Czech Footprints in the Bioenergetics Research
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy, historické články
PubMed
38836463
PubMed Central
PMC11412348
DOI
10.33549/physiolres.935395
PII: 935395
Knihovny.cz E-zdroje
- MeSH
- biomedicínský výzkum dějiny trendy MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- energetický metabolismus * MeSH
- lidé MeSH
- mitochondrie * metabolismus MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika MeSH
Life manifests as growth, movement or heat production that occurs thanks to the energy accepted from the outside environment. The basis of energy transduction attracted the Czech researchers since the beginning of the 20th century. It further accelerated after World War II, when the new Institute of Physiology was established in 1954. When it was found that energy is stored in the form of adenosine triphosphate (ATP) that can be used by numerous reactions as energy source and is produced in the process called oxidative phosphorylation localized in mitochondria, the investigation focused on this cellular organelle. Although the Czech scientists had to overcome various obstacles including Communist party leadership, driven by curiosity, boldness, and enthusiasm, they characterized broad spectrum of mitochondrial properties in different tissues in (patho)physiological conditions in collaboration with many world-known laboratories. The current review summarizes the contribution of the Czech scientists to the bioenergetic and mitochondrial research in the global context. Keywords: Mitochondria, Bioenergetics, Chemiosmotic coupling.
Zobrazit více v PubMed
Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol. 1981;91:227s–255s. doi: 10.1083/jcb.91.3.227s. PubMed DOI PMC
Altman R. Die Elementarorganismen und ihre Beziehungen zu den Zellen (The cellular organelles and their relations to cells) Leipzig, Germany: Veit & Co; 1890. p. 1.
Benda C. Weitere Mitteilungen über die Mitochondria. Verh Dtsch Physiol Ges. 1898:376–383.
Warburg O. Uber sauerstoffatmende Kornchen aus Leberzellen und uber Sauerstoffatmung in Berkefeld-Filtraten wassriger Leberextrakte. Pfluger’s Arch ges Physiol. 1913;154:599–617. doi: 10.1007/BF01681207. DOI
Krebs HA, Johnson WA. Metabolism of ketonic acids in animal tissues. Biochem J. 1937;31:645–660. doi: 10.1042/bj0310645. PubMed DOI PMC
Belitser VATET. The mechanism of phosphorylation associated with respiration. Biokhimiya. 1939;4:516–535.
Engelhardt WA. [Ortho- and pyrophosphate in aerobic and anaerobic metabolism of erythrocytes (Biochem. Zeitschrift, 227, 16–38, 1930)] Mol Biol (Mosk) 1930;28:1210–1217. PubMed
Kalckar H. Phosphorylation in kidney tissues. Enzymologia. 1937;2:47–52. doi: 10.1103/PhysRev.52.273. DOI
Lehninger AL. On the activation of fatty acid oxidation. J Biol Chem. 1945;161:437–451. https://doi.org/10.1016/S0021-9258(17)41479-7, https://doi.org/10.1016/S0021-9258(17)41557-2. PubMed DOI
Ochoa S. Efficiency of aerobic phosphorylation in cell-free heart extracts. J Biol Chem. 1943;151:493–505. doi: 10.1016/S0021-9258(18)44922-8. DOI
Kennedy EP, Lehninger AL. Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J Biol Chem. 1949;179:957–972. doi: 10.1016/S0021-9258(19)51289-3. PubMed DOI
Palade GE. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953;1:188–211. doi: 10.1177/1.4.188. PubMed DOI
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–148. doi: 10.1038/191144a0. PubMed DOI
Nicholls DG, Ferguson SJ. Bioenergetics. Fourth edition / ed. Amsterdam: Academic Press, Elsevier; 2013.
Babák E. On the transformation of energies in the living bodies (in Czech) Prague: Jos R Vilímek; 1917.
Laufberger V. Désintégration de la cellule. (in Czech) Brno: Spisy Lék. fak. Masarykovy univ v Brně; 1933.
Zak R, Drahota Z. Release of methionine labelled with sulphur-35 from muscle tissue and mitochondria. Nature. 1960;186:973–974. doi: 10.1038/186973a0. PubMed DOI
Chappell JB, Perry SV. Biochemical and osmotic properties of skeletal muscle mitochondria. Nature. 1954;173:1094–1095. doi: 10.1038/1731094a0. PubMed DOI
Wojtczak L, Zaluska H, Drahota Z. Evidence for the activation of fatty acids in liver mitochondria by high-energy intermediates for oxidative phosphorylation. Biochim Biophys Acta. 1965;98:8–18. doi: 10.1016/0005-2760(65)90003-2. PubMed DOI
Drahota Z, Lehninger AL. Movements of H+, K+, and Na+ during energy-dependent uptake and retention of Ca++ in Rat Live Mitochondria. Biochem Biophys Res Commun. 1965;19:351–356. doi: 10.1016/0006-291X(65)90467-5. PubMed DOI
Lehninger AL. Principles of Biochemistry. First edition ed. Worth Publishers; 1990.
