Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28874953
PubMed Central
PMC5569935
DOI
10.1155/2017/7038603
Knihovny.cz E-zdroje
- MeSH
- biguanidy farmakologie MeSH
- fenformin farmakologie MeSH
- glycerolfosfátdehydrogenasa metabolismus MeSH
- hnědá tuková tkáň cytologie MeSH
- hypoglykemika farmakologie MeSH
- krysa rodu Rattus MeSH
- kyselina jantarová metabolismus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- metformin farmakologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- oxidace-redukce účinky léků MeSH
- peroxid vodíku farmakologie MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biguanidy MeSH
- fenformin MeSH
- glycerolfosfátdehydrogenasa MeSH
- hypoglykemika MeSH
- kyselina jantarová MeSH
- metformin MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS) apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin) on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases), but only at very high concentrations (10-2-10-1 M) that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain.
Zobrazit více v PubMed
Bosi E. Metformin—the gold standard in type 2 diabetes: what does the evidence tell us? Diabetes, Obesity & Metabolism. 2009;11(Supplement 2):3–8. doi: 10.1111/j.1463-1326.2008.01031.x. PubMed DOI
Campbell R. K., White J. R., Jr., Saulie B. A. Metformin: a new oral biguanide. Clinical Therapeutics. 1996;18(3):360–371. doi: 10.1016/S0149-2918(96)80017-8. PubMed DOI
Knowler W. C., Barrett-Connor E., Fowler S. E., et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512. PubMed DOI PMC
Miller R. A., Chu Q., Xie J., Foretz M., Viollet B., Birnbaum M. J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494(7436):256–260. doi: 10.1038/nature11808. PubMed DOI PMC
Wang Q., Zhang M., Torres G., et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. Diabetes. 2017;66(1):193–205. doi: 10.2337/db16-0915. PubMed DOI PMC
Forslund K., Hildebrand F., Nielsen T., et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266. doi: 10.1038/nature15766. PubMed DOI PMC
Madiraju A. K., Erion D. M., Rahimi Y., et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510(7506):542–546. doi: 10.1038/nature13270. PubMed DOI PMC
Owen M. R., Doran E., Halestrap A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical Journal. 2000;348(3):607–614. doi: 10.1042/bj3480607. PubMed DOI PMC
Zhou G., Myers R., Li Y., et al. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation. 2001;108(8):1167–1174. doi: 10.1172/JCI13505. PubMed DOI PMC
Drahota Z., Palenickova E., Endlicher R., et al. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiological Research. 2014;63(1):1–11. PubMed
Foretz M., Guigas B., Bertrand L., Pollak M., Viollet B. Metformin: from mechanisms of action to therapies. Cell Metabolism. 2014;20(6):953–966. doi: 10.1016/j.cmet.2014.09.018. PubMed DOI
Eurich D. T., Majumdar S. R., McAlister F. A., Tsuyuki R. T., Johnson J. A. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28(10):2345–2351. doi: 10.2337/diacare.28.10.2345. PubMed DOI
Masoudi F. A., Inzucchi S. E., Wang Y., Havranek E. P., Foody J. M., Krumholz H. M. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111(5):583–590. doi: 10.1161/01.CIR.0000154542.13412.B1. PubMed DOI
Sun D., Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochemical and Biophysical Research Communications. 2017;486(2):329–335. doi: 10.1016/j.bbrc.2017.03.036. PubMed DOI
Benes J., Kazdova L., Drahota Z., et al. Effect of metformin therapy on cardiac function and survival in a volume-overload model of heart failure in rats. Clinical Science. 2011;121(1):29–41. doi: 10.1042/CS20100527. PubMed DOI
Decensi A., Puntoni M., Goodwin P., et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prevention Research. 2010;3(11):1451–1461. doi: 10.1158/1940-6207.CAPR-10-0157. PubMed DOI
Libby G., Donnelly L. A., Donnan P. T., Alessi D. R., Morris A. D., Evans J. M. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32(9):1620–1625. doi: 10.2337/dc08-2175. PubMed DOI PMC
