Receptor-Independent Transfer of Low Density Lipoprotein Cargo to Biomembranes

. 2019 Apr 10 ; 19 (4) : 2562-2567. [epub] 20190308

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30848605

Grantová podpora
P 22838 Austrian Science Fund FWF - Austria
P 29110 Austrian Science Fund FWF - Austria

The fundamental task of lipoprotein particles is extracellular transport of cholesterol, lipids, and fatty acids. Besides, cholesterol-rich apoB-containing lipoprotein particles (i.e., low density lipoprotein LDL) are key players in progression of atherosclerotic cardiovascular disease and are associated with familial hypercholesterolemia (FH). So far, lipoprotein particle binding to the cell membrane and subsequent cargo transfer is directly linked to the lipoprotein receptors on the target cell surface. However, our observations showed that lipoprotein particle cargo transport takes place even in the absence of the receptor. This finding suggests that an alternative mechanism for lipoprotein-particle/membrane interaction, besides the receptor-mediated one, exists. Here, we combined several complementary biophysical techniques to obtain a comprehensive view on the nonreceptor mediated LDL-particle/membrane. We applied a combination of atomic force and single-molecule-sensitive fluorescence microscopy (AFM and SMFM) to investigate the LDL particle interaction with membranes of increasing complexity. We observed direct transfer of fluorescently labeled amphiphilic lipid molecules from LDL particles into the pure lipid bilayer. We further confirmed cargo transfer by fluorescence cross-correlation spectroscopy (FCCS) and spectral imaging of environment-sensitive probes. Moreover, the integration of the LDL particle into the membranes was directly visualized by high-speed atomic force microscopy (HS-AFM) and cryo-electron microscopy (cryo-EM). Overall, our data show that lipoprotein particles are able to incorporate into lipid membranes upon contact to transfer their cargo in the absence of specific receptors.

Zobrazit více v PubMed

Feingold K. R.; Grunfeld C.. Introduction to Lipids and Lipoproteins; De Groot L. J., Chrousos G., Dungan K., Eds. MTText.com, Inc., South Dartmouth, MA, 2000; Updated Feb 2 ,2018.

Tall A. R. An Overview of Reverse Cholesterol Transport. Eur. Heart J. 1998, 19 (Suppl A), A31–A35. PubMed

Brown M. S.; Goldstein J. L. A Receptor-Mediated Pathway for Cholesterol Homeostasis. Science 1986, 232 (4746), 34–47. 10.1126/science.3513311. PubMed DOI

Goldstein J. L.; Brown M. S.; Anderson R. G. W.; Russell D. W.; Schneider W. J. Receptor-Mediated Endocytosis: Concepts Emerging from the LDL Receptor System. Annu. Rev. Cell Biol. 1985, 1 (1), 1–39. 10.1146/annurev.cb.01.110185.000245. PubMed DOI

Hovingh G. K.; Goldberg A. C.; Moriarty P. M. Managing the Challenging Homozygous Familial Hypercholesterolemia Patient: Academic Insights and Practical Approaches for a Severe Dyslipidemia, a National Lipid Association Masters Summit. J. Clin. Lipidol. 2017, 11 (3), 602–616. 10.1016/j.jacl.2017.03.008. PubMed DOI

Hobbs H. H.; Brown M. S.; Goldstein J. L. Molecular Genetics of the LDL Receptor Gene in Familial Hypercholesterolemia. Hum. Mutat. 1992, 1 (6), 445–466. 10.1002/humu.1380010602. PubMed DOI

Aliev G.; Burnstock G. Watanabe Rabbits with Heritable Hypercholesterolaemia: A Model of Atherosclerosis. Histol. Histopathol. 1998, 13 (3), 797–817. 10.14670/HH-13.797. PubMed DOI

Edge S. B.; Hoeg J. M.; Triche T.; Schneider P. D.; Brewer H. B. Cultured Human Hepatocytes. Evidence for Metabolism of Low Density Lipoproteins by a Pathway Independent of the Classical Low Density Lipoprotein Receptor. J. Biol. Chem. 1986, 261 (8), 3800–3806. PubMed

Zhang Z.; Lu L.; Berkowitz M. L. Energetics of Cholesterol Transfer between Lipid Bilayers. J. Phys. Chem. B 2008, 112 (12), 3807–3811. 10.1021/jp077735b. PubMed DOI

Pan L.; Segrest J. P. Computational Studies of Plasma Lipoprotein Lipids. Biochim. Biophys. Acta, Biomembr. 2016, 1858 (10), 2401–2420. 10.1016/j.bbamem.2016.03.010. PubMed DOI

Brown M. S.; Goldstein J. L. Receptor-Mediated Endocytosis: Insights from the Lipoprotein Receptor System. Proc. Natl. Acad. Sci. U. S. A. 1979, 76 (7), 3330–3337. 10.1073/pnas.76.7.3330. PubMed DOI PMC

Acton S.; Rigotti A.; Landschulz K. T.; Xu S.; Hobbs H. H.; Krieger M. Identification of Scavenger Receptor SR-BI as a High Density Lipoprotein Receptor. Science (Washington, DC, U. S.) 1996, 271 (5248), 518–520. 10.1126/science.271.5248.518. PubMed DOI

Meyer J. M.; Graf G. A.; Van Der Westhuyzen D. R. New Developments in Selective Cholesteryl Ester Uptake. Curr. Opin. Lipidol. 2013, 24 (5), 386–392. 10.1097/MOL.0b013e3283638042. PubMed DOI PMC

