Lipoprotein Particles Interact with Membranes and Transfer Their Cargo without Receptors

. 2020 Nov 17 ; 59 (45) : 4421-4428. [epub] 20201104

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33147967

Grantová podpora
MC_UU_12025 Medical Research Council - United Kingdom
104924/14/Z/14 Wellcome Trust - United Kingdom
G0902418 Medical Research Council - United Kingdom
MC_UU_12010 Medical Research Council - United Kingdom
MR/K01577X/1 Medical Research Council - United Kingdom
Biotechnology and Biological Sciences Research Council - United Kingdom

Lipid transfer from lipoprotein particles to cells is essential for lipid homeostasis. High-density lipoprotein (HDL) particles are mainly captured by cell membrane-associated scavenger receptor class B type 1 (SR-B1) from the bloodstream, while low-density and very-low-density lipoprotein (LDL and VLDL, respectively) particles are mostly taken up by receptor-mediated endocytosis. However, the role of the target lipid membrane itself in the transfer process has been largely neglected so far. Here, we study how lipoprotein particles (HDL, LDL, and VLDL) interact with synthetic lipid bilayers and cell-derived membranes and transfer their cargo subsequently. Employing cryo-electron microscopy, spectral imaging, and fluorescence (cross) correlation spectroscopy allowed us to observe integration of all major types of lipoprotein particles into the membrane and delivery of their cargo in a receptor-independent manner. Importantly, the biophysical properties of the target cell membranes change upon delivery of cargo. The concept of receptor-independent interaction of lipoprotein particles with membranes helps us to better understand lipoprotein particle biology and can be exploited for novel treatments of dyslipidemia diseases.

Zobrazit více v PubMed

Ikonen E. (2008) Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138. 10.1038/nrm2336. PubMed DOI

Brown M. S.; Goldstein J. L. (2009) Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J. Lipid Res. 50, S15–S27. 10.1194/jlr.R800054-JLR200. PubMed DOI PMC

Brown M. S.; Goldstein J. L. (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47. 10.1126/science.3513311. PubMed DOI

Mahley R. W.; Ji Z. S. (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res. 40, 1–16. PubMed

Meyer J. M.; Graf G. A.; Van Der Westhuyzen D. R. (2013) New developments in selective cholesteryl ester uptake. Curr. Opin. Lipidol. 24, 386–392. 10.1097/MOL.0b013e3283638042. PubMed DOI PMC

Zhang X.; Sessa W. C.; Fernández-Hernando C. (2018) Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Front. Cardiovasc. Med. 5, 130.10.3389/fcvm.2018.00130. PubMed DOI PMC

Fung K. Y. Y.; Lee W.; Fairn G. (2020) Inhibition of Low density Lipoprotein Internalization and Transcytosis by HDL; an alternative role for “good” cholesterol. FASEB J. 34, 1.10.1096/fasebj.2020.34.s1.00598. DOI

Robins S. J.; Fasulo J. M. (1999) Delineation of a novel hepatic route for the selective transfer of unesterified sterols from high-density lipoproteins to bile: studies using the perfused rat liver. Hepatology 29, 1541–1548. 10.1002/hep.510290518. PubMed DOI

Wüstner D. (2005) Mathematical analysis of hepatic high density lipoprotein transport based on quantitative imaging data. J. Biol. Chem. 280, 6766–6779. 10.1074/jbc.M413238200. PubMed DOI

Wüstner D.; Mondal M.; Huang A.; Maxfield F. R. (2004) Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells. J. Lipid Res. 45, 427–437. 10.1194/jlr.M300440-JLR200. PubMed DOI

Robins S. J.; Fasulo J. M.; Leduc R.; Patton G. M. (1989) The transport of lipoprotein cholesterol into bile: a reassessment of kinetic studies in the experimental animal. Biochim. Biophys. Acta, Lipids Lipid Metab. 1004, 327–331. 10.1016/0005-2760(89)90080-5. PubMed DOI

Bravo E.; Botham K. M.; Mindham M. A.; Mayes P. A.; Marinelli T.; Cantafora A. (1994) Evaluation in vivo of the differential uptake and processing of high-density lipoprotein unesterified cholesterol and cholesteryl ester in the rat. Biochim. Biophys. Acta, Lipids Lipid Metab. 1215, 93–102. 10.1016/0005-2760(94)90096-5. PubMed DOI

Axmann M.; Karner A.; Meier S. M.; Stangl H.; Plochberger B. (2019) Enrichment of Native Lipoprotein Particles with microRNA and Subsequent Determination of Their Absolute/Relative microRNA Content and Their Cellular Transfer Rate. J. Visualized Exp. 147, e5957310.3791/59573. PubMed DOI

Schumaker V. N., and Puppione D. L. (1986) [6] Sequential flotation ultracentrifugation. In Methods in Enzymology, pp 155–170, Academic Press. PubMed

Bak P.; Timonen J. (1978) Coupling between phase solitons and strain near the commensurate- incommensurate transition. J. Phys. C: Solid State Phys. 11, 4901–4905. 10.1088/0022-3719/11/24/019. DOI

Sezgin E.; Kaiser H.-J.; Baumgart T.; Schwille P.; Simons K.; Levental I. (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7, 1042–1051. 10.1038/nprot.2012.059. PubMed DOI

