Receptor-Independent Transfer of Low Density Lipoprotein Cargo to Biomembranes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 22838
Austrian Science Fund FWF - Austria
P 29110
Austrian Science Fund FWF - Austria
PubMed
30848605
PubMed Central
PMC6463238
DOI
10.1021/acs.nanolett.9b00319
Knihovny.cz E-zdroje
- Klíčová slova
- (high-speed) atomic force microscopy, Low density lipoprotein, cholesterol transfer, cryo-electron microscopy, fluorescence (cross) correlation spectroscopy, single-molecule-sensitive imaging,
- MeSH
- apolipoproteiny B chemie MeSH
- biofyzikální jevy MeSH
- buněčná membrána chemie účinky léků ultrastruktura MeSH
- elektronová kryomikroskopie MeSH
- fluorescenční barviva chemie farmakologie MeSH
- hyperlipoproteinemie typ II metabolismus patologie MeSH
- lidé MeSH
- lipidové dvojvrstvy chemie MeSH
- lipoproteiny LDL chemie farmakologie ultrastruktura MeSH
- mikroskopie atomárních sil MeSH
- nemoci koronárních tepen metabolismus patologie MeSH
- progrese nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- apolipoproteiny B MeSH
- fluorescenční barviva MeSH
- lipidové dvojvrstvy MeSH
- lipoproteiny LDL MeSH
The fundamental task of lipoprotein particles is extracellular transport of cholesterol, lipids, and fatty acids. Besides, cholesterol-rich apoB-containing lipoprotein particles (i.e., low density lipoprotein LDL) are key players in progression of atherosclerotic cardiovascular disease and are associated with familial hypercholesterolemia (FH). So far, lipoprotein particle binding to the cell membrane and subsequent cargo transfer is directly linked to the lipoprotein receptors on the target cell surface. However, our observations showed that lipoprotein particle cargo transport takes place even in the absence of the receptor. This finding suggests that an alternative mechanism for lipoprotein-particle/membrane interaction, besides the receptor-mediated one, exists. Here, we combined several complementary biophysical techniques to obtain a comprehensive view on the nonreceptor mediated LDL-particle/membrane. We applied a combination of atomic force and single-molecule-sensitive fluorescence microscopy (AFM and SMFM) to investigate the LDL particle interaction with membranes of increasing complexity. We observed direct transfer of fluorescently labeled amphiphilic lipid molecules from LDL particles into the pure lipid bilayer. We further confirmed cargo transfer by fluorescence cross-correlation spectroscopy (FCCS) and spectral imaging of environment-sensitive probes. Moreover, the integration of the LDL particle into the membranes was directly visualized by high-speed atomic force microscopy (HS-AFM) and cryo-electron microscopy (cryo-EM). Overall, our data show that lipoprotein particles are able to incorporate into lipid membranes upon contact to transfer their cargo in the absence of specific receptors.
CEITEC Masaryk University University Campus Bohunice Brno 62500 Czech Republic
Upper Austria University of Applied Sciences Campus Linz Garnisonstrasse 21 4020 Linz Austria
Zobrazit více v PubMed
Feingold K. R.; Grunfeld C.. Introduction to Lipids and Lipoproteins; De Groot L. J., Chrousos G., Dungan K., Eds. MTText.com, Inc., South Dartmouth, MA, 2000; Updated Feb 2 ,2018.
