• This record comes from PubMed

Simulation and experimental verification of ambient neutron doses in a pencil beam scanning proton therapy room as a function of treatment plan parameters

. 2022 ; 12 () : 903537. [epub] 20220908

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Out-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants. In response to this demand, this work presents the first steps towards a tool for the prediction of out-of-field neutron doses in pencil beam scanning proton therapy facilities. As a first step, a general Monte Carlo radiation transport model for simulation of out-of-field neutron doses was set up and successfully verified by comparison of simulated and measured ambient neutron dose equivalent and neutron fluence energy spectra around a solid water phantom irradiated with a variation of different treatment plan parameters. Simulations with the verified model enabled a detailed study of the variation of the neutron ambient dose equivalent with field size, range, modulation width, use of a range shifter, and position inside the treatment room. For future work, it is planned to use this verified model to simulate out-of-field neutron doses inside the phantom and to verify the simulation results by comparison with previous in-phantom measurement campaigns. Eventually, these verified simulations will be used to build a library and a corresponding tool to allow assessment of out-of-field neutron doses at pencil beam scanning proton therapy facilities.

See more in PubMed

Loeffler J, Durante M. Charged particle therapy–optimization, challenges and future directions. Nat Rev Clin Oncol (2013) 107:10, 411–424. doi: 10.1038/nrclinonc.2013.79 PubMed DOI

Aliyah F, Pinasti SG, Rahman AA. Proton therapy facilities: An overview of the development in recent years. IOP Conf Ser: Earth Environ Sci (2021) 927(1):012042. doi: 10.1088/1755-1315/927/1/012042 DOI

Hälg RA, Schneider U. Neutron dose and its measurement in proton therapy–current state of knowledge. Br J Radiol (2020) 93:20190412. doi: 10.1259/bjr.20190412 PubMed DOI PMC

De Saint-Hubert M, Farah J, Klodowska M, Romero-Expósito MT, Tyminska K, Mares V, et al. . The influence of nuclear models and Monte Carlo radiation transport codes on stray neutron dose estimations in proton therapy. Radiat Meas (2022) 150:106693. doi: 10.1016/j.radmeas.2021.106693 DOI

Mojżeszek N, Farah J, Kłodowska M, Ploc O, Stolarczyk L, Waligórski MPR, et al. . Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system. Phys Med (2017) 34:80–4. doi: 10.1016/j.ejmp.2017.01.013 PubMed DOI

ICRP . The 2007 recommendations of the international commission on radiological protection. Ann (2007) 37(2-4). doi: 10.1016/j.icrp.2007.10.003 PubMed DOI

Burgkhardt B, Fieg G, Klett A, Plewnia A, Siebert BRL. The neutron fluence and H*(10) response of the new LB 6411 remcounter. Radiat Prot Dosim (1997) 70:361–4. doi: 10.1093/oxfordjournals.rpd.a031977 DOI

De Smet V. Neutron measurements in a proton therapy facility and comparison with Monte Carlo shielding simulations. PhD thesis. Université Libre de Bruxelles: Brussels: (2016).

Mares V, Sannikov AV, Schraube H. Response functions of the andersson-Braun and extended range rem counters for neutron energies from thermal to 10 GeV, nucl. Instrum Meth (2002) 476(1-2):341–6. doi: 10.1016/S0168-9002(01)01459-0 DOI

Trompier F, Delacroix S, Vabre I, Joussard F, Proust J. Secondary exposure for 73 and 200 MeV proton therapy. Radiat Prot Dosimetry; (2007) 125(1-4):349–54. doi: 10.1093/rpd/ncm154 PubMed DOI

Farah J, Mares V, Romero-Expósito M, Trinkl S, Domingo C, Dufek V, et al. . Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med Phys (2015) 42(5):2572–2584. doi: 10.1118/1.4916667 PubMed DOI

Mares V, Romero-Expósito M, Farah J, Trinkl1 S, Domingo C, Dommert M, et al. . A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy. Phys Med Biol (2016) 61:4127–40. doi: 10.1088/0031-9155/61/11/4127 PubMed DOI

Kyllönen J-E, Lindborg L, Samuelson G. The response of the sievert instrument in neutron beams up to 180 MeV. Radiat Prot Dosim (2001) 94:227–32. doi: 10.1093/oxfordjournals.rpd.a006494 PubMed DOI

Benjamin PW, Kemshall CD, Redfearn J. A high resolution spherical proportional counter. Nucl Instr Meth (1986) 59:77–85. doi: 10.1016/0029-554X(68)90347-9 DOI

Farah J, De Saint-Hubert M, Mojżeszek N, Chiriotti S, Gryzinski M, Ploc O, et al. . Performance tests and comparison of microdosimetric measurements with four tissue-equivalent proportional counters in scanning proton therapy. Radiat Measurements; (2017) 96:42–52. doi: 10.1016/j.radmeas.2016.12.005 DOI

Olsher RH, Hsu H, Beverding A, Kleck JH, Casson WH, Vasilik DG, et al. . WENDI: an improved neutron rem meter. Health Phys (2000) 79:170–81. doi: 10.1097/00004032-200008000-00010 PubMed DOI

Werner CJ, Bull JS, Solomon CJ, Brown FB, McKinney GW, Rising ME, et al. . MCNP version 6.2 release notes, Los alamos national laboratory report LA-UR-18-20808. United States: Los Alamos National Lab (LANL) (2018).

Englbrecht FS, Trinkl S, Mares V, Rühm W, Wielunski M, Wilkens JJ, et al. . A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room. Z Med Phys (2021) 31:215–28. doi: 10.1016/j.zemedi.2021.01.001 PubMed DOI

Trinkl S, Mares V, Englbrecht FS, Wilkens JJ, Wielunski M, Parodi K, et al. . Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Med Phys (2017) 44:5. doi: 10.1002/mp.12206 PubMed DOI

McConn RJ, Jr, Gesh CJ, Pagh RT, Rucker RA, Williams RG. Compendium of material composition data for radiation transport modeling. Pacific Northwest National Laboratory report: Richland, WA, USA: (2011).

Brown DA, Chadwick MB, Capote R, Kahler AC, Trkov A, Herman MW, et al. . ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets (2018) 148:1–142. doi: 10.1016/j.nds.2018.02.001 DOI

De Smet V, De Saint-Hubert M, Dinar N, Manessi GP, Aza E, Cassell C, et al. . Secondary neutrons inside a proton therapy facility: MCNPX simulations compared to measurements performed with a Bonner sphere spectrometer and neutron H*(10) monitors. Radiat Measurements (2017) 99:25–40. doi: 10.1016/j.radmeas.2017.03.005 DOI

Eliasson L, Lillhök J, Bäck T, Billnert-Maróti R, Dasu A, Liszka M. Range-shifter effects on the stray field in proton therapy measured with the variance-covariance method. Submitted to Front Oncol same special issue as this work (2022) 12:882230. doi: 10.3389/fonc.2022.882230 PubMed DOI PMC

De Saint-Hubert M, Verbeek N, Bäumer C, Esser J, Wulff J, Nabha R, et al. . Validation of a Monte Carlo framework for out-of-Field dose calculations in proton therapy. Front Oncol Volume (2022) 12:882489. doi: 10.3389/fonc.2022.882489 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...