Drahota Z, Carafoli E, Rossi CS, Gamble RL, Lehninger AL. The Steady State Maintenance of Accumulated Ca++ in Rat Liver Mitochondria. J Biol Chem. 1965;240:2712–2720. doi: 10.1016/S0021-9258(18)97385-0. PubMed DOI
Melichar V, Drahota Z, Hahn P. Ketone bodies in the blood of full term newborns, premature and dysmature infants and infants of diabetic mothers. Biol Neonat. 1967;11:23–28. doi: 10.1159/000240051. PubMed DOI
Smith RE. Thermogenic activity of the hibernating gland in the cold-acclimated rat. Physiologist. 1961;4:113.
Drahota Z, Honova E, Hahn P. The effect of ATP and carnitine on the endogenous respiration of mitochondria from brown adipose tissue. Experientia. 1968;24:431–432. doi: 10.1007/BF02144369. PubMed DOI
Lindberg O. Brown Adipose Tissue. American Elsevier Pub. Co; 1970.
Bulychev A, Kramar R, Drahota Z, Lindberg O. Role of a specific endogenous fatty acid fraction in the coupling-uncoupling mechanism of oxidative phosphorylation of brown adipose tissue. Exp Cell Res. 1972;72:169–187. doi: 10.1016/0014-4827(72)90579-4. PubMed DOI
Houstek J, Cannon B, Lindberg O. Gylcerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue. Eur J Biochem. 1975;54:11–18. doi: 10.1111/j.1432-1033.1975.tb04107.x. PubMed DOI
Kopecky J, Guerrieri F, Papa S. Interaction of dicyclohexylcarbodiimide with the proton-conducting pathway of mitochondrial H+-ATPase. Eur J Biochem. 1983;131:17–24. doi: 10.1111/j.1432-1033.1983.tb07226.x. PubMed DOI
Houstek J, Pavelka S, Kopecky J, Drahota Z, Palmieri F. Is the mitochondrial dicyclohexylcarbodiimide-reactive protein of Mr 33 000 identical with the phosphate transport protein? FEBS Lett. 1981;130:137–140. doi: 10.1016/0014-5793(81)80682-5. PubMed DOI
Kolarov J, Houstek J, Kopecky J, Kuzela S. The binding of dicyclohexylcarbodiimide to uncoupling protein in brown adipose tissue mitochondria. FEBS Lett. 1982;144:6–10. doi: 10.1016/0014-5793(82)80557-7. PubMed DOI
Baracca A, Amler E, Solaini G, Parenti Castelli G, Lenaz G, Houstek J. Temperature-induced states of isolated F1-ATPase affect catalysis, enzyme conformation and high-affinity nucleotide binding sites. Biochim Biophys Acta. 1989;976:77–84. doi: 10.1016/S0005-2728(89)80191-4. PubMed DOI
Houstek J, Tvrdik P, Pavelka S, Baudysova M. Low content of mitochondrial ATPase in brown adipose tissue is the result of post-transcriptional regulation. FEBS Lett. 1991;294:191–194. doi: 10.1016/0014-5793(91)80666-Q. PubMed DOI
Tvrdik P, Kuzela S, Houstek J. Low translational efficiency of the F1-ATPase beta-subunit mRNA largely accounts for the decreased ATPase content in brown adipose tissue mitochondria. FEBS Lett. 1992;313:23–26. doi: 10.1016/0014-5793(92)81175-L. PubMed DOI
Houstek J, Andersson U, Tvrdik P, Nedergaard J, Cannon B. The expression of subunit c correlates with and thus may limit the biosynthesis of the mitochondrial F0F1-ATPase in brown adipose tissue. J Biol Chem. 1995;270:7689–7694. doi: 10.1074/jbc.270.13.7689. PubMed DOI
Rehnmark S, Kopecky J, Jacobsson A, Nechad M, Herron D, Nelson BD, Obregon MJ, Nedergaard J, Cannon B. Brown adipocytes differentiated in vitro can express the gene for the uncoupling protein thermogenin: effects of hypothyroidism and norepinephrine. Exp Cell Res. 1989;182:75–83. doi: 10.1016/0014-4827(89)90280-2. PubMed DOI
Svartengren J, Svoboda P, Cannon B. Desensitisation of beta-adrenergic responsiveness in vivo. Decreased coupling between receptors and adenylate cyclase in isolated brown-fat cells. Eur J Biochem. 1982;128:481–488. doi: 10.1111/j.1432-1033.1982.tb06990.x. PubMed DOI
Svoboda P, Svartengren J, Snochowski M, Houstek J, Cannon B. High number of high-affinity binding sites for (−)-[3H]dihydroalprenolol on isolated hamster brown-fat cells. A study of the beta-adrenergic receptors. Eur J Biochem. 1979;102:203–210. doi: 10.1111/j.1432-1033.1979.tb06281.x. PubMed DOI
