Sterolight as imaging tool to study sterol uptake, trafficking and efflux in living cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35428843
PubMed Central
PMC9012876
DOI
10.1038/s41598-022-10134-x
PII: 10.1038/s41598-022-10134-x
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- cholesterol * metabolismus MeSH
- lyzozomy metabolismus MeSH
- steroly metabolismus MeSH
- transportní proteiny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol * MeSH
- steroly MeSH
- transportní proteiny * MeSH
Information about cholesterol subcellular localization and transport pathways inside cells is essential for understanding and treatment of cholesterol-related diseases. However, there is a lack of reliable tools to monitor it. This work follows the fate of Sterolight, a BODIPY-labelled sterol, within the cell and demonstrates it as a suitable probe for visualization of sterol/lipid trafficking. Sterolight enters cells through an energy-independent process and knockdown experiments suggest caveolin-1 as its potential cellular carrier. Intracellular transport of Sterolight is a rapid process, and transfer from ER and mitochondria to lysosomes and later to lipid droplets requires the participation of active microtubules, as it can be inhibited by the microtubule disruptor nocodazole. Excess of the probe is actively exported from cells, in addition to being stored in lipid droplets, to re-establish the sterol balance. Efflux occurs through a mechanism requiring energy and may be selectively poisoned with verapamil or blocked in cells with mutated cholesterol transporter NPC1. Sterolight is efficiently transferred within and between different cell populations, making it suitable for monitoring numerous aspects of sterol biology, including the live tracking and visualization of intracellular and intercellular transport.
Zobrazit více v PubMed
Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47. doi: 10.1126/science.3513311. PubMed DOI
Vance JE. Dysregulation of cholesterol balance in the brain: Contribution to neurodegenerative diseases. Dis. Model Mech. 2012;5:746–755. doi: 10.1242/dmm.010124. PubMed DOI PMC
Arenas F, Garcia-Ruiz C, Fernandez-Checa JC. Intracellular cholesterol trafficking and impact in neurodegeneration. Front. Mol. Neurosci. 2017;10:382. doi: 10.3389/fnmol.2017.00382. PubMed DOI PMC
Gidding SS, Allen NB. Cholesterol and atherosclerotic cardiovascular disease: A lifelong problem. J. Am. Heart Assoc. 2019;8:e012924. doi: 10.1161/JAHA.119.012924. PubMed DOI PMC
Gimpl G, Gehrig-Burger K. Probes for studying cholesterol binding and cell biology. Steroids. 2011;76:216–231. doi: 10.1016/j.steroids.2010.11.001. PubMed DOI
Maxfield FR, Wustner D. Analysis of cholesterol trafficking with fluorescent probes. Methods Cell. Biol. 2012;108:367–393. doi: 10.1016/B978-0-12-386487-1.00017-1. PubMed DOI PMC
Solanko KA, Modzel M, Solanko LM, Wustner D. Fluorescent sterols and cholesteryl esters as probes for intracellular cholesterol transport. Lipid Insights. 2015;8:95–114. doi: 10.4137/LPI.S31617. PubMed DOI PMC
Simons K, Sampaio JL. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 2011;3:a004697. doi: 10.1101/cshperspect.a004697. PubMed DOI PMC
Parton RG, Simons K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007;8:185–194. doi: 10.1038/nrm2122. PubMed DOI
Pike LJ. Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 2006;47:1597–1598. doi: 10.1194/jlr.E600002-JLR200. PubMed DOI
Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: Functions in intracellular cholesterol homeostasis, microparticles, and cell membranes. J. Lipid Res. 2020;61:676–686. doi: 10.1194/jlr.TR119000383. PubMed DOI PMC
Fielding PE, Fielding CJ. Intracellular transport of low density lipoprotein derived free cholesterol begins at clathrin-coated pits and terminates at cell surface caveolae. Biochemistry. 1996;35:14932–14938. doi: 10.1021/bi9613382. PubMed DOI
Fielding CJ, Fielding PE. Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim. Biophys. Acta. 2003;1610:219–228. doi: 10.1016/S0005-2736(03)00020-8. PubMed DOI
Mobius W, et al. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic. 2003;4:222–231. doi: 10.1034/j.1600-0854.2003.00072.x. PubMed DOI
Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 2008;9:125–138. doi: 10.1038/nrm2336. PubMed DOI
Hao M, et al. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J. Biol. Chem. 2002;277:609–617. doi: 10.1074/jbc.M108861200. PubMed DOI
Litvinov DY, Savushkin EV, Dergunov AD. Intracellular and plasma membrane events in cholesterol transport and homeostasis. J. Lipids. 2018;2018:3965054. doi: 10.1155/2018/3965054. PubMed DOI PMC
Prinz WA. Non-vesicular sterol transport in cells. Prog. Lipid Res. 2007;46:297–314. doi: 10.1016/j.plipres.2007.06.002. PubMed DOI PMC
Mesmin B, Antonny B, Drin G. Insights into the mechanisms of sterol transport between organelles. Cell. Mol. Life Sci. 2013;70:3405–3421. doi: 10.1007/s00018-012-1247-3. PubMed DOI PMC
Plochberger B, et al. Lipoprotein particles interact with membranes and transfer their cargo without receptors. Biochemistry. 2020;59:4421–4428. doi: 10.1021/acs.biochem.0c00748. PubMed DOI PMC
Wustner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. BBA-Biomembranes. 1848;1908–1926:2015. doi: 10.1016/j.bbamem.2015.05.010. PubMed DOI
Tong J, Manik MK, Im YJ. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proc. Natl. Acad. Sci. U.S.A. 2018;115:E856–E865. doi: 10.1073/pnas.1719709115. PubMed DOI PMC
Luo J, Jiang LY, Yang HY, Song BL, et al. Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem. Sci. . 2019;44:273–292. doi: 10.1016/j.tibs.2018.10.001. PubMed DOI
Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 2010;22:422–429. doi: 10.1016/j.ceb.2010.05.004. PubMed DOI PMC
Infante RE, Radhakrishnan A. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. Elife. 2017;6:466. doi: 10.7554/eLife.25466. PubMed DOI PMC
Lange Y, Ye J, Rigney M, Steck TL. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J. Lipid Res. 1999;40:2264–2270. doi: 10.1016/S0022-2275(20)32101-5. PubMed DOI
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem. Phys. Lipids. 2016;199:74–93. doi: 10.1016/j.chemphyslip.2016.02.003. PubMed DOI
Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 2014;289:24020–24029. doi: 10.1074/jbc.R114.583658. PubMed DOI PMC
Adorni MP, et al. The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res. 2007;48:2453–2462. doi: 10.1194/jlr.M700274-JLR200. PubMed DOI
Dutta D, Donaldson JG. Search for inhibitors of endocytosis: Intended specificity and unintended consequences. Cell. Logist. 2012;2:203–208. doi: 10.4161/cl.23967. PubMed DOI PMC
Mukherjee S, Zha X, Tabas I, Maxfield FR. Cholesterol distribution in living cells: Fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys. J. 1998;75:1915–1925. doi: 10.1016/S0006-3495(98)77632-5. PubMed DOI PMC
Wustner D. Fluorescent sterols as tools in membrane biophysics and cell biology. Chem. Phys. Lipids. 2007;146:1–25. doi: 10.1016/j.chemphyslip.2006.12.004. PubMed DOI
