Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome

. 2024 Sep 11 ; 7 (1) : 1116. [epub] 20240911

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39261587

Grantová podpora
LM2023067 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LUAUS23095 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 39261587
PubMed Central PMC11391015
DOI 10.1038/s42003-024-06819-w
PII: 10.1038/s42003-024-06819-w
Knihovny.cz E-zdroje

Metabolic syndrome is a growing concern in developed societies and due to its polygenic nature, the genetic component is only slowly being elucidated. Common mitochondrial DNA sequence variants have been associated with symptoms of metabolic syndrome and may, therefore, be relevant players in the genetics of metabolic syndrome. We investigate the effect of mitochondrial sequence variation on the metabolic phenotype in conplastic rat strains with identical nuclear but unique mitochondrial genomes, challenged by high-fat diet. We find that the variation in mitochondrial rRNA sequence represents risk factor in the insulin resistance development, which is associated with diacylglycerols accumulation, induced by tissue-specific reduction of the oxidative capacity. These metabolic perturbations stem from the 12S rRNA sequence variation affecting mitochondrial ribosome assembly and translation. Our work demonstrates that physiological variation in mitochondrial rRNA might represent a relevant underlying factor in the progression of metabolic syndrome.

Zobrazit více v PubMed

Kenney, M. C. et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim Biophys. Acta1842, 208–219 (2014). 10.1016/j.bbadis.2013.10.016 PubMed DOI PMC

Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res.49, D1541–D1547 (2021). 10.1093/nar/gkaa1011 PubMed DOI PMC

Cagin, U. & Enriquez, J. A. The complex crosstalk between mitochondria and the nucleus: What goes in between? Int. J. Biochem Cell Biol.63, 10–15 (2015). 10.1016/j.biocel.2015.01.026 PubMed DOI

Dennerlein, S., Wang, C. & Rehling, P. Plasticity of Mitochondrial Translation. Trends Cell Biol.27, 712–721 (2017). 10.1016/j.tcb.2017.05.004 PubMed DOI

Estopinal, C. B. et al. Mitochondrial haplogroups are associated with severity of diabetic retinopathy. Invest Ophthalmol. Vis. Sci.55, 5589–5595 (2014). 10.1167/iovs.14-15149 PubMed DOI PMC

Chinnery, P. F., Elliott, H. R., Syed, A., Rothwell, P. M. & Oxford Vascular, S. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: a genetic association study. Lancet Neurol.9, 498–503 (2010). 10.1016/S1474-4422(10)70083-1 PubMed DOI PMC

Martikainen, M. H., Ronnemaa, T. & Majamaa, K. Association of mitochondrial DNA haplogroups and vascular complications of diabetes mellitus: a population-based study. Diab Vasc. Dis. Res.12, 302–304 (2015). 10.1177/1479164115579007 PubMed DOI

Bellizzi, D. et al. Gene expression of cytokines and cytokine receptors is modulated by the common variability of the mitochondrial DNA in cybrid cell lines. Genes Cells11, 883–891 (2006). 10.1111/j.1365-2443.2006.00986.x PubMed DOI

Grundy, S. M. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab.89, 2595–2600 (2004). 10.1210/jc.2004-0372 PubMed DOI

Castro, A. V., Kolka, C. M., Kim, S. P. & Bergman, R. N. Obesity, insulin resistance and comorbidities? Mechanisms of association. Arq. Bras. Endocrinol. Metab.58, 600–609 (2014).10.1590/0004-2730000003223 PubMed DOI PMC

Vazquez, G., Duval, S., Jacobs, D. R. Jr. & Silventoinen, K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol. Rev.29, 115–128 (2007). 10.1093/epirev/mxm008 PubMed DOI

Unger, R. H. Lipotoxic diseases. Annu. Rev. Med.53, 319–336 (2002). 10.1146/annurev.med.53.082901.104057 PubMed DOI

Boutari, C. & Mantzoros, C. S. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism133, 155217 (2022). 10.1016/j.metabol.2022.155217 PubMed DOI PMC

Kelley, D. E., Goodpaster, B., Wing, R. R. & Simoneau, J. A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol.277, E1130–E1141 (1999). PubMed

Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet.34, 267–273 (2003). 10.1038/ng1180 PubMed DOI

