Recent advances in genetics of the spontaneously hypertensive rat
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
Howard Hughes Medical Institute - United States
PubMed
20425152
PubMed Central
PMC2821617
DOI
10.1007/s11906-009-0083-9
Knihovny.cz E-zdroje
- MeSH
- exprese genu MeSH
- inbrední kmeny potkanů genetika MeSH
- krysa rodu Rattus MeSH
- kvantitativní znak dědičný MeSH
- lokus kvantitativního znaku genetika MeSH
- mapování chromozomů MeSH
- mitochondriální DNA genetika MeSH
- potkani inbrední SHR genetika MeSH
- potkani transgenní MeSH
- technika přenosu genů MeSH
- transposasy MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- mitochondriální DNA MeSH
- transposasy MeSH
The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and associated metabolic disturbances. Multiple quantitative trait loci associated with hemodynamic and metabolic parameters have been mapped in the SHR. Recently, it has become possible to identify some of the specific quantitative trait gene (QTG) variants that underlie quantitative trait loci linked to complex cardiovascular and metabolic traits in SHR related strains. Recombinant inbred strains derived from SHR and Brown Norway progenitors, together with SHR congenic and transgenic strains, have proven useful for establishing the identity of several QTGs in SHR models. It is anticipated that the combined use of linkage analyses and gene expression profiles, together with the recently available genome sequences of both the SHR and Brown Norway strains and new methods for manipulating the rat genome, will soon accelerate progress in identifying QTGs for complex traits in SHR-related strains.
Zobrazit více v PubMed
Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322:881–888. doi: 10.1126/science.1156409. PubMed DOI PMC
Wellcome Trust Case Control Consortium Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature. 2007;447:661–678. doi: 10.1038/nature05911. PubMed DOI PMC
Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–676. doi: 10.1038/ng.361. PubMed DOI PMC
Levy D, Ehret GB, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–687. doi: 10.1038/ng.384. PubMed DOI PMC
Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456:18–21. doi: 10.1038/456018a. PubMed DOI
Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–753. doi: 10.1038/nature08494. PubMed DOI PMC
Wang Y, O’Connell JR, McArdle PF, et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106:226–231. doi: 10.1073/pnas.0808358106. PubMed DOI PMC
Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24:133–141. PubMed
Ji W, Foo JN, O’Roak BJ, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40:592–599. doi: 10.1038/ng.118. PubMed DOI PMC
Pravenec M, Zidek V, Simakova M, et al. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J Clin Invest. 1999;103:1651–1657. doi: 10.1172/JCI6691. PubMed DOI PMC
Pravenec M, Kurtz TW. Molecular genetics of experimental hypertension and the metabolic syndrome: from gene pathways to new therapies. Hypertension. 2007;49:941–952. doi: 10.1161/HYPERTENSIONAHA.107.086900. PubMed DOI
Rat Genome Database Web Site, Medical College of Wisconsin, Milwaukee, Wisconsin. Available at http://rgd.mcw.edu/.
Twigger SN, Pruitt KD, Fernández-Suárez XM, et al. What everybody should know about the rat genome and its online resources. Nat Genet. 2008;40:523–527. doi: 10.1038/ng0508-523. PubMed DOI PMC
Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298:2345–2349. doi: 10.1126/science.1076641. PubMed DOI
Aitman TJ, Gotoda T, Evans AL, et al. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet. 1997;16:197–201. doi: 10.1038/ng0697-197. PubMed DOI
Aitman TJ, Glazier AM, Wallace CA, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999;21:76–83. doi: 10.1038/5013. PubMed DOI
Pravenec M, Landa V, Zidek V, et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet. 2001;27:156–158. doi: 10.1038/84777. PubMed DOI
Pravenec M, Churchill PC, Churchill MC, et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet. 2008;40:952–954. doi: 10.1038/ng.164. PubMed DOI
Petretto E, Sarwar R, Grieve I, et al. Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat Genet. 2008;40:546–552. doi: 10.1038/ng.134. PubMed DOI PMC
Pravenec M, Kazdova L, Landa V, et al. Identification of mutated Srebf1 as a QTL influencing risk for hepatic steatosis in the spontaneously hypertensive rat. Hypertension. 2008;51:148–153. doi: 10.1161/HYPERTENSIONAHA.107.100743. PubMed DOI
Seda O, Liska F, Sedová L, et al. A 14-gene region of rat chromosome 8 in SHR-derived polydactylous congenic substrain affects muscle-specific insulin resistance, dyslipidaemia and visceral adiposity. Folia Biol (Praha) 2005;51:53–61. PubMed
Gopalakrishnan K, Kumarasamy S, Thangavel J, et al.: Alleles of a S.LEW congenic rat spanning 320.6 KB further increase the BP of the hypertensive Dahl S rat—Evidence for Rffl and/or two miRNAs as potential QTL effectors [abstract]. Presented at the Rat Genomics & Models meeting. Cold Spring Harbor, NY, USA; December 2–5, 2009.