Tall A. R. An Overview of Reverse Cholesterol Transport. Eur. Heart J. 1998, 19 (Suppl A), A31–A35. PubMed
Brown M. S.; Goldstein J. L. A Receptor-Mediated Pathway for Cholesterol Homeostasis. Science 1986, 232 (4746), 34–47. 10.1126/science.3513311. PubMed DOI
Goldstein J. L.; Brown M. S.; Anderson R. G. W.; Russell D. W.; Schneider W. J. Receptor-Mediated Endocytosis: Concepts Emerging from the LDL Receptor System. Annu. Rev. Cell Biol. 1985, 1 (1), 1–39. 10.1146/annurev.cb.01.110185.000245. PubMed DOI
Hovingh G. K.; Goldberg A. C.; Moriarty P. M. Managing the Challenging Homozygous Familial Hypercholesterolemia Patient: Academic Insights and Practical Approaches for a Severe Dyslipidemia, a National Lipid Association Masters Summit. J. Clin. Lipidol. 2017, 11 (3), 602–616. 10.1016/j.jacl.2017.03.008. PubMed DOI
Hobbs H. H.; Brown M. S.; Goldstein J. L. Molecular Genetics of the LDL Receptor Gene in Familial Hypercholesterolemia. Hum. Mutat. 1992, 1 (6), 445–466. 10.1002/humu.1380010602. PubMed DOI
Aliev G.; Burnstock G. Watanabe Rabbits with Heritable Hypercholesterolaemia: A Model of Atherosclerosis. Histol. Histopathol. 1998, 13 (3), 797–817. 10.14670/HH-13.797. PubMed DOI
Edge S. B.; Hoeg J. M.; Triche T.; Schneider P. D.; Brewer H. B. Cultured Human Hepatocytes. Evidence for Metabolism of Low Density Lipoproteins by a Pathway Independent of the Classical Low Density Lipoprotein Receptor. J. Biol. Chem. 1986, 261 (8), 3800–3806. PubMed
Zhang Z.; Lu L.; Berkowitz M. L. Energetics of Cholesterol Transfer between Lipid Bilayers. J. Phys. Chem. B 2008, 112 (12), 3807–3811. 10.1021/jp077735b. PubMed DOI
Pan L.; Segrest J. P. Computational Studies of Plasma Lipoprotein Lipids. Biochim. Biophys. Acta, Biomembr. 2016, 1858 (10), 2401–2420. 10.1016/j.bbamem.2016.03.010. PubMed DOI
Brown M. S.; Goldstein J. L. Receptor-Mediated Endocytosis: Insights from the Lipoprotein Receptor System. Proc. Natl. Acad. Sci. U. S. A. 1979, 76 (7), 3330–3337. 10.1073/pnas.76.7.3330. PubMed DOI PMC
Acton S.; Rigotti A.; Landschulz K. T.; Xu S.; Hobbs H. H.; Krieger M. Identification of Scavenger Receptor SR-BI as a High Density Lipoprotein Receptor. Science (Washington, DC, U. S.) 1996, 271 (5248), 518–520. 10.1126/science.271.5248.518. PubMed DOI
Meyer J. M.; Graf G. A.; Van Der Westhuyzen D. R. New Developments in Selective Cholesteryl Ester Uptake. Curr. Opin. Lipidol. 2013, 24 (5), 386–392. 10.1097/MOL.0b013e3283638042. PubMed DOI PMC
Miller H.; Zhou Z.; Shepherd J.; Wollman A. J. M.; Leake M. C. Single-Molecule Techniques in Biophysics : A Review of the Progress in Methods and Applications. Rep. Prog. Phys. 2018, 81 (2), 024601.10.1088/1361-6633/aa8a02. PubMed DOI
Elson E. L.; Fried E.; Dolbow J. E.; Genin G. M. Phase Separation in Biological Membranes: Integration of Theory and Experiment. Annu. Rev. Biophys. 2010, 39, 207–226. 10.1146/annurev.biophys.093008.131238. PubMed DOI PMC
Su Q. P. L.; Ju L. A. Biophysical Nanotools for Single-Molecule Dynamics. Biophys. Rev. 2018, 10, 1349–1357. 10.1007/s12551-018-0447-y. PubMed DOI PMC
