Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production

. 2017 ; 2017 () : 7038603. [epub] 20170809

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28874953

Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS) apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin) on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases), but only at very high concentrations (10-2-10-1 M) that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain.

Zobrazit více v PubMed

Bosi E. Metformin—the gold standard in type 2 diabetes: what does the evidence tell us? Diabetes, Obesity & Metabolism. 2009;11(Supplement 2):3–8. doi: 10.1111/j.1463-1326.2008.01031.x. PubMed DOI

Campbell R. K., White J. R., Jr., Saulie B. A. Metformin: a new oral biguanide. Clinical Therapeutics. 1996;18(3):360–371. doi: 10.1016/S0149-2918(96)80017-8. PubMed DOI

Knowler W. C., Barrett-Connor E., Fowler S. E., et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512. PubMed DOI PMC

Miller R. A., Chu Q., Xie J., Foretz M., Viollet B., Birnbaum M. J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494(7436):256–260. doi: 10.1038/nature11808. PubMed DOI PMC

Wang Q., Zhang M., Torres G., et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. Diabetes. 2017;66(1):193–205. doi: 10.2337/db16-0915. PubMed DOI PMC

Forslund K., Hildebrand F., Nielsen T., et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266. doi: 10.1038/nature15766. PubMed DOI PMC

Madiraju A. K., Erion D. M., Rahimi Y., et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510(7506):542–546. doi: 10.1038/nature13270. PubMed DOI PMC

Owen M. R., Doran E., Halestrap A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical Journal. 2000;348(3):607–614. doi: 10.1042/bj3480607. PubMed DOI PMC

Zhou G., Myers R., Li Y., et al. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation. 2001;108(8):1167–1174. doi: 10.1172/JCI13505. PubMed DOI PMC

Drahota Z., Palenickova E., Endlicher R., et al. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiological Research. 2014;63(1):1–11. PubMed

Foretz M., Guigas B., Bertrand L., Pollak M., Viollet B. Metformin: from mechanisms of action to therapies. Cell Metabolism. 2014;20(6):953–966. doi: 10.1016/j.cmet.2014.09.018. PubMed DOI

Eurich D. T., Majumdar S. R., McAlister F. A., Tsuyuki R. T., Johnson J. A. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28(10):2345–2351. doi: 10.2337/diacare.28.10.2345. PubMed DOI

Masoudi F. A., Inzucchi S. E., Wang Y., Havranek E. P., Foody J. M., Krumholz H. M. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111(5):583–590. doi: 10.1161/01.CIR.0000154542.13412.B1. PubMed DOI

Sun D., Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochemical and Biophysical Research Communications. 2017;486(2):329–335. doi: 10.1016/j.bbrc.2017.03.036. PubMed DOI

Benes J., Kazdova L., Drahota Z., et al. Effect of metformin therapy on cardiac function and survival in a volume-overload model of heart failure in rats. Clinical Science. 2011;121(1):29–41. doi: 10.1042/CS20100527. PubMed DOI

Decensi A., Puntoni M., Goodwin P., et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prevention Research. 2010;3(11):1451–1461. doi: 10.1158/1940-6207.CAPR-10-0157. PubMed DOI

Libby G., Donnelly L. A., Donnan P. T., Alessi D. R., Morris A. D., Evans J. M. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32(9):1620–1625. doi: 10.2337/dc08-2175. PubMed DOI PMC

Pollak M. Potential applications for biguanides in oncology. The Journal of Clinical Investigation. 2013;123(9):3693–3700. doi: 10.1172/JCI67232. PubMed DOI PMC

Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature Reviews Cancer. 2012;12(3):159–169. doi: 10.1038/nrc3215. PubMed DOI

Griss T., Vincent E. E., Egnatchik R., et al. Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLoS Biology. 2015;13(12, article e1002309) doi: 10.1371/journal.pbio.1002309. PubMed DOI PMC