Miller H.; Zhou Z.; Shepherd J.; Wollman A. J. M.; Leake M. C. Single-Molecule Techniques in Biophysics : A Review of the Progress in Methods and Applications. Rep. Prog. Phys. 2018, 81 (2), 024601.10.1088/1361-6633/aa8a02. PubMed DOI

Elson E. L.; Fried E.; Dolbow J. E.; Genin G. M. Phase Separation in Biological Membranes: Integration of Theory and Experiment. Annu. Rev. Biophys. 2010, 39, 207–226. 10.1146/annurev.biophys.093008.131238. PubMed DOI PMC

Su Q. P. L.; Ju L. A. Biophysical Nanotools for Single-Molecule Dynamics. Biophys. Rev. 2018, 10, 1349–1357. 10.1007/s12551-018-0447-y. PubMed DOI PMC

Parthasarathy R.; Yu C.; Groves J. T. Curvature-Modulated Phase Separation in Lipid Bilayer Membranes. Langmuir 2006, 22, 5095–5099. 10.1021/la060390o. PubMed DOI

Karner A.; Nimmervoll B.; Plochberger B.; Klotzsch E.; Horner A.; Knyazev D. G.; Kuttner R.; Winkler K.; Winter L.; Siligan C.; et al. Tuning Membrane Protein Mobility by Confinement into Nanodomains. Nat. Nanotechnol. 2017, 12 (3), 260–266. 10.1038/nnano.2016.236. PubMed DOI PMC

Plochberger B.; Stockner T.; Chiantia S.; Brameshuber M.; Weghuber J.; Hermetter A.; Schwille P.; Schütz G. J. Cholesterol Slows down the Lateral Mobility of an Oxidized Phospholipid in a Supported Lipid Bilayer. Langmuir 2010, 26 (22), 17322–17329. 10.1021/la1026202. PubMed DOI PMC

Christenson W.; Yermolenko I.; Plochberger B.; Camacho-Alanis F.; Ros A.; Ugarova T. P.; Ros R. Combined Single Cell AFM Manipulation and TIRFM for Probing the Molecular Stability of Multilayer Fibrinogen Matrices. Ultramicroscopy 2014, 136, 211–215. 10.1016/j.ultramic.2013.10.009. PubMed DOI PMC

Sezgin E.; Schwille P. Fluorescence Techniques to Study Lipid Dynamics. Cold Spring Harbor Perspect. Biol. 2011, 3, a009803.10.1101/cshperspect.a009803. PubMed DOI PMC

Kahya N.; Scherfeld D.; Bacia K.; Poolman B.; Schwille P. Probing Lipid Mobility of Raft-Exhibiting Model Membranes by Fluorescence Correlation Spectroscopy. J. Biol. Chem. 2003, 278 (30), 28109–28115. 10.1074/jbc.M302969200. PubMed DOI

Sezgin E.; Sadowski T.; Simons K. Measuring Lipid Packing of Model and Cellular Membranes with Environment Sensitive Probes. Langmuir 2014, 30 (27), 8160–8166. 10.1021/la501226v. PubMed DOI

Ando T.; Kodera N.; Takai E.; Maruyama D.; Saito K.; Toda A. A High-Speed Atomic Force Microscope for Studying Biological Macromolecules. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (22), 12468–12472. 10.1073/pnas.211400898. PubMed DOI PMC

Preiner J.; Kodera N.; Tang J.; Ebner A.; Brameshuber M.; Blaas D.; Gelbmann N.; Gruber H. J.; Ando T.; Hinterdorfer P. IgGs Are Made for Walking on Bacterial and Viral Surfaces. Nat. Commun. 2014, 5, 4394.10.1038/ncomms5394. PubMed DOI

Preiner J.; Horner A.; Karner A.; Ollinger N.; Siligan C.; Pohl P.; Hinterdorfer P. High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties. Nano Lett. 2015, 15 (1), 759–763. 10.1021/nl504478f. PubMed DOI PMC

Plochberger B.; Axmann M.; Röhrl C.; Weghuber J.; Brameshuber M.; Rossboth B. K.; Mayr S.; Ros R.; Bittman R.; Stangl H.; et al. Direct Observation of Cargo Transfer from HDL Particles to the Plasma Membrane. Atherosclerosis 2018, 277, 53–59. 10.1016/j.atherosclerosis.2018.08.032. PubMed DOI

Cevc G.; Richardsen H. Lipid Vesicles and Membrane Fusion. Adv. Drug Delivery Rev. 1999, 38 (3), 207–232. 10.1016/S0169-409X(99)00030-7. PubMed DOI

Plochberger B.; Röhrl C.; Preiner J.; Rankl C.; Brameshuber M.; Madl J.; Bittman R.; Ros R.; Sezgin E.; Eggeling C.; Hinterdorfer P.; Stangl H.; Schütz G. J. HDL Particles Incorporate into Lipid Bilayers-a Combined AFM and Single Molecule Fluorescence Microscopy Study. Sci. Rep. 2017, 7, 15886.10.1038/s41598-017-15949-7. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lipoprotein Particles Interact with Membranes and Transfer Their Cargo without Receptors

. 2020 Nov 17 ; 59 (45) : 4421-4428. [epub] 20201104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...