Cannon B, Houstek J, Nedergaard J. Brown adipose tissue. More than an effector of thermogenesis? Ann N Y Acad Sci. 1998;856:171–187. doi: 10.1111/j.1749-6632.1998.tb08325.x. PubMed DOI
Mracek T, Cannon B, Houstek J. IL-1 and LPS but not IL-6 inhibit differentiation and downregulate PPAR gamma in brown adipocytes. Cytokine. 2004;26:9–15. doi: 10.1016/j.cyto.2003.12.001. PubMed DOI
Shabalina IG, Vrbacky M, Pecinova A, Kalinovich AV, Drahota Z, Houstek J, Mracek T, Cannon B, Nedergaard J. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence. Biochim Biophys Acta. 2014;1837:2017–2030. doi: 10.1016/j.bbabio.2014.04.005. PubMed DOI
Klement P, Nijtmans LG, Van den Bogert C, Houstek J. Analysis of oxidative phosphorylation complexes in cultured human fibroblasts and amniocytes by blue-native-electrophoresis using mitoplasts isolated with the help of digitonin. Anal Biochem. 1995;231:218–224. doi: 10.1006/abio.1995.1523. PubMed DOI
Nijtmans LG, Klement P, Houstek J, van den Bogert C. Assembly of mitochondrial ATP synthase in cultured human cells: implications for mitochondrial diseases. Biochim Biophys Acta. 1995;1272:190–198. doi: 10.1016/0925-4439(95)00087-9. PubMed DOI
Houstek J, Klement P, Hermanska J, Houstkova H, Hansikova H, Van den Bogert C, Zeman J. Altered properties of mitochondrial ATP-synthase in patients with a T-->G mutation in the ATPase 6 (subunit a) gene at position 8993 of mtDNA. Biochim Biophys Acta. 1995;1271:349–357. doi: 10.1016/0925-4439(95)00063-A. PubMed DOI
Jesina P, Tesarova M, Fornuskova D, Vojtiskova A, Pecina P, Kaplanova V, Hansikova H, Zeman J, Houstek J. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J. 2004;383:561–571. doi: 10.1042/BJ20040407. PubMed DOI PMC
Houstek J, Klement P, Floryk D, Antonicka H, Hermanska J, Kalous M, Hansikova H, Houstkova H, Chowdhury SK, Rosipal T, Kmoch S, Stratilova L, Zeman J. A novel deficiency of mitochondrial ATPase of nuclear origin. Hum Mol Genet. 1999;8:1967–1974. doi: 10.1093/hmg/8.11.1967. PubMed DOI
Cizkova A, Stranecky V, Mayr JA, Tesarova M, Havlickova V, Paul J, Ivanek R, Kuss AW, Hansikova H, Kaplanova V, Vrbacky M, Hartmannova H, Noskova L, Honzik T, Drahota Z, Magner M, Hejzlarova K, Sperl W, Zeman J, Houstek J, Kmoch S. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat Genet. 2008;40:1288–1290. doi: 10.1038/ng.246. PubMed DOI
Honzik T, Tesarova M, Mayr JA, Hansikova H, Jesina P, Bodamer O, Koch J, Magner M, Freisinger P, Huemer M, Kostkova O, van Coster R, Kmoch S, Houstek J, Sperl W, Zeman J. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch Dis Child. 2010;95:296–301. doi: 10.1136/adc.2009.168096. PubMed DOI
Kovalcikova J, Vrbacky M, Pecina P, Tauchmannova K, Nuskova H, Kaplanova V, Brazdova A, Alan L, Elias J, Cunatova K, Korinek V, Sedlacek R, Mracek T, Houstek J. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. FASEB J. 2019;33:14103–14117. doi: 10.1096/fj.201900685RR. PubMed DOI
Mayr JA, Havlickova V, Zimmermann F, Magler I, Kaplanova V, Jesina P, Pecinova A, Nuskova H, Koch J, Sperl W, Houstek J. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit. Hum Mol Genet. 2010;19:3430–3439. doi: 10.1093/hmg/ddq254. PubMed DOI
Pecina P, Capkova M, Chowdhury SK, Drahota Z, Dubot A, Vojtiskova A, Hansikova H, Houstkova H, Zeman J, Godinot C, Houstek J. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim Biophys Acta. 2003;1639:53–63. doi: 10.1016/S0925-4439(03)00127-3. PubMed DOI
Hervouet E, Cizkova A, Demont J, Vojtiskova A, Pecina P, Franssen-van Hal NL, Keijer J, Simonnet H, Ivanek R, Kmoch S, Godinot C, Houstek J. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis. 2008;29:1528–1537. doi: 10.1093/carcin/bgn125. PubMed DOI
