Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains

. 2007 Sep ; 17 (9) : 1319-26. [epub] 20070810

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17693571

Grantová podpora
HL63709 NHLBI NIH HHS - United States
R01 HL056028 NHLBI NIH HHS - United States
HL56028 NHLBI NIH HHS - United States
R01 HL063709 NHLBI NIH HHS - United States
P01 HL035018 NHLBI NIH HHS - United States
HL35018 NHLBI NIH HHS - United States

Recently, the relationship of mitochondrial DNA (mtDNA) variants to metabolic risk factors for diabetes and other common diseases has begun to attract increasing attention. However, progress in this area has been limited because (1) the phenotypic effects of variation in the mitochondrial genome are difficult to isolate owing to confounding variation in the nuclear genome, imprinting phenomena, and environmental factors; and (2) few animal models have been available for directly investigating the effects of mtDNA variants on complex metabolic phenotypes in vivo. Substitution of different mitochondrial genomes on the same nuclear genetic background in conplastic strains provides a way to unambiguously isolate effects of the mitochondrial genome on complex traits. Here we show that conplastic strains of rats with identical nuclear genomes but divergent mitochondrial genomes that encode amino acid differences in proteins of oxidative phosphorylation exhibit differences in major metabolic risk factors for type 2 diabetes. These results (1) provide the first direct evidence linking naturally occurring variation in the mitochondrial genome, independent of variation in the nuclear genome and other confounding factors, to inherited variation in known risk factors for type 2 diabetes; and (2) establish that spontaneous variation in the mitochondrial genome per se can promote systemic metabolic disturbances relevant to the pathogenesis of common diseases.

Erratum v

Genome Res. 2008 Oct;18(10):1680 PubMed

Zobrazit více v PubMed

Alcolado J.C., Laji K., Gill-Randall R., Laji K., Gill-Randall R., Gill-Randall R. Maternal transmission of diabetes. Diabet. Med. 2002;19:89–98. PubMed

Asmann Y.W., Stump C.S., Short K.R., Coenen-Schimke J.M., Guo Z., Bigelow M.L., Nair K.S., Stump C.S., Short K.R., Coenen-Schimke J.M., Guo Z., Bigelow M.L., Nair K.S., Short K.R., Coenen-Schimke J.M., Guo Z., Bigelow M.L., Nair K.S., Coenen-Schimke J.M., Guo Z., Bigelow M.L., Nair K.S., Guo Z., Bigelow M.L., Nair K.S., Bigelow M.L., Nair K.S., Nair K.S. Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes. 2006;55:3309–3319. PubMed

Behringer R. Supersonic congenics? Nat. Genet. 1998;18:108. PubMed

Bustamante E., Soper J.W., Pedersen P.L., Soper J.W., Pedersen P.L., Pedersen P.L. A high-yield preparative method for isolation of rat liver mitochondria. Anal. Biochem. 1977;80:401–408. PubMed

Calvo S., Jain M., Xie X., Sheth S.A., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Jain M., Xie X., Sheth S.A., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Xie X., Sheth S.A., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Sheth S.A., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Zeviani M., Carr S.A., Mootha V.K., Carr S.A., Mootha V.K., Mootha V.K. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet. 2006;38:576–582. PubMed

Carelli V., Giordano C., d’Amati G., Giordano C., d’Amati G., d’Amati G. Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear–mitochondrial interaction. Trends Genet. 2003;19:257–262. PubMed

Fischel-Ghodsian N. Homoplasmic mitochondrial DNA diseases as the paradigm to understand the tissue specificity and variable clinical severity of mitochondrial disorders. Mol. Genet. Metab. 2000;71:93–99. PubMed

Flachs P., Novotny J., Baumruk F., Bardova K., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Novotny J., Baumruk F., Bardova K., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Baumruk F., Bardova K., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Bardova K., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Miksik I., Sponarova J., Svoboda P., Kopecky J., Sponarova J., Svoboda P., Kopecky J., Svoboda P., Kopecky J., Kopecky J. Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels. Biochem. J. 2002;364:369–376. PubMed PMC

Fuku N., Park K.S., Yamada Y., Nishigaki Y., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Park K.S., Yamada Y., Nishigaki Y., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Yamada Y., Nishigaki Y., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Nishigaki Y., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Segawa T., Watanabe S., Kato K., Yokoi K., Watanabe S., Kato K., Yokoi K., Kato K., Yokoi K., Yokoi K., et al. Mitochondrial haplogroup N9a confers resistance against Type 2 diabetes in Asians. Am. J. Hum. Genet. 2007;80:407–415. PubMed PMC

Galtier N., Gouy M., Gautier C., Gouy M., Gautier C., Gautier C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 1996;12:543–548. PubMed

Gill-Randall R.J., Adams D., Ollerton R.L., Alcolado J.C., Adams D., Ollerton R.L., Alcolado J.C., Ollerton R.L., Alcolado J.C., Alcolado J.C. Is human Type 2 diabetes maternally inherited? Insights from an animal model. Diabet. Med. 2004;21:759–762. PubMed

Jesina P., Tesarova M., Fornuskova D., Vojtiskova A., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Tesarova M., Fornuskova D., Vojtiskova A., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Fornuskova D., Vojtiskova A., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Vojtiskova A., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Kaplanova V., Hansikova H., Zeman J., Houstek J., Hansikova H., Zeman J., Houstek J., Zeman J., Houstek J., Houstek J. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem. J. 2004;383:561–571. PubMed PMC