Parthasarathy R.; Yu C.; Groves J. T. Curvature-Modulated Phase Separation in Lipid Bilayer Membranes. Langmuir 2006, 22, 5095–5099. 10.1021/la060390o. PubMed DOI
Karner A.; Nimmervoll B.; Plochberger B.; Klotzsch E.; Horner A.; Knyazev D. G.; Kuttner R.; Winkler K.; Winter L.; Siligan C.; et al. Tuning Membrane Protein Mobility by Confinement into Nanodomains. Nat. Nanotechnol. 2017, 12 (3), 260–266. 10.1038/nnano.2016.236. PubMed DOI PMC
Plochberger B.; Stockner T.; Chiantia S.; Brameshuber M.; Weghuber J.; Hermetter A.; Schwille P.; Schütz G. J. Cholesterol Slows down the Lateral Mobility of an Oxidized Phospholipid in a Supported Lipid Bilayer. Langmuir 2010, 26 (22), 17322–17329. 10.1021/la1026202. PubMed DOI PMC
Christenson W.; Yermolenko I.; Plochberger B.; Camacho-Alanis F.; Ros A.; Ugarova T. P.; Ros R. Combined Single Cell AFM Manipulation and TIRFM for Probing the Molecular Stability of Multilayer Fibrinogen Matrices. Ultramicroscopy 2014, 136, 211–215. 10.1016/j.ultramic.2013.10.009. PubMed DOI PMC
Sezgin E.; Schwille P. Fluorescence Techniques to Study Lipid Dynamics. Cold Spring Harbor Perspect. Biol. 2011, 3, a009803.10.1101/cshperspect.a009803. PubMed DOI PMC
Kahya N.; Scherfeld D.; Bacia K.; Poolman B.; Schwille P. Probing Lipid Mobility of Raft-Exhibiting Model Membranes by Fluorescence Correlation Spectroscopy. J. Biol. Chem. 2003, 278 (30), 28109–28115. 10.1074/jbc.M302969200. PubMed DOI
Sezgin E.; Sadowski T.; Simons K. Measuring Lipid Packing of Model and Cellular Membranes with Environment Sensitive Probes. Langmuir 2014, 30 (27), 8160–8166. 10.1021/la501226v. PubMed DOI
Ando T.; Kodera N.; Takai E.; Maruyama D.; Saito K.; Toda A. A High-Speed Atomic Force Microscope for Studying Biological Macromolecules. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (22), 12468–12472. 10.1073/pnas.211400898. PubMed DOI PMC
Preiner J.; Kodera N.; Tang J.; Ebner A.; Brameshuber M.; Blaas D.; Gelbmann N.; Gruber H. J.; Ando T.; Hinterdorfer P. IgGs Are Made for Walking on Bacterial and Viral Surfaces. Nat. Commun. 2014, 5, 4394.10.1038/ncomms5394. PubMed DOI
Preiner J.; Horner A.; Karner A.; Ollinger N.; Siligan C.; Pohl P.; Hinterdorfer P. High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties. Nano Lett. 2015, 15 (1), 759–763. 10.1021/nl504478f. PubMed DOI PMC
Plochberger B.; Axmann M.; Röhrl C.; Weghuber J.; Brameshuber M.; Rossboth B. K.; Mayr S.; Ros R.; Bittman R.; Stangl H.; et al. Direct Observation of Cargo Transfer from HDL Particles to the Plasma Membrane. Atherosclerosis 2018, 277, 53–59. 10.1016/j.atherosclerosis.2018.08.032. PubMed DOI
Cevc G.; Richardsen H. Lipid Vesicles and Membrane Fusion. Adv. Drug Delivery Rev. 1999, 38 (3), 207–232. 10.1016/S0169-409X(99)00030-7. PubMed DOI
Plochberger B.; Röhrl C.; Preiner J.; Rankl C.; Brameshuber M.; Madl J.; Bittman R.; Ros R.; Sezgin E.; Eggeling C.; Hinterdorfer P.; Stangl H.; Schütz G. J. HDL Particles Incorporate into Lipid Bilayers-a Combined AFM and Single Molecule Fluorescence Microscopy Study. Sci. Rep. 2017, 7, 15886.10.1038/s41598-017-15949-7. PubMed DOI PMC