Chavez, J. A. & Summers, S. A. A ceramide-centric view of insulin resistance. Cell Metab.15, 585–594 (2012). 10.1016/j.cmet.2012.04.002 PubMed DOI

Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem.277, 50230–50236 (2002). 10.1074/jbc.M200958200 PubMed DOI

Teruel, T., Hernandez, R. & Lorenzo, M. Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes50, 2563–2571 (2001). 10.2337/diabetes.50.11.2563 PubMed DOI

Powell, D. J., Hajduch, E., Kular, G. & Hundal, H. S. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell Biol.23, 7794–7808 (2003). 10.1128/MCB.23.21.7794-7808.2003 PubMed DOI PMC

Anderson, E. J. et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest119, 573–581 (2009). 10.1172/JCI37048 PubMed DOI PMC

Jani, S. et al. Distinct mechanisms involving diacylglycerol, ceramides, and inflammation underlie insulin resistance in oxidative and glycolytic muscles from high fat-fed rats. Sci. Rep.11, 19160 (2021). 10.1038/s41598-021-98819-7 PubMed DOI PMC

Pickup, J. C. & Crook, M. A. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia41, 1241–1248 (1998). 10.1007/s001250051058 PubMed DOI

Wu, H. & Ballantyne, C. M. Metabolic inflammation and insulin resistance in obesity. Circ. Res.126, 1549–1564 (2020). 10.1161/CIRCRESAHA.119.315896 PubMed DOI PMC

Tornatore, L., Thotakura, A. K., Bennett, J., Moretti, M. & Franzoso, G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol.22, 557–566 (2012). 10.1016/j.tcb.2012.08.001 PubMed DOI

Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest116, 1494–1505 (2006). 10.1172/JCI26498 PubMed DOI PMC

Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell148, 852–871 (2012). 10.1016/j.cell.2012.02.017 PubMed DOI PMC

Houstek, J. et al. Effects of mtDNA in SHR-mtF344 versus SHR conplastic strains on reduced OXPHOS enzyme levels, insulin resistance, cardiac hypertrophy, and systolic dysfunction. Physiol. Genomics46, 671–678 (2014). 10.1152/physiolgenomics.00069.2014 PubMed DOI

Pravenec, M. Conplastic. 155–157 (ScienceDirect, 2013).

Pravenec, M. et al. Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res.17, 1319–1326 (2007). 10.1101/gr.6548207 PubMed DOI PMC

Pravenec, M. et al. Conplastic strains for identification of retrograde effects of mitochondrial dna variation on cardiometabolic traits in the spontaneously hypertensive rat. Physiol. Res.70, S471–S484 (2021). 10.33549/physiolres.934740 PubMed DOI PMC

Houstek, J. et al. Nonsynonymous variants in mt-Nd2, mt-Nd4, and mt-Nd5 are linked to effects on oxidative phosphorylation and insulin sensitivity in rat conplastic strains. Physiol. Genomics44, 487–494 (2012). 10.1152/physiolgenomics.00156.2011 PubMed DOI PMC

Korshunov, S. S., Skulachev, V. P. & Starkov, A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett.416, 15–18 (1997). 10.1016/S0014-5793(97)01159-9 PubMed DOI

Lambert, A. J. & Brand, M. D. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J.382, 511–517 (2004). 10.1042/BJ20040485 PubMed DOI PMC

Cai, N. et al. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat. Med.27, 1564–1575 (2021). 10.1038/s41591-021-01441-3 PubMed DOI

Itoh, Y. et al. Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature606, 603–608 (2022). 10.1038/s41586-022-04795-x PubMed DOI PMC

Vila-Sanjurjo, A., Mallo, N., Atkins, J. F., Elson, J. L. & Smith, P. M. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol.14, 1082953 (2023). 10.3389/fphys.2023.1082953 PubMed DOI PMC

Harper, N. J., Burnside, C. & Klinge, S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature614, 175–181 (2023). 10.1038/s41586-022-05621-0 PubMed DOI PMC

Nuskova, H. et al. Biochemical thresholds for pathological presentation of ATP synthase deficiencies. Biochem. Biophys. Res. Commun.521, 1036–1041 (2020). 10.1016/j.bbrc.2019.11.033 PubMed DOI