Sezgin E.; Waithe D.; Bernardino de la Serna J.; Eggeling C. (2015) Spectral imaging to measure heterogeneity in membrane lipid packing. ChemPhysChem 16, 1387–1394. 10.1002/cphc.201402794. PubMed DOI PMC

Waithe D.; Clausen M. P.; Sezgin E.; Eggeling C. (2016) FoCuS-point: Software for STED Fluorescence Correlation and Time-Gated Single Photon Counting. Bioinformatics 32, 958–960. 10.1093/bioinformatics/btv687. PubMed DOI PMC

Baumgartner W.; Hinterdorfer P.; Schindler H. (2000) Data analysis of interaction forces measured with the atomic force microscope. Ultramicroscopy 82, 85–95. 10.1016/S0304-3991(99)00154-0. PubMed DOI

Plochberger B.; Röhrl C.; Preiner J.; Rankl C.; Brameshuber M.; Madl J.; Bittman R.; Ros R.; Sezgin E.; Eggeling C.; Hinterdorfer P.; Stangl H.; Schütz G. J. (2017) HDL particles incorporate into lipid bilayers-a combined AFM and single molecule fluorescence microscopy study. Sci. Rep. 7, 15886.10.1038/s41598-017-15949-7. PubMed DOI PMC

Ebner A.; Hinterdorfer P.; Gruber H. J. (2007) Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107, 922–927. 10.1016/j.ultramic.2007.02.035. PubMed DOI

Stark R. W.; Drobek T.; Heckl W. M. (2001) Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy. Ultramicroscopy 86, 207–215. 10.1016/S0304-3991(00)00077-2. PubMed DOI

Zheng S. Q.; Palovcak E.; Armache J.-P.; Verba K. A.; Cheng Y.; Agard D. A. (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332. 10.1038/nmeth.4193. PubMed DOI PMC

Zhang K. (2016) Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12. 10.1016/j.jsb.2015.11.003. PubMed DOI PMC

Wojczynski M. K.; Glasser S. P.; Oberman A.; Kabagambe E. K.; Hopkins P. N.; Tsai M. Y.; Straka R. J.; Ordovas J. M.; Arnett D. K. (2011) High-fat meal effect on LDL HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN): an interventional study. Lipids Health Dis. 10, 181.10.1186/1476-511X-10-181. PubMed DOI PMC

Axmann M.; Sezgin E.; Karner A.; Novacek J.; Brodesser M. D.; Rohrl C.; Preiner J.; Stangl H.; Plochberger B. (2019) Receptor-Independent Transfer of Low Density Lipoprotein Cargo to Biomembranes. Nano Lett. 19, 2562–2567. 10.1021/acs.nanolett.9b00319. PubMed DOI PMC

Gumí-Audenis B.; Costa L.; Ferrer-Tasies L.; Ratera I.; Ventosa N.; Sanz F.; Giannotti M. I. (2018) Pulling lipid tubes from supported bilayers unveils the underlying substrate contribution to the membrane mechanics. Nanoscale 10, 14763–14770. 10.1039/C8NR03249A. PubMed DOI

Bacia K.; Schwille P. (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2, 2842–2856. 10.1038/nprot.2007.410. PubMed DOI

Kucherak O. A.; Oncul S.; Darwich Z.; Yushchenko D. A.; Arntz Y.; Didier P.; Mely Y.; Klymchenko A. S. (2010) Switchable Nile Red-Based Probe for Cholesterol and Lipid Order at the Outer Leaflet of Biomembranes. J. Am. Chem. Soc. 132, 4907–4916. 10.1021/ja100351w. PubMed DOI

Kim H. M.; Choo H.-J.; Jung S.-Y.; Ko Y.-G.; Park W.-H.; Jeon S.-J.; Kim C. H.; Joo T.; Cho B. R. (2007) A two-photon fluorescent probe for lipid raft imaging: C-laurdan. ChemBioChem 8, 553–559. 10.1002/cbic.200700003. PubMed DOI

Parasassi T.; De Stasio G.; Ravagnan G.; Rusch R. M.; Gratton E. (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 60, 179–189. 10.1016/S0006-3495(91)82041-0. PubMed DOI PMC

Sanchez S. A., Tricerri M. A., Gunther G., and Gratton E. (2007) Laurdan Generalized Polarization: from cuvette to microscope. In Modern Research and Educational Topics in Microscopy (Méndez-Vilas A., and Díaz J., Eds.) Formatex, Badajoz, Spain.

Beckers D.; Urbancic D.; Sezgin E. (2020) Impact of nanoscale hindrances on the relationship between lipid packing and diffusion in model membranes. J. Phys. Chem. B 124, 1487–1494. 10.1021/acs.jpcb.0c00445. PubMed DOI PMC

Lund-Katz S.; Phillips M. C. (2010) High Density Lipoprotein Structure–Function and Role in Reverse Cholesterol Transport. Subcell. Biochem. 51, 183–227. 10.1007/978-90-481-8622-8_7. PubMed DOI PMC

Stangl H.; Hyatt M.; Hobbs H. H. (1999) Transport of Lipids from High and Low Density Lipoproteins via Scavenger Receptor-BI. J. Biol. Chem. 274, 32692–32698. 10.1074/jbc.274.46.32692. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sterolight as imaging tool to study sterol uptake, trafficking and efflux in living cells

. 2022 Apr 15 ; 12 (1) : 6264. [epub] 20220415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...