McIntosh AL, et al. Fluorescence techniques using dehydroergosterol to study cholesterol trafficking. Lipids. 2008;43:1185–1208. doi: 10.1007/s11745-008-3194-1. PubMed DOI PMC
Marks DL, Bittman R, Pagano RE. Use of Bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem. Cell Biol. 2008;130:819–832. doi: 10.1007/s00418-008-0509-5. PubMed DOI PMC
Holtta-Vuori M, et al. BODIPY-cholesterol: A new tool to visualize sterol trafficking in living cells and organisms. Traffic. 2008;9:1839–1849. doi: 10.1111/j.1600-0854.2008.00801.x. PubMed DOI
Hofmann K, et al. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. J. Lipid Res. 2014;55:583–591. doi: 10.1194/jlr.D044727. PubMed DOI PMC
Jao CY, et al. Bioorthogonal probes for imaging sterols in cells. ChemBioChem. 2015;16:611–617. doi: 10.1002/cbic.201402715. PubMed DOI PMC
Feltes M, et al. Synthesis and characterization of diazirine alkyne probes for the study of intracellular cholesterol trafficking. J. Lipid Res. 2019;60:707–716. doi: 10.1194/jlr.D091470. PubMed DOI PMC
Fujimoto T, Hayashi M, Iwamoto M, Ohno-Iwashita Y. Crosslinked plasmalemmal cholesterol is sequestered to caveolae: Analysis with a new cytochemical probe. J. Histochem. Cytochem. 1997;45:1197–1205. doi: 10.1177/002215549704500903. PubMed DOI
Shimada Y, Maruya M, Iwashita S, Ohno-Iwashita Y. The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur. J. Biochem. 2002;269:6195–6203. doi: 10.1046/j.1432-1033.2002.03338.x. PubMed DOI
Ohno-Iwashita Y, et al. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell. Biochem. 2010;51:597–621. doi: 10.1007/978-90-481-8622-8_22. PubMed DOI
Sezgin E, et al. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 2016;57:299–309. doi: 10.1194/jlr.M065326. PubMed DOI PMC
Schoop V, Martello A, Eden ER, Hoglinger D. Cellular cholesterol and how to find it. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021;1866:158989. doi: 10.1016/j.bbalip.2021.158989. PubMed DOI
Matos ALL, et al. CHIMs are versatile cholesterol analogs mimicking and visualizing cholesterol behavior in lipid bilayers and cells. Commun. Biol. 2021;4:720. doi: 10.1038/s42003-021-02252-5. PubMed DOI PMC
Kralova J, et al. Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders. Sci. Rep. 2018;8:14428. doi: 10.1038/s41598-018-32776-6. PubMed DOI PMC
Mayle KM, Le AM, Kamei DT. The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta. 1820;264–281:2012. doi: 10.1016/j.bbagen.2011.09.009. PubMed DOI PMC
Vercauteren D, et al. The use of inhibitors to study endocytic pathways of gene carriers: Optimization and pitfalls. Mol. Ther. 2010;18:561–569. doi: 10.1038/mt.2009.281. PubMed DOI PMC
Macia E, et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell. 2006;10:839–850. doi: 10.1016/j.devcel.2006.04.002. PubMed DOI
Dutta D, Williamson CD, Cole NB, Donaldson JG. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS ONE. 2012;7:e45799. doi: 10.1371/journal.pone.0045799. PubMed DOI PMC
Willox AK, Sahraoui YM, Royle SJ. Non-specificity of Pitstop 2 in clathrin-mediated endocytosis. Biol. Open. 2014;3:326–331. doi: 10.1242/bio.20147955. PubMed DOI PMC
Zhu XD, et al. Caveolae-dependent endocytosis is required for class A macrophage scavenger receptor-mediated apoptosis in macrophages. J. Biol. Chem. 2011;286:8231–8239. doi: 10.1074/jbc.M110.145888. PubMed DOI PMC
Simons K, Ikonen E. Cell biology—How cells handle cholesterol. Science. 2000;290:1721–1726. doi: 10.1126/science.290.5497.1721. PubMed DOI
Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic. 2002;3:311–320. doi: 10.1034/j.1600-0854.2002.30501.x. PubMed DOI
