Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
HL63709
NHLBI NIH HHS - United States
R01 HL056028
NHLBI NIH HHS - United States
HL56028
NHLBI NIH HHS - United States
R01 HL063709
NHLBI NIH HHS - United States
P01 HL035018
NHLBI NIH HHS - United States
HL35018
NHLBI NIH HHS - United States
PubMed
17693571
PubMed Central
PMC1950900
DOI
10.1101/gr.6548207
PII: gr.6548207
Knihovny.cz E-zdroje
- MeSH
- diabetes mellitus 2. typu genetika MeSH
- genetická variace * MeSH
- genom * MeSH
- genová dávka MeSH
- haplotypy MeSH
- krysa rodu Rattus MeSH
- mitochondriální DNA genetika MeSH
- mitochondrie enzymologie genetika MeSH
- polymorfismus genetický MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- respirační komplex IV genetika MeSH
- rizikové faktory MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- substituce aminokyselin MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- mitochondriální DNA MeSH
- respirační komplex IV MeSH
Recently, the relationship of mitochondrial DNA (mtDNA) variants to metabolic risk factors for diabetes and other common diseases has begun to attract increasing attention. However, progress in this area has been limited because (1) the phenotypic effects of variation in the mitochondrial genome are difficult to isolate owing to confounding variation in the nuclear genome, imprinting phenomena, and environmental factors; and (2) few animal models have been available for directly investigating the effects of mtDNA variants on complex metabolic phenotypes in vivo. Substitution of different mitochondrial genomes on the same nuclear genetic background in conplastic strains provides a way to unambiguously isolate effects of the mitochondrial genome on complex traits. Here we show that conplastic strains of rats with identical nuclear genomes but divergent mitochondrial genomes that encode amino acid differences in proteins of oxidative phosphorylation exhibit differences in major metabolic risk factors for type 2 diabetes. These results (1) provide the first direct evidence linking naturally occurring variation in the mitochondrial genome, independent of variation in the nuclear genome and other confounding factors, to inherited variation in known risk factors for type 2 diabetes; and (2) establish that spontaneous variation in the mitochondrial genome per se can promote systemic metabolic disturbances relevant to the pathogenesis of common diseases.
Genome Res. 2008 Oct;18(10):1680 PubMed
Zobrazit více v PubMed
Alcolado J.C., Laji K., Gill-Randall R., Laji K., Gill-Randall R., Gill-Randall R. Maternal transmission of diabetes. Diabet. Med. 2002;19:89–98. PubMed
Asmann Y.W., Stump C.S., Short K.R., Coenen-Schimke J.M., Guo Z., Bigelow M.L., Nair K.S., Stump C.S., Short K.R., Coenen-Schimke J.M., Guo Z., Bigelow M.L., Nair K.S., Short K.R., Coenen-Schimke J.M., Guo Z., Bigelow M.L., Nair K.S., Coenen-Schimke J.M., Guo Z., Bigelow M.L., Nair K.S., Guo Z., Bigelow M.L., Nair K.S., Bigelow M.L., Nair K.S., Nair K.S. Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes. 2006;55:3309–3319. PubMed
Behringer R. Supersonic congenics? Nat. Genet. 1998;18:108. PubMed
Bustamante E., Soper J.W., Pedersen P.L., Soper J.W., Pedersen P.L., Pedersen P.L. A high-yield preparative method for isolation of rat liver mitochondria. Anal. Biochem. 1977;80:401–408. PubMed
Calvo S., Jain M., Xie X., Sheth S.A., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Jain M., Xie X., Sheth S.A., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Xie X., Sheth S.A., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Sheth S.A., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Chang B., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Goldberger O.A., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Spinazzola A., Zeviani M., Carr S.A., Mootha V.K., Zeviani M., Carr S.A., Mootha V.K., Carr S.A., Mootha V.K., Mootha V.K. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet. 2006;38:576–582. PubMed
Carelli V., Giordano C., d’Amati G., Giordano C., d’Amati G., d’Amati G. Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear–mitochondrial interaction. Trends Genet. 2003;19:257–262. PubMed
Fischel-Ghodsian N. Homoplasmic mitochondrial DNA diseases as the paradigm to understand the tissue specificity and variable clinical severity of mitochondrial disorders. Mol. Genet. Metab. 2000;71:93–99. PubMed
