Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P20 NR007790
NINR NIH HHS - United States
PubMed
15265003
PubMed Central
PMC1133750
DOI
10.1042/bj20040407
PII: BJ20040407
Knihovny.cz E-zdroje
- MeSH
- 2D gelová elektroforéza metody MeSH
- adenin metabolismus MeSH
- adenosintrifosfát biosyntéza MeSH
- adenosintrifosfatasy chemie fyziologie MeSH
- fibroblasty chemie enzymologie metabolismus patologie MeSH
- intracelulární membrány chemie enzymologie MeSH
- kultivované buňky MeSH
- kůže patologie MeSH
- lidé MeSH
- membránové potenciály genetika MeSH
- messenger RNA biosyntéza MeSH
- mitochondriální DNA biosyntéza genetika MeSH
- mitochondriální protonové ATPasy biosyntéza MeSH
- mitochondrie chemie enzymologie MeSH
- mutace genetika MeSH
- předškolní dítě MeSH
- respirační komplex IV biosyntéza chemie metabolismus fyziologie MeSH
- sekvenční delece genetika MeSH
- spotřeba kyslíku genetika fyziologie MeSH
- thymidin metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenin MeSH
- adenosintrifosfát MeSH
- adenosintrifosfatasy MeSH
- messenger RNA MeSH
- mitochondriální DNA MeSH
- mitochondriální protonové ATPasy MeSH
- MT-ATP6 protein, human MeSH Prohlížeč
- respirační komplex IV MeSH
- thymidin MeSH
Dysfunction of mitochondrial ATPase (F1F(o)-ATP synthase) due to missense mutations in ATP6 [mtDNA (mitochondrial DNA)-encoded subunit a] is a frequent cause of severe mitochondrial encephalomyopathies. We have investigated a rare mtDNA mutation, i.e. a 2 bp deletion of TA at positions 9205 and 9206 (9205DeltaTA), which affects the STOP codon of the ATP6 gene and the cleavage site between the RNAs for ATP6 and COX3 (cytochrome c oxidase 3). The mutation was present at increasing load in a three-generation family (in blood: 16%/82%/>98%). In the affected boy with severe encephalopathy, a homoplasmic mutation was present in blood, fibroblasts and muscle. The fibroblasts from the patient showed normal aurovertin-sensitive ATPase hydrolytic activity, a 70% decrease in ATP synthesis and an 85% decrease in COX activity. ADP-stimulated respiration and the ADP-induced decrease in the mitochondrial membrane potential at state 4 were decreased by 50%. The content of subunit a was decreased 10-fold compared with other ATPase subunits, and [35S]-methionine labelling showed a 9-fold decrease in subunit a biosynthesis. The content of COX subunits 1, 4 and 6c was decreased by 30-60%. Northern Blot and quantitative real-time reverse transcription-PCR analysis further demonstrated that the primary ATP6--COX3 transcript is cleaved to the ATP6 and COX3 mRNAs 2-3-fold less efficiently. Structural studies by Blue-Native and two-dimensional electrophoresis revealed an altered pattern of COX assembly and instability of the ATPase complex, which dissociated into subcomplexes. The results indicate that the 9205DeltaTA mutation prevents the synthesis of ATPase subunit a, and causes the formation of incomplete ATPase complexes that are capable of ATP hydrolysis but not ATP synthesis. The mutation also affects the biogenesis of COX, which is present in a decreased amount in cells from affected individuals.