Yao Q, et al. Caveolin-1 interacts directly with dynamin-2. J. Mol. Biol. 2005;348:491–501. doi: 10.1016/j.jmb.2005.02.003. PubMed DOI
Smart EJ, Ying Y, Donzell WC, Anderson RG. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 1996;271:29427–29435. doi: 10.1074/jbc.271.46.29427. PubMed DOI
Fielding CJ, Fielding PE. Cholesterol and caveolae: Structural and functional relationships. Biochim. Biophys. Acta. 2000;1529:210–222. doi: 10.1016/s1388-1981(00)00150-5. PubMed DOI
Sohn J, Lin H, Fritch MR, Tuan RS. Influence of cholesterol/caveolin-1/caveolae homeostasis on membrane properties and substrate adhesion characteristics of adult human mesenchymal stem cells. Stem Cell Res. Ther. 2018;9:86. doi: 10.1186/s13287-018-0830-4. PubMed DOI PMC
Nagai N, Ogata F, Otake H, Nakazawa Y, Kawasaki N. Energy-dependent endocytosis is responsible for drug transcorneal penetration following the instillation of ophthalmic formulations containing indomethacin nanoparticles. Int. J. Nanomed. 2019;14:1213–1227. doi: 10.2147/Ijn.S196681. PubMed DOI PMC
Matthaeus C, Taraska JW. Energy and dynamics of caveolae trafficking. Front. Cell Dev. Biol. 2020;8:614472. doi: 10.3389/fcell.2020.614472. PubMed DOI PMC
Kaplan MR, Simoni RD. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J. Cell Biol. 1985;101:446–453. doi: 10.1083/jcb.101.2.446. PubMed DOI PMC
Razin S. Cholesterol uptake is dependent on membrane fluidity in mycoplasmas. Biochim. Biophys. Acta. 1978;513:401–404. doi: 10.1016/0005-2736(78)90208-0. PubMed DOI
Rothblat GH, Hartzell RW, Jr, Mialhe H, Kritchevsky D. The uptake of cholesterol by L5178Y tissue-culture cells: Studies with free cholesterol. Biochim. Biophys. Acta. 1966;116:133–145. doi: 10.1016/0005-2760(66)90099-3. PubMed DOI
Gimpl G, Gehrig-Burger K. Cholesterol reporter molecules. Biosci. Rep. 2007;27:335–358. doi: 10.1007/s10540-007-9060-1. PubMed DOI
Casley-Smith JR. Endocytosis: The different energy requirements for the uptake of particles by small and large vesicles into peritoneal macrophages. J. Microsc. 1969;90:15–30. doi: 10.1111/j.1365-2818.1969.tb00691.x. DOI
Fiorentino I, et al. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Exp. Cell Res. 2015;330:240–247. doi: 10.1016/j.yexcr.2014.09.017. PubMed DOI
Skiba PJ, Zha X, Maxfield FR, Schissel SL, Tabas I. The distal pathway of lipoprotein-induced cholesterol esterification, but not sphingomyelinase-induced cholesterol esterification, is energy-dependent. J. Biol. Chem. 1996;271:13392–13400. doi: 10.1074/jbc.271.23.13392. PubMed DOI
Romer W, et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature. 2007;450:670–675. doi: 10.1038/nature05996. PubMed DOI
Johannes L. Shiga Toxin-A model for glycolipid-dependent and lectin-driven endocytosis. Toxins (Basel) 2017;9:340. doi: 10.3390/toxins9110340. PubMed DOI PMC
Maniti O, Blanchard E, Trugnan G, Lamaziere A, Ayala-Sanmartin J. Metabolic energy-independent mechanism of internalization for the cell penetrating peptide penetratin. Int. J. Biochem. Cell Biol. 2012;44:869–875. doi: 10.1016/j.biocel.2012.02.010. PubMed DOI
Miaczynska M, Stenmark H. Mechanisms and functions of endocytosis. J. Cell Biol. 2008;180:7–11. doi: 10.1083/jcb.200711073. PubMed DOI PMC
Bosch M, Mari M, Gross SP, Fernandez-Checa JC, Pol A. Mitochondrial cholesterol: A connection between caveolin, metabolism, and disease. Traffic. 2011;12:1483–1489. doi: 10.1111/j.1600-0854.2011.01259.x. PubMed DOI PMC
Fridolfsson HN, Roth DM, Insel PA, Patel HH. Regulation of intracellular signaling and function by caveolin. FASEB J. 2014;28:3823–3831. doi: 10.1096/fj.14-252320. PubMed DOI PMC
