. doi: 10.1161/ATVBAHA.108.179564. PubMed DOI PMC
Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 10.1146/annurev-biochem-062917-011852 (2017). PubMed PMC
Maxfield FR, Wustner D. Intracellular cholesterol transport. J Clin Invest. 2002;110:891–898. doi: 10.1172/JCI16500. PubMed DOI PMC
Chang TY, Chang CC, Ohgami N, Yamauchi Y. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol. 2006;22:129–157. doi: 10.1146/annurev.cellbio.22.010305.104656. PubMed DOI
Liu JP, et al. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci. 2010;43:33–42. doi: 10.1016/j.mcn.2009.07.013. PubMed DOI
Neefjes J, van der Kant R. Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 2014;37:66–76. doi: 10.1016/j.tins.2013.11.006. PubMed DOI
Arenas F, Garcia-Ruiz C, Fernandez-Checa JC. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration. Front Mol Neurosci. 2017;10:382. doi: 10.3389/fnmol.2017.00382. PubMed DOI PMC
Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog Lipid Res. 2013;52:175–191. doi: 10.1016/j.plipres.2012.11.002. PubMed DOI
Mari M, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4:185–198. doi: 10.1016/j.cmet.2006.07.006. PubMed DOI
Maxfield FR, Wustner D. Analysis of cholesterol trafficking with fluorescent probes. Methods Cell Biol. 2012;108:367–393. doi: 10.1016/B978-0-12-386487-1.00017-1. PubMed DOI PMC
Mukherjee S, Zha X, Tabas I, Maxfield FR. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 1998;75:1915–1925. doi: 10.1016/S0006-3495(98)77632-5. PubMed DOI PMC
Arthur JR, Heinecke KA, Seyfried TN. Filipin recognizes both GM1 and cholesterol in GM1 gangliosidosis mouse brain. J Lipid Res. 2011;52:1345–1351. doi: 10.1194/jlr.M012633. PubMed DOI PMC
Gimpl G, Gehrig-Burger K. Probes for studying cholesterol binding and cell biology. Steroids. 2011;76:216–231. doi: 10.1016/j.steroids.2010.11.001. PubMed DOI
Sezgin E, et al. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J Lipid Res. 2016;57:299–309. doi: 10.1194/jlr.M065326. PubMed DOI PMC
Wustner D, Lund FW, Rohrl C, Stangl H. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells. Chem Phys Lipids. 2016;194:12–28. doi: 10.1016/j.chemphyslip.2015.08.007. PubMed DOI
Modzel M, Lund FW, Wustner D. Synthesis and Live-Cell Imaging of Fluorescent Sterols for Analysis of Intracellular Cholesterol Transport. Methods Mol Biol. 2017;1583:111–140. doi: 10.1007/978-1-4939-6875-6_10. PubMed DOI
Jao CY, et al. Bioorthogonal probes for imaging sterols in cells. Chembiochem. 2015;16:611–617. doi: 10.1002/cbic.201402715. PubMed DOI PMC
Hofmann K, et al. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. J Lipid Res. 2014;55:583–591. doi: 10.1194/jlr.D044727. PubMed DOI PMC
Mizuno H, et al. Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chem Sci. 2011;2:1548–1553. doi: 10.1039/c1sc00169h. DOI
Mukai M, Glover KJ, Regen SL. Evidence for Surface Recognition by a Cholesterol-Recognition Peptide. Biophys J. 2016;110:2577–2580. doi: 10.1016/j.bpj.2016.05.007. PubMed DOI PMC
Scott LJ. Abiraterone Acetate: A Review in Metastatic Castration-Resistant Prostrate Cancer. Drugs. 2017;77:1565–1576. doi: 10.1007/s40265-017-0799-9. PubMed DOI
Han CS, Patel R, Kim IY. Pharmacokinetics, pharmacodynamics and clinical efficacy of abiraterone acetate for treating metastatic castration-resistant prostate cancer. Expert Opin Drug Met. 2015;11:967–975. doi: 10.1517/17425255.2015.1041918. PubMed DOI
Ceulemans M, Nuyts K, De Borggraeve WM, Parac-Vogt TN. Gadolinium(III)-DOTA Complex Functionalized with BODIPY as a Potential Bimodal Contrast Agent for MRI and Optical Imaging. Inorganics. 2015;3:516–533. doi: 10.3390/inorganics3040516. DOI
Holtta-Vuori M, et al. BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic. 2008;9:1839–1849. doi: 10.1111/j.1600-0854.2008.00801.x. PubMed DOI
Holtta-Vuori M, Sezgin E, Eggeling C, Ikonen E. Use of BODIPY-Cholesterol (TF-Chol) for Visualizing Lysosomal Cholesterol Accumulation. Traffic. 2016;17:1054–1057. doi: 10.1111/tra.12414. PubMed DOI PMC
Wustner D, et al. Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol. Chem Phys Lipids. 2011;164:221–235. doi: 10.1016/j.chemphyslip.2011.01.004. PubMed DOI
Malmersjo S, Meyer T. Inside-out connections: the ER meets the plasma membrane. Cell. 2013;153:1423–1424. doi: 10.1016/j.cell.2013.05.054. PubMed DOI PMC
Chang CL, Chen YJ, Liou J. ER-plasma membrane junctions: Why and how do we study them? Biochim Biophys Acta. 2017;1864:1494–1506. doi: 10.1016/j.bbamcr.2017.05.018. PubMed DOI PMC
Helle SC, et al. Organization and function of membrane contact sites. Biochim Biophys Acta. 2013;1833:2526–2541. doi: 10.1016/j.bbamcr.2013.01.028. PubMed DOI
English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol. 2013;5:a013227. doi: 10.1101/cshperspect.a013227. PubMed DOI PMC
Jansen M, et al. Role of ORPs in sterol transport from plasma membrane to ER and lipid droplets in mammalian cells. Traffic. 2011;12:218–231. doi: 10.1111/j.1600-0854.2010.01142.x. PubMed DOI
Sere Y, Johansen J, Beh C, Menon A. Role of membrane contact sites in PM-ER sterol transport (606.7) FASEB J. 2014;28(S606):607.
Ikonen E, Holtta-Vuori M. Cellular pathology of Niemann-Pick type C disease. Semin Cell Dev Biol. 2004;15:445–454. doi: 10.1016/j.semcdb.2004.03.001. PubMed DOI
Lloyd-Evans E, et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med. 2008;14:1247–1255. doi: 10.1038/nm.1876. PubMed DOI
Peake KB, Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett. 2010;584:2731–2739. doi: 10.1016/j.febslet.2010.04.047. PubMed DOI
Torres S, et al. Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease. Front Physiol. 2017;8:982. doi: 10.3389/fphys.2017.00982. PubMed DOI PMC