Zobrazit více v PubMed
Walker J. E., Collinson I. R. The role of the stalk in the coupling mechanism of F1F0-ATPases. FEBS Lett. 1994;346:39–43. PubMed
Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H. L., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F., et al. Sequence and organization of the human mitochondrial genome. Nature (London) 1981;290:457–465. PubMed
Nijtmans L. G., Klement P., Houstek J., van den Bogert C. Assembly of mitochondrial ATP synthase in cultured human cells: implications for mitochondrial diseases. Biochim. Biophys. Acta. 1995;1272:190–198. PubMed
DiMauro S., Schon E. A. Mitochondrial DNA mutations in human disease. Am. J. Med. Genet. 2001;106:18–26. PubMed
Holt I. J., Harding A. E., Petty R. K. H., Morgan-Hughes J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 1990;46:428–433. PubMed PMC
de Vries D. D., van Engelen B. G., Gabreels F. J., Ruitenbeek W., van Oost B. A. A second missense mutation in the mitochondrial ATPase 6 gene in Leigh's syndrome. Ann. Neurol. 1993;34:410–412. PubMed
Tatuch Y., Christodoulou J., Feigenbaum A., Clarke J. T., Wherret J., Smith C., Rudd N., Petrova Benedict R., Robinson B. H. Heteroplasmic mtDNA mutation (T→G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am. J. Hum. Genet. 1992;50:852–858. PubMed PMC
Schon E. A., Santra S., Pallotti F., Girvin M. E. Pathogenesis of primary defects in mitochondrial ATP synthesis. Semin. Cell Dev. Biol. 2001;12:441–448. PubMed
Tatuch Y., Robinson B. H. The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria. Biochem. Biophys. Res. Commun. 1993;192:124–128. PubMed
Houstek J., Klement P., Hermanska J., Houstkova H., Hansikova H., van den Bogert C., Zeman J. Altered properties of mitochondrial ATP-synthase in patients with a T→G mutation in the ATPase 6 (subunit a) gene at position 8993 of mtDNA. Biochim. Biophys. Acta. 1995;1271:349–357. PubMed
Garcia J. J., Ogilvie I., Robinson B. H., Capaldi R. A. Structure, functioning, and assembly of the ATP synthase in cells from patients with the T8993G mitochondrial DNA mutation. Comparison with the enzyme in Rho0 cells completely lacking mtDNA. J. Biol. Chem. 2000;275:11075–11081. PubMed
Nijtmans L. G., Henderson N. S., Attardi G., Holt I. J. Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene. J. Biol. Chem. 2001;276:6755–6762. PubMed
Seneca S., Abramowicz M., Lissens W., Muller M. F., Vamos E., de Meirleir L. A mitochondrial DNA microdeletion in a newborn girl with transient lactic acidosis. J. Inherit. Metab. Dis. 1996;19:115–118. PubMed
Fornuskova D., Tesarova M., Hansikova H., Zeman J. New mtDNA mutation 9204delTA in a family with mitochondrial encephalopathy and ATP synthase defect. Cas. Lek. Cesk. 2003;142:313.
Bentlage H. A., Wendel U., Schagger H., ter Laak H. J., Janssen A. J., Trijbels J. M. Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle. Neurology. 1996;47:243–248. PubMed
Klement P., Nijtmans L. G., Van den Bogert C., Houstek J. Analysis of oxidative phosphorylation complexes in cultured human fibroblasts and amniocytes by blue-native-electrophoresis using mitoplasts isolated with the help of digitonin. Anal. Biochem. 1995;231:218–224. PubMed
Makinen M., Lee C. P. Biochemical studies of skeletal muscle mitochondria: I. Microanalysis of cytochrome content, oxidative and phosphorylative activities of mammalian skeletal muscle mitochondria. Arch. Biochem. Biophys. 1968;126:75–82. PubMed
Chrzanowska-Lightowlers Z. M., Temperley R. J., Smith P. M., Seneca S. H., Lightowlers R. N. Functional polypeptides can be synthesized from human mitochondrial transcripts lacking termination codons. Biochem. J. 2004;377:725–731. PubMed PMC
Sambrook J., Russell D. W. 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001. Molecular Cloning: A Laboratory Manual.
Schagger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 1991;199:223–231. PubMed
Schagger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987;166:368–379. PubMed
Houstek J., Andersson U., Tvrdik P., Nedergaard J., Cannon B. The expression of subunit c correlates with and thus may limit the biosynthesis of the mitochondrial F0F1-ATPase in brown adipose tissue. J. Biol. Chem. 1995;270:7689–7694. PubMed
Dubot A., Godinot C., Dumur V., Sablonniere B., Stojkovic T., Cuisset J. M., Vojtiskova A., Pecina P., Jesina P., Houstek J. GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochem. Biophys. Res. Commun. 2004;313:687–693. PubMed
Moradi-Ameli M., Godinot C. Characterization of monoclonal antibodies against mitochondrial F1-ATPase. Proc. Natl. Acad. Sci. U.S.A. 1983;80:6167–6171. PubMed PMC
Wharton D. C., Tzagoloff A. Cytochrome oxidase from beef heart mitochondria. Methods Enzymol. 1967;10:245–253.