Kren V., Qi N., Krenova D., Zidek V., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Qi N., Krenova D., Zidek V., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Krenova D., Zidek V., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Zidek V., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Bonne A., Van Lith H., Van Zutphen B., Van Lith H., Van Zutphen B., Van Zutphen B., et al. Y chromosome transfer induces changes in blood pressure and blood lipids in SHR. Hypertension. 2001;37:1147–1152. PubMed

Lowell B.B., Shulman G.I., Shulman G.I. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–387. PubMed

Maassen J.A., Janssen G.M., Hart L.M.T., Janssen G.M., Hart L.M.T., Hart L.M.T. Molecular mechanisms of mitochondrial diabetes (MIDD) Ann. Med. 2005;37:213–221. PubMed

Mathews C.E., Berdanier C.D., Berdanier C.D. Noninsulin-dependent diabetes mellitus as a mitochondrial genomic disease. Proc. Soc. Exp. Biol. Med. 1998;219:97–108. PubMed

Mathews C.E., McGraw R.A., Dean R., Berdanier C.D., McGraw R.A., Dean R., Berdanier C.D., Dean R., Berdanier C.D., Berdanier C.D. Inheritance of a mitochondrial DNA defect and impaired glucose tolerance in BHE/Cdb rats. Diabetologia. 1999;42:35–40. PubMed

Muller P.Y., Janovjak H., Miserez A.R., Dobbie Z., Janovjak H., Miserez A.R., Dobbie Z., Miserez A.R., Dobbie Z., Dobbie Z.2002Processing of gene expression data generated by quantitative real time RT-PCR Biotechniques 321372–1379. . Erratum.33 514 PubMed

Nathan D.M., Davidson M.B., DeFronzo R.A., Heine R.J., Henry R.R., Pratley R., Zinman B., Davidson M.B., DeFronzo R.A., Heine R.J., Henry R.R., Pratley R., Zinman B., DeFronzo R.A., Heine R.J., Henry R.R., Pratley R., Zinman B., Heine R.J., Henry R.R., Pratley R., Zinman B., Henry R.R., Pratley R., Zinman B., Pratley R., Zinman B., Zinman B. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care. 2007;30:753–759. PubMed

Petersen K.F., Dufour S., Befroy D., Garcia R., Shulman G.I., Dufour S., Befroy D., Garcia R., Shulman G.I., Befroy D., Garcia R., Shulman G.I., Garcia R., Shulman G.I., Shulman G.I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 2004;350:664–671. PubMed PMC

Pravenec M., Zidek V., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Zidek V., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Mikova B., Kazdova L., Aitman T.J., Kazdova L., Aitman T.J., Aitman T.J., et al. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J. Clin. Invest. 1999;103:1651–1657. PubMed PMC

Pravenec M., Landa V., Zidek V., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Landa V., Zidek V., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Zidek V., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Glazier A.M., Ibrahimi A., Abumrad N.A., Ibrahimi A., Abumrad N.A., Abumrad N.A., et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat. Genet. 2001;27:156–158. PubMed

Pravenec M., Kazdova L., Landa V., Zidek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Kazdova L., Landa V., Zidek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Landa V., Zidek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Zidek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Jansa P., Wang J., Qi N., Kurtz T.W., Wang J., Qi N., Kurtz T.W., Qi N., Kurtz T.W., Kurtz T.W. Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat. J. Biol. Chem. 2003;278:45209–45215. PubMed

Rice P., Longden I., Bleasby A., Longden I., Bleasby A., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. PubMed

Saxena R., de Bakker P.I., Singer K., Mootha V., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., de Bakker P.I., Singer K., Mootha V., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Singer K., Mootha V., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Mootha V., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Gaudet D., Isomaa B., Daly M.J., Groop L., Isomaa B., Daly M.J., Groop L., Daly M.J., Groop L., Groop L., et al. Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am. J. Hum. Genet. 2006;79:54–61. PubMed PMC

Shulman G.I., Rothman D.L., Jue T., Stein P., DeFronzo R.A., Shulman R.G., Rothman D.L., Jue T., Stein P., DeFronzo R.A., Shulman R.G., Jue T., Stein P., DeFronzo R.A., Shulman R.G., Stein P., DeFronzo R.A., Shulman R.G., DeFronzo R.A., Shulman R.G., Shulman R.G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 1990;322:223–228. PubMed

Silver L. Mouse genetics: Concepts and applications. Oxford University Press; Oxford: 1995.

Sun F., Cui J., Gavras H., Schwartz F., Cui J., Gavras H., Schwartz F., Gavras H., Schwartz F., Schwartz F. A novel class of tests for the detection of mitochondrial DNA-mutation involvement in diseases. Am. J. Hum. Genet. 2003;72:1515–1526. PubMed PMC

Vrana A., Poledne R., Fabry P., Kazdova L., Poledne R., Fabry P., Kazdova L., Fabry P., Kazdova L., Kazdova L. Palmitate and glucose oxidation by diaphragm of rats with fructose-induced hypertriglyceridemia. Metabolism. 1978;27:885–888. PubMed

Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005;39:359–407. PubMed PMC

Wilson F.H., Hariri A., Farhi A., Zhao H., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Hariri A., Farhi A., Zhao H., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Farhi A., Zhao H., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Zhao H., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Raja K.M., Kashgarian M., Shulman G.I., Kashgarian M., Shulman G.I., Shulman G.I., et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306:1190–1194. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...