Flachs P., Novotny J., Baumruk F., Bardova K., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Novotny J., Baumruk F., Bardova K., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Baumruk F., Bardova K., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Bardova K., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Bourova L., Miksik I., Sponarova J., Svoboda P., Kopecky J., Miksik I., Sponarova J., Svoboda P., Kopecky J., Sponarova J., Svoboda P., Kopecky J., Svoboda P., Kopecky J., Kopecky J. Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels. Biochem. J. 2002;364:369–376. PubMed PMC
Fuku N., Park K.S., Yamada Y., Nishigaki Y., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Park K.S., Yamada Y., Nishigaki Y., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Yamada Y., Nishigaki Y., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Nishigaki Y., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Cho Y.M., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Matsuo H., Segawa T., Watanabe S., Kato K., Yokoi K., Segawa T., Watanabe S., Kato K., Yokoi K., Watanabe S., Kato K., Yokoi K., Kato K., Yokoi K., Yokoi K., et al. Mitochondrial haplogroup N9a confers resistance against Type 2 diabetes in Asians. Am. J. Hum. Genet. 2007;80:407–415. PubMed PMC
Galtier N., Gouy M., Gautier C., Gouy M., Gautier C., Gautier C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 1996;12:543–548. PubMed
Gill-Randall R.J., Adams D., Ollerton R.L., Alcolado J.C., Adams D., Ollerton R.L., Alcolado J.C., Ollerton R.L., Alcolado J.C., Alcolado J.C. Is human Type 2 diabetes maternally inherited? Insights from an animal model. Diabet. Med. 2004;21:759–762. PubMed
Jesina P., Tesarova M., Fornuskova D., Vojtiskova A., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Tesarova M., Fornuskova D., Vojtiskova A., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Fornuskova D., Vojtiskova A., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Vojtiskova A., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Pecina P., Kaplanova V., Hansikova H., Zeman J., Houstek J., Kaplanova V., Hansikova H., Zeman J., Houstek J., Hansikova H., Zeman J., Houstek J., Zeman J., Houstek J., Houstek J. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem. J. 2004;383:561–571. PubMed PMC
Kren V., Qi N., Krenova D., Zidek V., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Qi N., Krenova D., Zidek V., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Krenova D., Zidek V., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Zidek V., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Sladka M., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Mikova B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Horky K., Bonne A., Van Lith H., Van Zutphen B., Bonne A., Van Lith H., Van Zutphen B., Van Lith H., Van Zutphen B., Van Zutphen B., et al. Y chromosome transfer induces changes in blood pressure and blood lipids in SHR. Hypertension. 2001;37:1147–1152. PubMed
Lowell B.B., Shulman G.I., Shulman G.I. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–387. PubMed
Maassen J.A., Janssen G.M., Hart L.M.T., Janssen G.M., Hart L.M.T., Hart L.M.T. Molecular mechanisms of mitochondrial diabetes (MIDD) Ann. Med. 2005;37:213–221. PubMed
Mathews C.E., Berdanier C.D., Berdanier C.D. Noninsulin-dependent diabetes mellitus as a mitochondrial genomic disease. Proc. Soc. Exp. Biol. Med. 1998;219:97–108. PubMed
Mathews C.E., McGraw R.A., Dean R., Berdanier C.D., McGraw R.A., Dean R., Berdanier C.D., Dean R., Berdanier C.D., Berdanier C.D. Inheritance of a mitochondrial DNA defect and impaired glucose tolerance in BHE/Cdb rats. Diabetologia. 1999;42:35–40. PubMed
Muller P.Y., Janovjak H., Miserez A.R., Dobbie Z., Janovjak H., Miserez A.R., Dobbie Z., Miserez A.R., Dobbie Z., Dobbie Z.2002Processing of gene expression data generated by quantitative real time RT-PCR Biotechniques 321372–1379. . Erratum.33 514 PubMed
Nathan D.M., Davidson M.B., DeFronzo R.A., Heine R.J., Henry R.R., Pratley R., Zinman B., Davidson M.B., DeFronzo R.A., Heine R.J., Henry R.R., Pratley R., Zinman B., DeFronzo R.A., Heine R.J., Henry R.R., Pratley R., Zinman B., Heine R.J., Henry R.R., Pratley R., Zinman B., Henry R.R., Pratley R., Zinman B., Pratley R., Zinman B., Zinman B. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care. 2007;30:753–759. PubMed
Petersen K.F., Dufour S., Befroy D., Garcia R., Shulman G.I., Dufour S., Befroy D., Garcia R., Shulman G.I., Befroy D., Garcia R., Shulman G.I., Garcia R., Shulman G.I., Shulman G.I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 2004;350:664–671. PubMed PMC