Liu X., Romero I. L., Litchfield L. M., Lengyel E., Locasale J. W. Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metabolism. 2016;24(5):728–739. doi: 10.1016/j.cmet.2016.09.005. PubMed DOI PMC

El-Mir M. Y., Nogueira V., Fontaine E., Averet N., Rigoulet M., Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. The Journal of Biological Chemistry. 2000;275(1):223–228. doi: 10.1074/jbc.275.1.223. PubMed DOI

Bridges H. R., Jones A. J., Pollak M. N., Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. The Biochemical Journal. 2014;462(3):475–487. doi: 10.1042/BJ20140620. PubMed DOI PMC

Wheaton W. W., Weinberg S. E., Hamanaka R. B., et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 2014;3, article e02242 doi: 10.7554/eLife.02242. PubMed DOI PMC

Viollet B., Guigas B., Sanz Garcia N., Leclerc J., Foretz M., Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clinical Science. 2012;122(6):253–270. doi: 10.1042/CS20110386. PubMed DOI PMC

Liu X., Chhipa R. R., Pooya S., et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(4):E435–E444. doi: 10.1073/pnas.1311121111. PubMed DOI PMC

Mracek T., Holzerova E., Drahota Z., et al. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2014;1837(1):98–111. doi: 10.1016/j.bbabio.2013.08.007. PubMed DOI

Kudin A. P., Bimpong-Buta N. Y., Vielhaber S., Elger C. E., Kunz W. S. Characterization of superoxide-producing sites in isolated brain mitochondria. The Journal of Biological Chemistry. 2004;279(6):4127–4135. doi: 10.1016/j.biopha.2005.03.012. PubMed DOI

Quinlan C. L., Treberg J. R., Perevoshchikova I. V., Orr A. L., Brand M. D. Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radical Biology and Medicine. 2012;53(9):1807–1817. doi: 10.1016/j.freeradbiomed.2012.08.015. PubMed DOI PMC

Korshunov S. S., Skulachev V. P., Starkov A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters. 1997;416(1):15–18. doi: 10.1016/S0014-5793(97)01159-9. PubMed DOI

Lambert A. J., Brand M. D. Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. The Biochemical Journal. 2004;382(Part 2):511–517. doi: 10.1042/BJ20040485. PubMed DOI PMC

Herrero A., Barja G. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mechanisms of Ageing and Development. 1997;98(2):95–111. doi: 10.1016/S0047-6374(97)00076-6. PubMed DOI

Hirst J., King M. S., Pryde K. R. The production of reactive oxygen species by complex I. Biochemical Society Transactions. 2008;36(Part 5):976–980. doi: 10.1042/BST0360976. PubMed DOI

Quinlan C. L., Orr A. L., Perevoshchikova I. V., Treberg J. R., Ackrell B. A., Brand M. D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. The Journal of Biological Chemistry. 2012;287(32):27255–27264. doi: 10.1074/jbc.M112.374629. PubMed DOI PMC

Drahota Z., Chowdhury S. K., Floryk D., et al. Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. Journal of Bioenergetics and Biomembranes. 2002;34(2):105–113. doi: 10.1023/A:1015123908918. PubMed DOI

Mracek T., Pecinova A., Vrbacky M., Drahota Z., Houstek J. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Archives of Biochemistry and Biophysics. 2009;481(1):30–36. doi: 10.1016/j.abb.2008.10.011. PubMed DOI

Vrbacky M., Drahota Z., Mracek T., et al. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2007;1767(7):989–997. doi: 10.1016/j.bbabio.2007.05.002. PubMed DOI

Cannon B., Lindberg O. Mitochondria from brown adipose tissue: isolation and properties. Methods in Enzymology. 1979;55:65–78. doi: 10.1016/0076-6879(79)55010-1. PubMed DOI

Labajova A., Vojtiskova A., Krivakova P., Kofranek J., Drahota Z., Houstek J. Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Analytical Biochemistry. 2006;353(1):37–42. doi: 10.1016/j.ab.2006.03.032. PubMed DOI

Pecinova A., Drahota Z., Nuskova H., Pecina P., Houstek J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion. 2011;11(5):722–728. doi: 10.1016/j.mito.2011.05.006. PubMed DOI

Schagger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry. 1987;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. PubMed DOI

Mracek T., Jesina P., Krivakova P., et al. Time-course of hormonal induction of mitochondrial glycerophosphate dehydrogenase biogenesis in rat liver. Biochimica et Biophysica Acta (BBA) - General Subjects. 2005;1726(2):217–223. doi: 10.1016/j.bbagen.2005.06.011. PubMed DOI

Miyadera H., Shiomi K., Ui H., et al. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase) Proceedings of the National Academy of Sciences of the United States of America. 2003;100(2):473–477. doi: 10.1073/pnas.0237315100. PubMed DOI PMC

Orr A. L., Ashok D., Sarantos M. R., et al. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase. PLoS One. 2014;9(2, article e89938) doi: 10.1371/journal.pone.0089938. PubMed DOI PMC

Houstek J., Cannon B., Lindberg O. Glycerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue. European Journal of Biochemistry. 1975;54(1):11–18. doi: 10.1111/j.1432-1033.1975.tb04107.x. PubMed DOI

Boukalova S., Stursa J., Werner L., et al. Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. Molecular Cancer Therapeutics. 2016;15(12):2875–2886. doi: 10.1158/1535-7163.MCT-15-1021. PubMed DOI

Cheng G., Zielonka J., Ouari O., et al. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Research. 2016;76(13):3904–3915. doi: 10.1158/0008-5472.CAN-15-2534. PubMed DOI PMC

Mracek T., Drahota Z., Houstek J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2013;1827(3):401–410. doi: 10.1016/j.bbabio.2012.11.014. PubMed DOI

Kluckova K., Sticha M., Cerny J., et al. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death & Disease. 2015;6, article e1749 doi: 10.1038/cddis.2015.110. PubMed DOI PMC

Rohlena J., Dong L. F., Kluckova K., et al. Mitochondrially targeted alpha-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antioxidants & Redox Signaling. 2011;15(12):2923–2935. doi: 10.1007/s12013-017-0796-3. PubMed DOI PMC

Kalyanaraman B., Cheng G., Hardy M., et al. Modified metformin as a more potent anticancer drug: mitochondrial inhibition, redox signaling, antiproliferative effects and future EPR studies. Cell Biochemistry and Biophysics. 2017 doi: 10.1007/s12013-017-0796-3. PubMed DOI PMC

Cadenas E., Davies K. J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine. 2000;29(3-4):222–230. doi: 10.1016/S0891-5849(00)00317-8. PubMed DOI

Chen Q., Vazquez E. J., Moghaddas S., Hoppel C. L., Lesnefsky E. J. Production of reactive oxygen species by mitochondria: central role of complex III. The Journal of Biological Chemistry. 2003;278(38):36027–36031. doi: 10.1074/jbc.M304854200. PubMed DOI

Schonfeld P., Wojtczak L. Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2012;1817(3):410–418. doi: 10.1016/j.bbabio.2011.12.009. PubMed DOI

Tretter L., Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. The Journal of Neuroscience. 2004;24(36):7771–7778. doi: 10.1523/JNEUROSCI.1842-04.2004. PubMed DOI PMC

Kussmaul L., Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(20):7607–7612. doi: 10.1073/pnas.0510977103. PubMed DOI PMC

Quinlan C. L., Gerencser A. A., Treberg J. R., Brand M. D. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. The Journal of Biological Chemistry. 2011;286(36):31361–31372. doi: 10.1074/jbc.M111.267898. PubMed DOI PMC

Shabalina I. G., Vrbacky M., Pecinova A., et al. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2014;1837(12):2017–2030. doi: 10.1074/jbc.M111.267898. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome

. 2024 Sep 11 ; 7 (1) : 1116. [epub] 20240911

Czech Footprints in the Bioenergetics Research

. 2024 May 31 ; 73 (Suppl 1) : S23-S33. [epub] 20240531

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...