Pollak M. Potential applications for biguanides in oncology. The Journal of Clinical Investigation. 2013;123(9):3693–3700. doi: 10.1172/JCI67232. PubMed DOI PMC
Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature Reviews Cancer. 2012;12(3):159–169. doi: 10.1038/nrc3215. PubMed DOI
Griss T., Vincent E. E., Egnatchik R., et al. Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLoS Biology. 2015;13(12, article e1002309) doi: 10.1371/journal.pbio.1002309. PubMed DOI PMC
Liu X., Romero I. L., Litchfield L. M., Lengyel E., Locasale J. W. Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metabolism. 2016;24(5):728–739. doi: 10.1016/j.cmet.2016.09.005. PubMed DOI PMC
El-Mir M. Y., Nogueira V., Fontaine E., Averet N., Rigoulet M., Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. The Journal of Biological Chemistry. 2000;275(1):223–228. doi: 10.1074/jbc.275.1.223. PubMed DOI
Bridges H. R., Jones A. J., Pollak M. N., Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. The Biochemical Journal. 2014;462(3):475–487. doi: 10.1042/BJ20140620. PubMed DOI PMC
Wheaton W. W., Weinberg S. E., Hamanaka R. B., et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 2014;3, article e02242 doi: 10.7554/eLife.02242. PubMed DOI PMC
Viollet B., Guigas B., Sanz Garcia N., Leclerc J., Foretz M., Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clinical Science. 2012;122(6):253–270. doi: 10.1042/CS20110386. PubMed DOI PMC
Liu X., Chhipa R. R., Pooya S., et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(4):E435–E444. doi: 10.1073/pnas.1311121111. PubMed DOI PMC
Mracek T., Holzerova E., Drahota Z., et al. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2014;1837(1):98–111. doi: 10.1016/j.bbabio.2013.08.007. PubMed DOI
Kudin A. P., Bimpong-Buta N. Y., Vielhaber S., Elger C. E., Kunz W. S. Characterization of superoxide-producing sites in isolated brain mitochondria. The Journal of Biological Chemistry. 2004;279(6):4127–4135. doi: 10.1016/j.biopha.2005.03.012. PubMed DOI
Quinlan C. L., Treberg J. R., Perevoshchikova I. V., Orr A. L., Brand M. D. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radical Biology and Medicine. 2012;53(9):1807–1817. doi: 10.1016/j.freeradbiomed.2012.08.015. PubMed DOI PMC
Korshunov S. S., Skulachev V. P., Starkov A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters. 1997;416(1):15–18. doi: 10.1016/S0014-5793(97)01159-9. PubMed DOI
Lambert A. J., Brand M. D. Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. The Biochemical Journal. 2004;382(Part 2):511–517. doi: 10.1042/BJ20040485. PubMed DOI PMC
Herrero A., Barja G. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mechanisms of Ageing and Development. 1997;98(2):95–111. doi: 10.1016/S0047-6374(97)00076-6. PubMed DOI
Hirst J., King M. S., Pryde K. R. The production of reactive oxygen species by complex I. Biochemical Society Transactions. 2008;36(Part 5):976–980. doi: 10.1042/BST0360976. PubMed DOI
Quinlan C. L., Orr A. L., Perevoshchikova I. V., Treberg J. R., Ackrell B. A., Brand M. D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. The Journal of Biological Chemistry. 2012;287(32):27255–27264. doi: 10.1074/jbc.M112.374629. PubMed DOI PMC
Drahota Z., Chowdhury S. K., Floryk D., et al. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. Journal of Bioenergetics and Biomembranes. 2002;34(2):105–113. doi: 10.1023/A:1015123908918. PubMed DOI
Mracek T., Pecinova A., Vrbacky M., Drahota Z., Houstek J. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Archives of Biochemistry and Biophysics. 2009;481(1):30–36. doi: 10.1016/j.abb.2008.10.011. PubMed DOI
Vrbacky M., Drahota Z., Mracek T., et al. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2007;1767(7):989–997. doi: 10.1016/j.bbabio.2007.05.002. PubMed DOI
Cannon B., Lindberg O. Mitochondria from brown adipose tissue: isolation and properties. Methods in Enzymology. 1979;55:65–78. doi: 10.1016/0076-6879(79)55010-1. PubMed DOI