Pravenec M., Zidek V., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Zidek V., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Simakova M., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Kren V., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Krenova D., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Horky K., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Jachymova M., Mikova B., Kazdova L., Aitman T.J., Mikova B., Kazdova L., Aitman T.J., Kazdova L., Aitman T.J., Aitman T.J., et al. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J. Clin. Invest. 1999;103:1651–1657. PubMed PMC
Pravenec M., Landa V., Zidek V., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Landa V., Zidek V., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Zidek V., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Musilova A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Kren V., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Kazdova L., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Aitman T.J., Glazier A.M., Ibrahimi A., Abumrad N.A., Glazier A.M., Ibrahimi A., Abumrad N.A., Ibrahimi A., Abumrad N.A., Abumrad N.A., et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat. Genet. 2001;27:156–158. PubMed
Pravenec M., Kazdova L., Landa V., Zidek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Kazdova L., Landa V., Zidek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Landa V., Zidek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Zidek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W., Jansa P., Wang J., Qi N., Kurtz T.W., Wang J., Qi N., Kurtz T.W., Qi N., Kurtz T.W., Kurtz T.W. Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat. J. Biol. Chem. 2003;278:45209–45215. PubMed
Rice P., Longden I., Bleasby A., Longden I., Bleasby A., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. PubMed
Saxena R., de Bakker P.I., Singer K., Mootha V., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., de Bakker P.I., Singer K., Mootha V., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Singer K., Mootha V., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Mootha V., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Burtt N., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Hirschhorn J.N., Gaudet D., Isomaa B., Daly M.J., Groop L., Gaudet D., Isomaa B., Daly M.J., Groop L., Isomaa B., Daly M.J., Groop L., Daly M.J., Groop L., Groop L., et al. Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am. J. Hum. Genet. 2006;79:54–61. PubMed PMC
Shulman G.I., Rothman D.L., Jue T., Stein P., DeFronzo R.A., Shulman R.G., Rothman D.L., Jue T., Stein P., DeFronzo R.A., Shulman R.G., Jue T., Stein P., DeFronzo R.A., Shulman R.G., Stein P., DeFronzo R.A., Shulman R.G., DeFronzo R.A., Shulman R.G., Shulman R.G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 1990;322:223–228. PubMed
Silver L. Mouse genetics: Concepts and applications. Oxford University Press; Oxford: 1995.
Sun F., Cui J., Gavras H., Schwartz F., Cui J., Gavras H., Schwartz F., Gavras H., Schwartz F., Schwartz F. A novel class of tests for the detection of mitochondrial DNA-mutation involvement in diseases. Am. J. Hum. Genet. 2003;72:1515–1526. PubMed PMC
Vrana A., Poledne R., Fabry P., Kazdova L., Poledne R., Fabry P., Kazdova L., Fabry P., Kazdova L., Kazdova L. Palmitate and glucose oxidation by diaphragm of rats with fructose-induced hypertriglyceridemia. Metabolism. 1978;27:885–888. PubMed
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005;39:359–407. PubMed PMC
Wilson F.H., Hariri A., Farhi A., Zhao H., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Hariri A., Farhi A., Zhao H., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Farhi A., Zhao H., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Zhao H., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Petersen K.F., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Toka H.R., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Nelson-Williams C., Raja K.M., Kashgarian M., Shulman G.I., Raja K.M., Kashgarian M., Shulman G.I., Kashgarian M., Shulman G.I., Shulman G.I., et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306:1190–1194. PubMed PMC
Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome
Recent advances in genetics of the spontaneously hypertensive rat