Simulation and experimental verification of ambient neutron doses in a pencil beam scanning proton therapy room as a function of treatment plan parameters

. 2022 ; 12 () : 903537. [epub] 20220908

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36158693

Out-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants. In response to this demand, this work presents the first steps towards a tool for the prediction of out-of-field neutron doses in pencil beam scanning proton therapy facilities. As a first step, a general Monte Carlo radiation transport model for simulation of out-of-field neutron doses was set up and successfully verified by comparison of simulated and measured ambient neutron dose equivalent and neutron fluence energy spectra around a solid water phantom irradiated with a variation of different treatment plan parameters. Simulations with the verified model enabled a detailed study of the variation of the neutron ambient dose equivalent with field size, range, modulation width, use of a range shifter, and position inside the treatment room. For future work, it is planned to use this verified model to simulate out-of-field neutron doses inside the phantom and to verify the simulation results by comparison with previous in-phantom measurement campaigns. Eventually, these verified simulations will be used to build a library and a corresponding tool to allow assessment of out-of-field neutron doses at pencil beam scanning proton therapy facilities.

Zobrazit více v PubMed

Loeffler J, Durante M. Charged particle therapy–optimization, challenges and future directions. Nat Rev Clin Oncol (2013) 107:10, 411–424. doi: 10.1038/nrclinonc.2013.79 PubMed DOI

Aliyah F, Pinasti SG, Rahman AA. Proton therapy facilities: An overview of the development in recent years. IOP Conf Ser: Earth Environ Sci (2021) 927(1):012042. doi: 10.1088/1755-1315/927/1/012042 DOI

Hälg RA, Schneider U. Neutron dose and its measurement in proton therapy–current state of knowledge. Br J Radiol (2020) 93:20190412. doi: 10.1259/bjr.20190412 PubMed DOI PMC

De Saint-Hubert M, Farah J, Klodowska M, Romero-Expósito MT, Tyminska K, Mares V, et al. . The influence of nuclear models and Monte Carlo radiation transport codes on stray neutron dose estimations in proton therapy. Radiat Meas (2022) 150:106693. doi: 10.1016/j.radmeas.2021.106693 DOI

Mojżeszek N, Farah J, Kłodowska M, Ploc O, Stolarczyk L, Waligórski MPR, et al. . Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system. Phys Med (2017) 34:80–4. doi: 10.1016/j.ejmp.2017.01.013 PubMed DOI

ICRP . The 2007 recommendations of the international commission on radiological protection. Ann (2007) 37(2-4). doi: 10.1016/j.icrp.2007.10.003 PubMed DOI

Burgkhardt B, Fieg G, Klett A, Plewnia A, Siebert BRL. The neutron fluence and H*(10) response of the new LB 6411 remcounter. Radiat Prot Dosim (1997) 70:361–4. doi: 10.1093/oxfordjournals.rpd.a031977 DOI

De Smet V. Neutron measurements in a proton therapy facility and comparison with Monte Carlo shielding simulations. PhD thesis. Université Libre de Bruxelles: Brussels: (2016).

Mares V, Sannikov AV, Schraube H. Response functions of the andersson-Braun and extended range rem counters for neutron energies from thermal to 10 GeV, nucl. Instrum Meth (2002) 476(1-2):341–6. doi: 10.1016/S0168-9002(01)01459-0 DOI

Trompier F, Delacroix S, Vabre I, Joussard F, Proust J. Secondary exposure for 73 and 200 MeV proton therapy. Radiat Prot Dosimetry; (2007) 125(1-4):349–54. doi: 10.1093/rpd/ncm154 PubMed DOI

Farah J, Mares V, Romero-Expósito M, Trinkl S, Domingo C, Dufek V, et al. . Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med Phys (2015) 42(5):2572–2584. doi: 10.1118/1.4916667 PubMed DOI

Mares V, Romero-Expósito M, Farah J, Trinkl1 S, Domingo C, Dommert M, et al. . A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy. Phys Med Biol (2016) 61:4127–40. doi: 10.1088/0031-9155/61/11/4127 PubMed DOI

Kyllönen J-E, Lindborg L, Samuelson G. The response of the sievert instrument in neutron beams up to 180 MeV. Radiat Prot Dosim (2001) 94:227–32. doi: 10.1093/oxfordjournals.rpd.a006494 PubMed DOI

Benjamin PW, Kemshall CD, Redfearn J. A high resolution spherical proportional counter. Nucl Instr Meth (1986) 59:77–85. doi: 10.1016/0029-554X(68)90347-9 DOI

Farah J, De Saint-Hubert M, Mojżeszek N, Chiriotti S, Gryzinski M, Ploc O, et al. . Performance tests and comparison of microdosimetric measurements with four tissue-equivalent proportional counters in scanning proton therapy. Radiat Measurements; (2017) 96:42–52. doi: 10.1016/j.radmeas.2016.12.005 DOI

Olsher RH, Hsu H, Beverding A, Kleck JH, Casson WH, Vasilik DG, et al. . WENDI: an improved neutron rem meter. Health Phys (2000) 79:170–81. doi: 10.1097/00004032-200008000-00010 PubMed DOI

Werner CJ, Bull JS, Solomon CJ, Brown FB, McKinney GW, Rising ME, et al. . MCNP version 6.2 release notes, Los alamos national laboratory report LA-UR-18-20808. United States: Los Alamos National Lab (LANL) (2018).

Englbrecht FS, Trinkl S, Mares V, Rühm W, Wielunski M, Wilkens JJ, et al. . A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room. Z Med Phys (2021) 31:215–28. doi: 10.1016/j.zemedi.2021.01.001 PubMed DOI

Trinkl S, Mares V, Englbrecht FS, Wilkens JJ, Wielunski M, Parodi K, et al. . Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Med Phys (2017) 44:5. doi: 10.1002/mp.12206 PubMed DOI

McConn RJ, Jr, Gesh CJ, Pagh RT, Rucker RA, Williams RG. Compendium of material composition data for radiation transport modeling. Pacific Northwest National Laboratory report: Richland, WA, USA: (2011).

Brown DA, Chadwick MB, Capote R, Kahler AC, Trkov A, Herman MW, et al. . ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets (2018) 148:1–142. doi: 10.1016/j.nds.2018.02.001 DOI

De Smet V, De Saint-Hubert M, Dinar N, Manessi GP, Aza E, Cassell C, et al. . Secondary neutrons inside a proton therapy facility: MCNPX simulations compared to measurements performed with a Bonner sphere spectrometer and neutron H*(10) monitors. Radiat Measurements (2017) 99:25–40. doi: 10.1016/j.radmeas.2017.03.005 DOI

Eliasson L, Lillhök J, Bäck T, Billnert-Maróti R, Dasu A, Liszka M. Range-shifter effects on the stray field in proton therapy measured with the variance-covariance method. Submitted to Front Oncol same special issue as this work (2022) 12:882230. doi: 10.3389/fonc.2022.882230 PubMed DOI PMC

De Saint-Hubert M, Verbeek N, Bäumer C, Esser J, Wulff J, Nabha R, et al. . Validation of a Monte Carlo framework for out-of-Field dose calculations in proton therapy. Front Oncol Volume (2022) 12:882489. doi: 10.3389/fonc.2022.882489 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...