Pol A, Morales-Paytuvi F, Bosch M, Parton RG. Non-caveolar caveolins—Duties outside the caves. J. Cell Sci. 2020;133:241562. doi: 10.1242/jcs.241562. PubMed DOI
Murata M, et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. U.S.A. 1995;92:10339–10343. doi: 10.1073/pnas.92.22.10339. PubMed DOI PMC
Lange Y. Cholesterol movement from plasma membrane to rough endoplasmic reticulum. Inhibition by progesterone. J. Biol. Chem. 1994;269:3411–3414. doi: 10.1016/S0021-9258(17)41877-1. PubMed DOI
Maxfield FR, Wustner D. Intracellular cholesterol transport. J. Clin. Invest. 2002;110:891–898. doi: 10.1172/JCI16500. PubMed DOI PMC
Steck TL, Lange Y. Cell cholesterol homeostasis: Mediation by active cholesterol. Trends Cell Biol. 2010;20:680–687. doi: 10.1016/j.tcb.2010.08.007. PubMed DOI PMC
Conrad PA, Smart EJ, Ying YS, Anderson RG, Bloom GS. Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J. Cell Biol. 1995;131:1421–1433. doi: 10.1083/jcb.131.6.1421. PubMed DOI PMC
Wiegand V, Chang TY, Strauss JF, 3rd, Fahrenholz F, Gimpl G. Transport of plasma membrane-derived cholesterol and the function of Niemann-Pick C1 Protein. FASEB J. 2003;17:782–784. doi: 10.1096/fj.02-0818fje. PubMed DOI
Maiwald A, Bauer O, Gimpl G. Synthesis and characterization of a novel rhodamine labeled cholesterol reporter. Biochim. Biophys. Acta Biomembr. 1859;1099–1113:2017. doi: 10.1016/j.bbamem.2017.02.018. PubMed DOI
Mendez AJ. Cholesterol efflux mediated by apolipoproteins is an active cellular process distinct from efflux mediated by passive diffusion. J. Lipid Res. 1997;38:1807–1821. doi: 10.1016/S0022-2275(20)37155-8. PubMed DOI
Sankaranarayanan S, et al. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells. J. Lipid Res. 2013;54:671–676. doi: 10.1194/jlr.M031336. PubMed DOI PMC
Chen W, et al. Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J. Biol. Chem. 2001;276:43564–43569. doi: 10.1074/jbc.M107938200. PubMed DOI
Lusa S, et al. Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane. J. Cell Sci. 2001;114:1893–1900. doi: 10.1242/jcs.114.10.1893. PubMed DOI
Davis DM, Sowinski S. Membrane nanotubes: Dynamic long-distance connections between animal cells. Nat. Rev. Mol. Cell Biol. 2008;9:431–436. doi: 10.1038/nrm2399. PubMed DOI
Crespo AC, et al. Decidual NK cells transfer granulysin to selectively kill bacteria in trophoblasts. Cell. 2020;182:1125–1139. doi: 10.1016/j.cell.2020.07.019. PubMed DOI PMC
Souriant S, et al. Tuberculosis exacerbates HIV-1 infection through IL-10/STAT3-dependent tunneling nanotube formation in macrophages. Cell Rep. 2019;26:3586–3599. doi: 10.1016/j.celrep.2019.02.091. PubMed DOI PMC
Strauss K, et al. Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease. J. Biol. Chem. 2010;285:26279–26288. doi: 10.1074/jbc.M110.134775. PubMed DOI PMC
Wustner D, Mondal M, Tabas I, Maxfield FR. Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic. 2005;6:396–412. doi: 10.1111/j.1600-0854.2005.00285.x. PubMed DOI
Brasaemle DL, Wolins NE. Isolation of lipid droplets from cells by density gradient centrifugation. Curr. Protoc. Cell Biol. 2016;72:31511–131513. doi: 10.1002/cpcb.10. PubMed DOI PMC
McDonald JG, Thompson BM, McCrum EC, Russell DW. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry. Lipidomics and Bioactive Lipids: Mass-Spectrometry-Based Lipid Analysis. 2007;432:145–170. doi: 10.1016/S0076-6879(07)32006-5. PubMed DOI
Li CH, Tam PKS. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit. Lett. 1998;19:771–776. doi: 10.1016/S0167-8655(98)00057-9. DOI