Rossignol, R. et al. Mitochondrial threshold effects. Biochem. J.370, 751–762 (2003). 10.1042/bj20021594 PubMed DOI PMC

Rossignol, R., Malgat, M., Mazat, J. P. & Letellier, T. Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J. Biol. Chem.274, 33426–33432 (1999). 10.1074/jbc.274.47.33426 PubMed DOI

McLaughlin, T., Ackerman, S. E., Shen, L. & Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Invest.127, 5–13 (2017). 10.1172/JCI88876 PubMed DOI PMC

Ludwig-Slomczynska, A. H. & Rehm, M. Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases. Obes. (Silver Spring)30, 1156–1169 (2022).10.1002/oby.23424 PubMed DOI

Fang, H. et al. mtDNA Haplogroup N9a Increases the Risk of Type 2 Diabetes by Altering Mitochondrial Function and Intracellular Mitochondrial Signals. Diabetes67, 1441–1453 (2018). 10.2337/db17-0974 PubMed DOI

Chalkia, D. et al. Mitochondrial DNA associations with East Asian metabolic syndrome. Biochim. Biophys. Acta Bioenerg.1859, 878–892 (2018). 10.1016/j.bbabio.2018.07.002 PubMed DOI PMC

Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature535, 561–565 (2016). 10.1038/nature18618 PubMed DOI

Goios, A., Pereira, L., Bogue, M., Macaulay, V. & Amorim, A. mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res.17, 293–298 (2007). 10.1101/gr.5941007 PubMed DOI PMC

Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol.14, 140–162 (2018). 10.1038/nrendo.2017.161 PubMed DOI

Dunham-Snary, K. J. et al. Mitochondrial - nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. EBioMedicine36, 316–328 (2018). 10.1016/j.ebiom.2018.08.036 PubMed DOI PMC

Kunstner, A., Schilf, P., Busch, H., Ibrahim, S. M. & Hirose, M. Changes of gut microbiota by natural mtDNA variant differences augment susceptibility to metabolic disease and ageing. Int. J. Mol. Sci.23, 1056 (2022). 10.3390/ijms23031056 PubMed DOI PMC

Qatanani, M. & Lazar, M. A. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev.21, 1443–1455 (2007). 10.1101/gad.1550907 PubMed DOI

Sergi, D. et al. Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol.10, 532 (2019). 10.3389/fphys.2019.00532 PubMed DOI PMC

Kim, J. Y., Hickner, R. C., Cortright, R. L., Dohm, G. L. & Houmard, J. A. Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab.279, E1039–E1044 (2000). 10.1152/ajpendo.2000.279.5.E1039 PubMed DOI

Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes51, 2944–2950 (2002). 10.2337/diabetes.51.10.2944 PubMed DOI

Cardoso, A. R., Kakimoto, P. A. & Kowaltowski, A. J. Diet-sensitive sources of reactive oxygen species in liver mitochondria: role of very long chain acyl-CoA dehydrogenases. PLoS ONE8, e77088 (2013). 10.1371/journal.pone.0077088 PubMed DOI PMC

Raffaella, C. et al. Alterations in hepatic mitochondrial compartment in a model of obesity and insulin resistance. Obes. (Silver Spring)16, 958–964 (2008).10.1038/oby.2008.10 PubMed DOI

Cole, M. A. et al. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res. Cardiol.106, 447–457 (2011). 10.1007/s00395-011-0156-1 PubMed DOI PMC

Shao, D. et al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating Parkin-mediated mitophagy. Circulation142, 983–997 (2020). 10.1161/CIRCULATIONAHA.119.043319 PubMed DOI PMC

Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science370, 364–368 (2020). 10.1126/science.abc8861 PubMed DOI PMC

Arguello, T., Kohrer, C., RajBhandary, U. L. & Moraes, C. T. Mitochondrial methionyl N-formylation affects steady-state levels of oxidative phosphorylation complexes and their organization into supercomplexes. J. Biol. Chem.293, 15021–15032 (2018). 10.1074/jbc.RA118.003838 PubMed DOI PMC

Tucker, E. J. et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab.14, 428–434 (2011). 10.1016/j.cmet.2011.07.010 PubMed DOI PMC