Labajova A., Vojtiskova A., Krivakova P., Kofranek J., Drahota Z., Houstek J. Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Analytical Biochemistry. 2006;353(1):37–42. doi: 10.1016/j.ab.2006.03.032. PubMed DOI
Pecinova A., Drahota Z., Nuskova H., Pecina P., Houstek J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion. 2011;11(5):722–728. doi: 10.1016/j.mito.2011.05.006. PubMed DOI
Schagger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry. 1987;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. PubMed DOI
Mracek T., Jesina P., Krivakova P., et al. Time-course of hormonal induction of mitochondrial glycerophosphate dehydrogenase biogenesis in rat liver. Biochimica et Biophysica Acta (BBA) - General Subjects. 2005;1726(2):217–223. doi: 10.1016/j.bbagen.2005.06.011. PubMed DOI
Miyadera H., Shiomi K., Ui H., et al. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase) Proceedings of the National Academy of Sciences of the United States of America. 2003;100(2):473–477. doi: 10.1073/pnas.0237315100. PubMed DOI PMC
Orr A. L., Ashok D., Sarantos M. R., et al. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase. PLoS One. 2014;9(2, article e89938) doi: 10.1371/journal.pone.0089938. PubMed DOI PMC
Houstek J., Cannon B., Lindberg O. Glycerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue. European Journal of Biochemistry. 1975;54(1):11–18. doi: 10.1111/j.1432-1033.1975.tb04107.x. PubMed DOI
Boukalova S., Stursa J., Werner L., et al. Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. Molecular Cancer Therapeutics. 2016;15(12):2875–2886. doi: 10.1158/1535-7163.MCT-15-1021. PubMed DOI
Cheng G., Zielonka J., Ouari O., et al. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Research. 2016;76(13):3904–3915. doi: 10.1158/0008-5472.CAN-15-2534. PubMed DOI PMC
Mracek T., Drahota Z., Houstek J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2013;1827(3):401–410. doi: 10.1016/j.bbabio.2012.11.014. PubMed DOI
Kluckova K., Sticha M., Cerny J., et al. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death & Disease. 2015;6, article e1749 doi: 10.1038/cddis.2015.110. PubMed DOI PMC
Rohlena J., Dong L. F., Kluckova K., et al. Mitochondrially targeted alpha-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antioxidants & Redox Signaling. 2011;15(12):2923–2935. doi: 10.1007/s12013-017-0796-3. PubMed DOI PMC
Kalyanaraman B., Cheng G., Hardy M., et al. Modified metformin as a more potent anticancer drug: mitochondrial inhibition, redox signaling, antiproliferative effects and future EPR studies. Cell Biochemistry and Biophysics. 2017 doi: 10.1007/s12013-017-0796-3. PubMed DOI PMC
Cadenas E., Davies K. J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine. 2000;29(3-4):222–230. doi: 10.1016/S0891-5849(00)00317-8. PubMed DOI
Chen Q., Vazquez E. J., Moghaddas S., Hoppel C. L., Lesnefsky E. J. Production of reactive oxygen species by mitochondria: central role of complex III. The Journal of Biological Chemistry. 2003;278(38):36027–36031. doi: 10.1074/jbc.M304854200. PubMed DOI
Schonfeld P., Wojtczak L. Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2012;1817(3):410–418. doi: 10.1016/j.bbabio.2011.12.009. PubMed DOI
Tretter L., Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. The Journal of Neuroscience. 2004;24(36):7771–7778. doi: 10.1523/JNEUROSCI.1842-04.2004. PubMed DOI PMC
Kussmaul L., Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(20):7607–7612. doi: 10.1073/pnas.0510977103. PubMed DOI PMC
Quinlan C. L., Gerencser A. A., Treberg J. R., Brand M. D. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. The Journal of Biological Chemistry. 2011;286(36):31361–31372. doi: 10.1074/jbc.M111.267898. PubMed DOI PMC
Shabalina I. G., Vrbacky M., Pecinova A., et al. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2014;1837(12):2017–2030. doi: 10.1074/jbc.M111.267898. PubMed DOI
Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome
Czech Footprints in the Bioenergetics Research