Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12018887
DOI
10.1023/a:1015123908918
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- ferrikyanidy farmakologie MeSH
- glycerolfosfátdehydrogenasa antagonisté a inhibitory izolace a purifikace metabolismus MeSH
- glycerolfosfáty metabolismus MeSH
- hnědá tuková tkáň účinky léků metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- katalasa metabolismus farmakologie MeSH
- křečci praví MeSH
- křeček rodu Mesocricetus MeSH
- luminiscenční měření MeSH
- mitochondrie účinky léků metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- techniky in vitro MeSH
- ubichinon metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferrikyanidy MeSH
- glycerolfosfátdehydrogenasa MeSH
- glycerolfosfáty MeSH
- inhibitory enzymů MeSH
- katalasa MeSH
- peroxid vodíku MeSH
- potassium ferricyanide MeSH Prohlížeč
- reaktivní formy kyslíku MeSH
- ubichinon MeSH
Oxidation of glycerophosphate (GP) by brown adipose tissue mitochondria in the presence of antimycin A was found to be accompanied by significant production of hydrogen peroxide. GP-dependent hydrogen peroxide production could be detected by p-hydroxyphenylacetate fluorescence changes or as an antimycin A-insensitive oxygen consumption. One-electron acceptor, potassium ferricyanide, highly stimulated the rate of GP-dependent antimycin A-insensitive oxygen uptake, which was prevented by inhibitors of mitochondrial GP dehydrogenase (mGPDH) or by coenzyme Q (CoQ). GP-dependent ferricyanide-induced peroxide production was also determined luminometrically, using mitochondria or partially purified mGPDH. Ferricyanide-induced peroxide production was negligible, when succinate or NADH was used as a substrate. These results indicate that hydrogen peroxide is produced directly by mGPDH and reflect the differences in the transport of reducing equivalents from mGPDH and succinate dehydrogenase to the CoQ pool. The data suggest that more intensive production of reactive oxygen species may be present in mammalian cells with active mGPDH.
Zobrazit více v PubMed
Mech Ageing Dev. 1991 Oct;60(2):189-98 PubMed
J Biol Chem. 1998 Dec 18;273(51):33972-6 PubMed
J Bioenerg Biomembr. 1998 Jun;30(3):235-43 PubMed
Science. 1999 Mar 5;283(5407):1482-8 PubMed
J Bioenerg Biomembr. 1999 Aug;31(4):347-66 PubMed
Biochem J. 1980 Oct 15;192(1):9-18 PubMed
J Bioenerg Biomembr. 1995 Dec;27(6):583-96 PubMed
Diabetes. 1996 Jul;45(7):886-90 PubMed
J Biol Chem. 1978 Nov 10;253(21):7952-9 PubMed
Biochem Biophys Res Commun. 1978 Jul 28;83(2):479-85 PubMed
J Bioenerg Biomembr. 1987 Aug;19(4):397-407 PubMed
FASEB J. 1987 Nov;1(5):358-64 PubMed
Arch Biochem Biophys. 1990 Apr;278(1):65-72 PubMed
Anal Biochem. 1987 Nov 1;166(2):368-79 PubMed
Biochem Biophys Res Commun. 1978 Jun 29;82(4):1070-8 PubMed
J Biol Chem. 1968 Apr 10;243(7):1638-44 PubMed
Arch Biochem Biophys. 1996 Feb 1;326(1):79-84 PubMed
Eur J Biochem. 1998 Feb 15;252(1):1-15 PubMed
Diabetes. 1996 Sep;45(9):1238-44 PubMed
FASEB J. 1997 Aug;11(10 ):809-15 PubMed
Clin Chim Acta. 1994 Jul;228(1):53-70 PubMed
Comp Biochem Physiol B. 1978;60(3):209-14 PubMed
Mol Cell Biochem. 1975 Apr 30;7(1):45-50 PubMed
J Bioenerg Biomembr. 1999 Aug;31(4):291-304 PubMed
Eur J Biochem. 1970 Apr;13(2):247-52 PubMed
J Bioenerg Biomembr. 1992 Apr;24(2):235-41 PubMed
Arch Biochem Biophys. 1998 Feb 1;350(1):118-26 PubMed
Am J Physiol. 1989 Jan;256(1 Pt 1):E173-8 PubMed
Annu Rev Physiol. 1998;60:619-42 PubMed
Biochem J. 1980 Oct 15;192(1):19-31 PubMed
Free Radic Biol Med. 1993 Jun;14(6):583-8 PubMed
Anal Biochem. 1984 Aug 15;141(1):280-6 PubMed
Biosci Rep. 1997 Feb;17(1):53-66 PubMed
Anal Biochem. 1991 Dec;199(2):223-31 PubMed
J Biol Chem. 1998 Nov 13;273(46):30147-56 PubMed
J Bioenerg Biomembr. 2000 Dec;32(6):609-15 PubMed
Mol Biochem Parasitol. 1986 Jun;19(3):259-64 PubMed
Mov Disord. 1994 Mar;9(2):125-38 PubMed
J Bioenerg Biomembr. 1993 Jun;25(3):313-21 PubMed
Anal Biochem. 1984 Jun;139(2):319-21 PubMed
Eur J Biochem. 1975 May;54(1):11-8 PubMed
Biochem Biophys Res Commun. 1995 May 25;210(3):760-5 PubMed
Anal Biochem. 1986 Oct;158(1):201-10 PubMed
J Mol Cell Cardiol. 1997 Jun;29(6):1605-13 PubMed
Gen Physiol Biophys. 1985 Feb;4(1):29-33 PubMed
Anal Biochem. 1995 Oct 10;231(1):218-24 PubMed
Arch Biochem Biophys. 2000 Aug 15;380(2):367-72 PubMed
Biochim Biophys Acta. 1976 Mar 11;429(1):46-54 PubMed
Eur J Biochem. 1969 Nov;11(1):183-92 PubMed
Czech Footprints in the Bioenergetics Research
Non-bioenergetic roles of mitochondrial GPD2 promote tumor progression
Role of Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Metabolic Adaptations of Prostate Cancer
Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production