Hubner N, Wallace CA, Zimdahl H, et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet. 2005;37:243–253. doi: 10.1038/ng1522. PubMed DOI
•• SHR Base: a SHR genomic resource. Available at http://shr.csc.mrc.ac.uk/index.cgi. Accessed December 2009. The first report of the full genome sequence of the SHR, including comparative analysis with the genome sequence of the Brown Norway (BN/Mcwi) rat.
Mátés L, Chuah MK, Belay E, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41:753–761. doi: 10.1038/ng.343. PubMed DOI
Geurts AM, Cost GJ, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325:433. doi: 10.1126/science.1172447. PubMed DOI PMC
Buehr M, Meek S, Blair K, et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008;135:1287–1298. doi: 10.1016/j.cell.2008.12.007. PubMed DOI
Pravenec M, Klír P, Kren V, et al. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens. 1989;7:217–221. doi: 10.1097/00004872-198903000-00008. PubMed DOI
Saar K, Beck A, Bihoreau MT, et al. SNP and haplotype mapping for genetic analysis in the rat. Nat Genet. 2008;40:560–566. doi: 10.1038/ng.124. PubMed DOI PMC
Guryev V, Saar K, Adamovic T, et al. Distribution and functional impact of DNA copy number variation in the rat. Nat Genet. 2008;40:538–545. doi: 10.1038/ng.141. PubMed DOI
GeneNetwork. University of Tennessee: http://www.genenetwork.org.
Wang J, Williams RW, Manly KF. WebQTL: web-based complex trait analysis. Neuroinformatics. 2003;1:299–308. doi: 10.1385/NI:1:4:299. PubMed DOI
Grieve IC, Dickens NJ, Pravenec M, et al. Genome-wide co-expression analysis in multiple tissues. PLoS One. 2008;3:e4033. doi: 10.1371/journal.pone.0004033. PubMed DOI PMC
Tabakoff B, Saba L, Printz M, et al. Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol. 2009;7:70. doi: 10.1186/1741-7007-7-70. PubMed DOI PMC
Petretto E, Mangion J, Dickens NJ, et al. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2006;2:e172. doi: 10.1371/journal.pgen.0020172. PubMed DOI PMC
Monti J, Fischer J, Paskas S, et al. Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet. 2008;40:529–537. doi: 10.1038/ng.129. PubMed DOI PMC
Abbott A. Return of the rat. Nature. 2009;460:788. doi: 10.1038/460788a. PubMed DOI
Gibbs RA, Weinstock GM, Metzker ML, et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428:493–521. doi: 10.1038/nature02426. PubMed DOI
Simonis M, de Bruijn E, Guryev V, et al.: Genomic and RNA analysis of recombinant inbred panel founder strain [abstract]. Presented at the Rat Genomics & Models meeting. Cold Spring Harbor, NY, USA; December 2–5, 2009.
Landa V, Zidek V, Pravenec M. Generation of rat “supersonic” congenic/conplastic strains using superovulation and embryo transfer. Methods Mol Biol. 2010;597:267–275. doi: 10.1007/978-1-60327-389-3_18. PubMed DOI
Mátés L, Landa V, Zidek V, et al.: Harnessing of the hyperactive Sleeping Beauty transposase, SB100X, for genome manipulation in rat [abstract]. Presented at the Rat Genomics & Models meeting. Cold Spring Harbor, NY, USA; December 2–5, 2009.
Dann CT, Alvarado AL, Hammer RE, et al. Heritable and stable gene knockdown in rats. Proc Natl Acad Sci U S A. 2006;103:11246–11251. doi: 10.1073/pnas.0604657103. PubMed DOI PMC
Pravenec M, Hyakukoku M, Houstek J, et al. Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res. 2007;17:1319–1326. doi: 10.1101/gr.6548207. PubMed DOI PMC
Aitman TJ, Critser JK, Cuppen E, et al. Progress and prospects in rat genetics: a community view. Nat Genet. 2008;40:516–522. doi: 10.1038/ng.147. PubMed DOI