Hervouet E, Demont J, Pecina P, Vojtiskova A, Houstek J, Simonnet H, Godinot C. A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis. 2005;26:531–539. doi: 10.1093/carcin/bgi001. PubMed DOI
Drahota Z, Chowdhury SK, Floryk D, Mracek T, Wilhelm J, Rauchova H, Lenaz G, Houstek J. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J Bioenerg Biomembr. 2002;34:105–113. doi: 10.1023/A:1015123908918. PubMed DOI
Mracek T, Drahota Z, Houstek J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta. 2013;1827:401–410. doi: 10.1016/j.bbabio.2012.11.014. PubMed DOI
Mracek T, Pecinova A, Vrbacky M, Drahota Z, Houstek J. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Arch Biochem Biophys. 2009;481:30–36. doi: 10.1016/j.abb.2008.10.011. PubMed DOI
Rauchova H, Battino M, Fato R, Lenaz G, Drahota Z. Coenzyme Q-pool function in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria. J Bioenerg Biomembr. 1992;24:235–241. doi: 10.1007/BF00762682. PubMed DOI
Drahota Z, Rauchova H, Sedlak V, Koci J, Cervinkova Z. The effect of triiodothyronine on changes of membrane fluidity in regenerating rat liver. Physiol Res. 1999;48:167–170. PubMed
Mracek T, Jesina P, Krivakova P, Bolehovska R, Cervinkova Z, Drahota Z, Houstek J. Time-course of hormonal induction of mitochondrial glycerophosphate dehydrogenase biogenesis in rat liver. Biochim Biophys Acta. 2005;1726:217–223. doi: 10.1016/j.bbagen.2005.06.011. PubMed DOI
Svatkova R, Cervinkova Z, Kalous M, Rauchova H, Drahota Z. The effect of triiodothyronine on cell oxidative capacity in regenerating rat liver. Physiol Res. 1997;46:237–240. PubMed
Drahota Z, Krivakova P, Cervinkova Z, Kmonickova E, Lotkova H, Kucera O, Houstek J. Tert-butyl hydroperoxide selectively inhibits mitochondrial respiratory-chain enzymes in isolated rat hepatocytes. Physiol Res. 2005;54:67–72. doi: 10.33549/physiolres.930578. PubMed DOI
Kmonickova E, Drahota Z, Kamenikova L, Cervinkova Z, Masek K, Farghali H. Modulatory effect of cyclosporin A on tert-butyl hydroperoxide-induced oxidative damage in hepatocytes. Immunopharmacol Immunotoxicol. 2001;23:43–54. doi: 10.1081/IPH-100102566. PubMed DOI
Krivakova P, Labajova A, Cervinkova Z, Drahota Z. Inhibitory effect of t-butyl hydroperoxide on mitochondrial oxidative phosphorylation in isolated rat hepatocytes. Physiol Res. 2007;56:137–140. doi: 10.33549/physiolres.931006. PubMed DOI
Drahota Z, Endlicher R, Stankova P, Rychtrmoc D, Milerova M, Cervinkova Z. Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves. J Bioenerg Biomembr. 2012;44:309–315. doi: 10.1007/s10863-012-9443-2. PubMed DOI
Endlicher R, Drahota Z, Kucera O, Cervinkova Z. Age-dependent changes in the function of mitochondrial membrane permeability transition pore in rat liver mitochondria. Physiol Res. 2021;70:905–911. https://doi.org/10.33549//physiolres.934734, https://doi.org/10.33549/physiolres.934734. PubMed DOI PMC
Endlicher R, Drahota Z, Stefkova K, Cervinkova Z, Kucera O. The mitochondrial permeability transition pore-current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state. Cells. 2023;12:1273. doi: 10.3390/cells12091273. PubMed DOI PMC
Labajova A, Kofranek J, Krivakova P, Cervinkova Z, Drahota Z. Tetraphenylphosphonium-selective electrode as a tool for evaluating mitochondrial permeability transition pore function in isolated rat hepatocytes. Gen Physiol Biophys. 2006;25:325–331. PubMed
Drahota Z, Palenickova E, Endlicher R, Milerova M, Brejchova J, Vosahlikova M, Svoboda P, Kazdova L, Kalous M, Cervinkova Z, Cahova M. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiol Res. 2014;63:1–11. doi: 10.33549/physiolres.932600. PubMed DOI
Pecinova A, Drahota Z, Kovalcikova J, Kovarova N, Pecina P, Alan L, Zima M, Houstek J, Mracek T. Pleiotropic effects of biguanides on mitochondrial reactive oxygen species production. Oxid Med Cell Longev. 2017;2017:7038603. doi: 10.1155/2017/7038603. PubMed DOI PMC