Aibara, S., Singh, V., Modelska, A. & Amunts, A. Structural basis of mitochondrial translation. Elife9, e58362 (2020). 10.7554/eLife.58362 PubMed DOI PMC

Vila-Sanjurjo, A. et al. Structural analysis of mitochondrial rRNA gene variants identified in patients with deafness. Front Physiol.14, 1163496 (2023). 10.3389/fphys.2023.1163496 PubMed DOI PMC

Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. Ribosome. The structure of the human mitochondrial ribosome. Science348, 95–98 (2015). 10.1126/science.aaa1193 PubMed DOI PMC

Bolze, A. et al. A catalog of homoplasmic and heteroplasmic mitochondrial DNA variants in humans. BioRxiv10.1101/798264 (2020).10.1101/798264 DOI

MITOMAP: A Human Mitochondrial Genome Database. http://www.mitomap.org.

Guan, M. X., Fischel-Ghodsian, N. & Attardi, G. Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation. Hum. Mol. Genet.10, 573–580 (2001). 10.1093/hmg/10.6.573 PubMed DOI

Lee, S. et al. Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing. Hum. Mol. Genet.24, 7286–7294 (2015). 10.1093/hmg/ddv427 PubMed DOI PMC

O’Sullivan, M. et al. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss. Hum. Mol. Genet.24, 1036–1044 (2015). 10.1093/hmg/ddu518 PubMed DOI PMC

Raimundo, N. et al. Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell148, 716–726 (2012). 10.1016/j.cell.2011.12.027 PubMed DOI PMC

Aboulmaouahib, B. et al. First mitochondrial genome-wide association study with metabolomics. Hum. Mol. Genet.31, 3367–3376 (2022). 10.1093/hmg/ddab312 PubMed DOI PMC

Kong, B. S., Lee, C. & Cho, Y. M. Mitochondrial-Encoded Peptide MOTS-c, Diabetes, and Aging-Related Diseases. Diab. Metab. J.47, 315–324 (2023).10.4093/dmj.2022.0333 PubMed DOI PMC

Vila-Sanjurjo, A., Smith, P. M. & Elson, J. L. Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit. Methods Mol. Biol.2277, 203–245 (2021). 10.1007/978-1-0716-1270-5_14 PubMed DOI

Aw, W. C. et al. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet.14, e1007735 (2018). 10.1371/journal.pgen.1007735 PubMed DOI PMC

Dobson, A. J. et al. Mitonuclear interactions shape both direct and parental effects of diet on fitness and involve a SNP in mitoribosomal 16s rRNA. PLoS Biol.21, e3002218 (2023). 10.1371/journal.pbio.3002218 PubMed DOI PMC

Haumann, S. et al. Mitochondrial DNA mutations induce mitochondrial biogenesis and increase the tumorigenic potential of Hodgkin and Reed-Sternberg cells. Carcinogenesis41, 1735–1745 (2020). 10.1093/carcin/bgaa032 PubMed DOI

Akbergenov, R. et al. Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations. EMBO Rep.19, e46193 (2018). 10.15252/embr.201846193 PubMed DOI PMC

Shcherbakov, D. et al. Mitochondrial mistranslation in brain provokes a metabolic response which mitigates the age-associated decline in mitochondrial gene expression. Int. J. Mol. Sci.22, 2746 (2021). 10.3390/ijms22052746 PubMed DOI PMC

Shcherbakov, D. Sr. et al. Mitochondrial misreading in skeletal muscle accelerates metabolic aging and confers lipid accumulation and increased inflammation. RNA27, 265–272 (2020). 10.1261/rna.077347.120 PubMed DOI PMC

Ferreira, N. et al. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J.38, e102155 (2019). 10.15252/embj.2019102155 PubMed DOI PMC

Richman, T. R. et al. Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell20, e13408 (2021). 10.1111/acel.13408 PubMed DOI PMC

Antunes, L. C., Elkfury, J. L., Jornada, M. N., Foletto, K. C. & Bertoluci, M. C. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Arch. Endocrinol. Metab.60, 138–142 (2016). 10.1590/2359-3997000000169 PubMed DOI