Rustin P., Chretien D., Bourgeron T., Gerard B., Rotig A., Saudubray J. M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta. 1994;228:35–51. PubMed
Fischer J. C., Ruitenbeek W., Trijbels J. M. F., Veerkamp J. H., Stadhouders A. M., Sengers R. C. A., Janssen A. J. M. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin. Chim. Acta. 1985;153:37–42. PubMed
Fischer J. C., Ruitenbeek W., Trijbels J. M. F., Veerkamp J. H., Stadhouders A. M., Sengers R. C. A., Janssen A. J. M. Estimation of NADH oxidation in human skeletal muscle mitochondria. Clin. Chim. Acta. 1986;155:263–274. PubMed
Chowdhury S. K., Drahota Z., Floryk D., Calda P., Houstek J. Activities of mitochondrial oxidative phosphorylation enzymes in cultured amniocytes. Clin. Chim. Acta. 2000;298:157–173. PubMed
Baracca A., Amler E., Solaini G., Parenti-Castelli G., Lenaz G., Houstek J. Temperature-induced states of isolated F1-ATPase affect catalysis, enzyme conformation and high-affinity nucleotide binding sites. Biochim. Biophys. Acta. 1989;976:77–84. PubMed
Pecina P., Capkova M., Chowdhury S. K., Drahota Z., Dubot A., Vojtiskova A., Hansikova H., Houst'kova H., Zeman J., Godinot C., Houstek J. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim. Biophys. Acta. 2003;1639:53–63. PubMed
Floryk D., Houstek J. Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci. Rep. 1999;19:27–34. PubMed
Wanders R. J. A., Ruiter J. P. N., Wijburg F. A., Zeman J., Klement P., Houstek J. Prenatal diagnosis of systemic disorders of the respiratory chain in cultured chorionic villus fibrolasts by study of ATP synthesis in digitonin-permeabilized cells. J. Inherit. Metab. Dis. 1996;19:133–136. PubMed
Ouhabi R., Boue-Grabot M., Mazat J. P. Mitochondrial ATP synthesis in permeabilized cells: assessment of the ATP/O values in situ. Anal. Biochem. 1998;263:169–175. PubMed
Chomyn A. In vivo labeling and analysis of human mitochondrial translation products. Methods Enzymol. 1996;264:197–211. PubMed
Plasek J., Sigler K. Slow fluorescent indicators of membrane potential: a survey of different approaches to probe response analysis. J. Photochem. Photobiol. B. 1996;33:101–124. PubMed
Hoffbuhr K. C., Davidson E., Filiano B. A., Davidson M., Kennaway N. G., King M. P. A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J. Biol. Chem. 2000;275:13994–14003. PubMed
Carrozzo R., Murray J., Santorelli F. M., Capaldi R. A. The T9176G mutation of human mtDNA gives a fully assembled but inactive ATP synthase when modeled in Escherichia coli. FEBS Lett. 2000;486:297–299. PubMed
Pansini A., Guerrieri F., Papa S. Control of proton conduction by the H+-ATPase in the inner mitochondrial membrane. Eur. J. Biochem. 1978;92:545–551. PubMed
Hutcheon M. L., Duncan T. M., Ngai H., Cross R. L. Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the FO sector of Escherichia coli ATP synthase. Proc. Natl. Acad. Sci. U.S.A. 2001;98:8519–8524. PubMed PMC
Buchet K., Godinot C. Functional F1-ATPase is essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted rho degrees cells. J. Biol. Chem. 1998;273:22983–22989. PubMed
Shoubridge E. A. Cytochrome c oxidase deficiency. Am. J. Med. Genet. 2001;106:46–52. PubMed
Rossignol R., Faustin B., Rocher C., Malgat M., Mazat J. P., Letellier T. Mitochondrial threshold effects. Biochem. J. 2003;370:751–762. PubMed PMC
Temperley R. J., Seneca S. H., Tonska K., Bartnik E., Bindoff L. A., Lightowlers R. N., Chrzanowska-Lightowlers Z. M. Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Hum. Mol. Genet. 2003;12:2341–2348. PubMed
El Meziane A., Lehtinen S. K., Hance N., Nijtmans L. G., Dunbar D., Holt I. J., Jacobs H. T. A tRNA suppressor mutation in human mitochondria. Nat. Genet. 1998;18:350–353. PubMed
Hao H., Morrison L. E., Moraes C. T. Suppression of a mitochondrial tRNA gene mutation phenotype associated with changes in the nuclear background. Hum. Mol. Genet. 1999;8:1117–1124. PubMed
Ellis T. P., Helfenbein K. G., Tzagoloff A., Dieckmann C. L. Aep3p stabilizes the mitochondrial bicistronic mRNA encoding subunits 6 and 8 of the H+-translocating ATP synthase of Saccharomyces cerevisiae. J. Biol. Chem. 2004;279:15728–15733. PubMed
Mili S., Pinol-Roma S. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Mol. Cell. Biol. 2003;23:4972–4982. PubMed PMC
Mootha V. K., Lepage P., Miller K., Bunkenborg J., Reich M., Hjerrild M., Delmonte T., Villeneuve A., Sladek R., Xu F., et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl. Acad. Sci. U.S.A. 2003;100:605–610. PubMed PMC
Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase
Czech Footprints in the Bioenergetics Research
ATAD3A-related pontocerebellar hypoplasia: new patients and insights into phenotypic variability
A Novel MTTK Gene Variant m.8315A>C as a Cause of MERRF Syndrome
Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I