Pecinova, A., Drahota, Z., Nuskova, H., Pecina, P. & Houstek, J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion11, 722–728 (2011). 10.1016/j.mito.2011.05.006 PubMed DOI

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254 (1976). 10.1016/0003-2697(76)90527-3 PubMed DOI

Seluanov, A., Vaidya, A. & Gorbunova, V. Establishing primary adult fibroblast cultures from rodents. J. Vis. Exp.10.3791/2033 (2010). 10.3791/2033 PubMed DOI PMC

Pecinova, A. et al. Pleiotropic effects of biguanides on mitochondrial reactive oxygen species production. Oxid. Med. Cell Longev.2017, 7038603 (2017). 10.1155/2017/7038603 PubMed DOI PMC

Miwa, S. et al. Carboxylesterase converts Amplex red to resorufin: Implications for mitochondrial H2O2 release assays. Free Radic. Biol. Med.90, 173–183 (2016). 10.1016/j.freeradbiomed.2015.11.011 PubMed DOI PMC

Hricko, J. et al. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxid. (Basel)12, 986 (2023).10.3390/antiox12050986 PubMed DOI PMC

Sistilli, G. et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients13, 437 (2021). 10.3390/nu13020437 PubMed DOI PMC

Cajka, T. et al. Optimization of mobile phase modifiers for Fast LC-MS-based untargeted metabolomics and lipidomics. Int. J. Mol. Sci.24, 1987 (2023). 10.3390/ijms24031987 PubMed DOI PMC

Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol.38, 1159–1163 (2020). 10.1038/s41587-020-0531-2 PubMed DOI

Pang, Z. et al. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc.17, 1735–1761 (2022). 10.1038/s41596-022-00710-w PubMed DOI

Markovic, A. et al. Genetic complementation of ATP synthase deficiency due to dysfunction of TMEM70 assembly factor in rat. Biomedicines10, 276 (2022). 10.3390/biomedicines10020276 PubMed DOI PMC

Johnston, H. E. et al. Solvent precipitation SP3 (SP4) enhances recovery for proteomics sample preparation without magnetic beads. Anal. Chem.94, 10320–10328 (2022). 10.1021/acs.analchem.1c04200 PubMed DOI PMC

Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res.44, W90–W97 (2016). 10.1093/nar/gkw377 PubMed DOI PMC

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res.50, D543–D552 (2022). 10.1093/nar/gkab1038 PubMed DOI PMC

Sadakierska-Chudy, A. et al. The alterations in mitochondrial DNA copy number and nuclear-encoded mitochondrial genes in rat brain structures after cocaine self-administration. Mol. Neurobiol.54, 7460–7470 (2017). 10.1007/s12035-016-0153-3 PubMed DOI PMC

Mracek, T., Pecinova, A., Vrbacky, M., Drahota, Z. & Houstek, J. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Arch. Biochem. Biophys.481, 30–36 (2009). 10.1016/j.abb.2008.10.011 PubMed DOI

Pajuelo Reguera, D. et al. Cytochrome c oxidase subunit 4 isoform exchange results in modulation of oxygen affinity. Cells9, 443 (2020). 10.3390/cells9020443 PubMed DOI PMC

Pravenec, M. et al. Mutant Wars2 gene in spontaneously hypertensive rats impairs brown adipose tissue function and predisposes to visceral obesity. Physiol. Res.66, 917–924 (2017). 10.33549/physiolres.933811 PubMed DOI

Cunatova, K. et al. Loss of COX4I1 Leads to combined respiratory chain deficiency and impaired mitochondrial protein synthesis. Cells10, 369 (2021). 10.3390/cells10020369 PubMed DOI PMC

Schagger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem.166, 368–379 (1987). 10.1016/0003-2697(87)90587-2 PubMed DOI

Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol.7, 539 (2011). 10.1038/msb.2011.75 PubMed DOI PMC

Kummer, E., Schubert, K. N., Schoenhut, T., Scaiola, A. & Ban, N. Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Mol. Cell81, 2566–2582.e2566 (2021). 10.1016/j.molcel.2021.03.042 PubMed DOI

Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci.27, 14–25 (2018). 10.1002/pro.3235 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mettl15-Mettl17 modulates the transition from early to late pre-mitoribosome

. 2025 Jan 24 ; () : . [epub] 20250124

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace