Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM084104
NIGMS NIH HHS - United States
PubMed
33910563
PubMed Central
PMC8082845
DOI
10.1186/s12915-021-01017-0
PII: 10.1186/s12915-021-01017-0
Knihovny.cz E-zdroje
- Klíčová slova
- Fertility, Meiotic recombination, PRDM9, Rattus norvegicus,
- MeSH
- chromatin MeSH
- dvouřetězcové zlomy DNA MeSH
- fertilita genetika MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- krysa rodu Rattus MeSH
- meióza * genetika MeSH
- myši MeSH
- potkani inbrední SHR MeSH
- spermatogeneze genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chromatin MeSH
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč
BACKGROUND: Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS: We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS: We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
Zobrazit více v PubMed
Bolcun-Filas E, Schimenti JC. Genetics of meiosis and recombination in mice. Int Rev Cell Mol Biol. 2012;298:179–227. doi: 10.1016/B978-0-12-394309-5.00005-5. PubMed DOI
Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science. 2010;327(5967):836–840. doi: 10.1126/science.1183439. PubMed DOI PMC
Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science. 2010;327(5967):876–879. doi: 10.1126/science.1182363. PubMed DOI PMC
Parvanov ED, Petkov PM, Paigen K. Prdm9 controls activation of mammalian recombination hotspots. Science. 2010;327(5967):835. doi: 10.1126/science.1181495. PubMed DOI PMC
Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD. DNA recombination. Recombination initiation maps of individual human genomes Science. 2014;346(6211):1256442. PubMed PMC
Flachs P, Bhattacharyya T, Mihola O, Pialek J, Forejt J, Trachtulec Z. Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids. PLoS One. 2014;9(4):e95806. 10.1371/journal.pone.0095806. PubMed PMC
Flachs P, Mihola O, Simecek P, Gregorova S, Schimenti JC, Matsui Y, Baudat F, de Massy B, Pialek J, Forejt J, et al. Interallelic and intergenic incompatibilities of the Prdm9 (Hst1) gene in mouse hybrid sterility. PLoS Genet. 2012;8(11):e1003044. doi: 10.1371/journal.pgen.1003044. PubMed DOI PMC
Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science. 2009;323(5912):373–375. doi: 10.1126/science.1163601. PubMed DOI
Davies B, Hatton E, Altemose N, Hussin JG, Pratto F, Zhang G, Hinch AG, Moralli D, Biggs D, Diaz R, Preece C, Li R, Bitoun E, Brick K, Green CM, Camerini-Otero RD, Myers SR, Donnelly P. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature. 2016;530(7589):171–176. doi: 10.1038/nature16931. PubMed DOI PMC
Boulton A, Myers RS, Redfield RJ. The hotspot conversion paradox and the evolution of meiotic recombination. Proc Natl Acad Sci U S A. 1997;94(15):8058–8063. doi: 10.1073/pnas.94.15.8058. PubMed DOI PMC
Fairfield H, Gilbert GJ, Barter M, Corrigan RR, Curtain M, Ding Y, D'Ascenzo M, Gerhardt DJ, He C, Huang W, et al. Mutation discovery in mice by whole exome sequencing. Genome Biol. 2011;12:R86. 10.1186/gb-2011-12-9-r86. PubMed PMC
Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. 2005;438(7066):374–378. doi: 10.1038/nature04112. PubMed DOI
Weiss J, Hurley LA, Harris RM, Finlayson C, Tong M, Fisher LA, Moran JL, Beier DR, Mason C, Jameson JL. ENU mutagenesis in mice identifies candidate genes for hypogonadism. Mamm Genome. 2012;23(5-6):346–355. doi: 10.1007/s00335-011-9388-5. PubMed DOI PMC
Mihola O, Pratto F, Brick K, Linhartova E, Kobets T, Flachs P, Baker CL, Sedlacek R, Paigen K, Petkov PM, Camerini-Otero RD, Trachtulec Z. Histone methyltransferase PRDM9 is not essential for meiosis in male mice. Genome Res. 2019;29(7):1078–1086. doi: 10.1101/gr.244426.118. PubMed DOI PMC
Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV. Genetic recombination is directed away from functional genomic elements in mice. Nature. 2012;485(7400):642–645. doi: 10.1038/nature11089. PubMed DOI PMC
Baker Z, Schumer M, Haba Y, Bashkirova L, Holland C, Rosenthal GG, Przeworski M. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. Elife. 2017;6 10.7554/eLife.24133. PubMed PMC
Lam I, Keeney S. Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science. 2015;350(6263):932–937. doi: 10.1126/science.aad0814. PubMed DOI PMC
Singhal S, Leffler EM, Sannareddy K, Turner I, Venn O, Hooper DM, Strand AI, Li Q, Raney B, Balakrishnan CN, Griffith SC, McVean G, Przeworski M. Stable recombination hotspots in birds. Science. 2015;350(6263):928–932. doi: 10.1126/science.aad0843. PubMed DOI PMC
Auton A, Rui Li Y, Kidd J, Oliveira K, Nadel J, Holloway JK, Hayward JJ, Cohen PE, Greally JM, Wang J, Bustamante CD, Boyko AR. Genetic recombination is targeted towards gene promoter regions in dogs. PLoS Genet. 2013;9(12):e1003984. doi: 10.1371/journal.pgen.1003984. PubMed DOI PMC
Axelsson E, Webster MT, Ratnakumar A, Consortium L, Ponting CP, Lindblad-Toh K. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome. Genome Res. 2012;22(1):51–63. doi: 10.1101/gr.124123.111. PubMed DOI PMC
Berglund J, Quilez J, Arndt PF, Webster MT. Germline methylation patterns determine the distribution of recombination events in the dog genome. Genome Biol Evol. 2014;7(2):522–530. doi: 10.1093/gbe/evu282. PubMed DOI PMC
Munoz-Fuentes V, Di Rienzo A, Vila C. Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes. PLoS One. 2011;6(11):e25498. 10.1371/journal.pone.0025498. PubMed PMC
Narasimhan VM, Hunt KA, Mason D, Baker CL, Karczewski KJ, Barnes MR, Barnett AH, Bates C, Bellary S, Bockett NA, Giorda K, Griffiths CJ, Hemingway H, Jia Z, Kelly MA, Khawaja HA, Lek M, McCarthy S, McEachan R, ODonnell-Luria A, Paigen K, Parisinos CA, Sheridan E, Southgate L, Tee L, Thomas M, Xue Y, Schnall-Levin M, Petkov PM, Tyler-Smith C, Maher ER, Trembath RC, MacArthur DG, Wright J, Durbin R, van Heel DA. Health and population effects of rare gene knockouts in adult humans with related parents. Science. 2016;352(6284):474–477. doi: 10.1126/science.aac8624. PubMed DOI PMC
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493–521. doi: 10.1038/nature02426. PubMed DOI
Eram MS, Bustos SP, Lima-Fernandes E, Siarheyeva A, Senisterra G, Hajian T, Chau I, Duan S, Wu H, Dombrovski L, et al. Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein. J Biol Chem. 2014;289(17):12177–88. 10.1074/jbc.M113.523183. PubMed PMC
Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM, Paigen K. The meiotic recombination activator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLoS Genet. 2016;12(6):e1006146. doi: 10.1371/journal.pgen.1006146. PubMed DOI PMC
Wu H, Mathioudakis N, Diagouraga B, Dong A, Dombrovski L, Baudat F, Cusack S, de Massy B, Kadlec J. Molecular basis for the regulation of the H3K4 methyltransferase activity of PRDM9. Cell Rep. 2013;5(1):13–20. doi: 10.1016/j.celrep.2013.08.035. PubMed DOI
Atanur SS, Birol I, Guryev V, Hirst M, Hummel O, Morrissey C, Behmoaras J, Fernandez-Suarez XM, Johnson MD, McLaren WM, et al. The genome sequence of the spontaneously hypertensive rat: analysis and functional significance. Genome Res. 2010;20(6):791–803. 10.1101/gr.103499.109. PubMed PMC
Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198–236. doi: 10.1152/physrev.1972.52.1.198. PubMed DOI
Vendramini V, Sasso-Cerri E, Miraglia SM. Amifostine reduces the seminiferous epithelium damage in doxorubicin-treated prepubertal rats without improving the fertility status. Reprod Biol Endocrinol. 2010;8(1):3. doi: 10.1186/1477-7827-8-3. PubMed DOI PMC
Brilhante O, Okada FK, Sasso-Cerri E, Stumpp T, Miraglia SM. Late morfofunctional alterations of the Sertoli cell caused by doxorubicin administered to prepubertal rats. Reprod Biol Endocrinol. 2012;10(1):79. doi: 10.1186/1477-7827-10-79. PubMed DOI PMC
Deng W, Lin H: miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2002,2:819–830. 10.1016/s1534-5807(02)00165-x,%206. PubMed
Grivna ST, Pyhtila B, Lin H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci U S A. 2006;103(36):13415–13420. doi: 10.1073/pnas.0605506103. PubMed DOI PMC
Sun F, Fujiwara Y, Reinholdt LG, Hu J, Saxl RL, Baker CL, Petkov PM, Paigen K, Handel MA. Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis. Chromosoma. 2015;124(3):397–415. doi: 10.1007/s00412-015-0511-3. PubMed DOI PMC
Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952;55(4):548–573. doi: 10.1111/j.1749-6632.1952.tb26576.x. PubMed DOI
Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, Anastassiadis K, Stewart AF, Remenyi A, Turner JM, et al. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes Dev. 2012;26(9):958–973. doi: 10.1101/gad.187559.112. PubMed DOI PMC
Liu W, Wang L, Zhao W, Song G, Xu R, Wang G, Wang F, Li W, Lian J, Tian H, Wang X, Sun F. Phosphorylation of CDK2 at threonine 160 regulates meiotic pachytene and diplotene progression in mice. Dev Biol. 2014;392(1):108–116. doi: 10.1016/j.ydbio.2014.04.018. PubMed DOI
Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis. 2006;1:9. 10.1186/1750-1172-1-9. PubMed PMC
Smagulova F, Brick K, Pu Y, Camerini-Otero RD, Petukhova GV. The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev. 2016;30(3):266–280. doi: 10.1101/gad.270009.115. PubMed DOI PMC
Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature. 2011;472:375–8. 10.1038/nature09869. PubMed PMC
Dumont BL, Payseur BA. Evolution of the genomic recombination rate in murid rodents. Genetics. 2011;187(3):643–657. doi: 10.1534/genetics.110.123851. PubMed DOI PMC
Adler ID. Comparison of the duration of spermatogenesis between male rodents and humans. Mutat Res. 1996;352(1-2):169–172. 10.1016/0027-5107(95)00223-5. PubMed
Beaumont HM, Mandl AM. Quantitative and cytological study of oogonia and oocytes in the foetal and neonatal rat. Philos Trans R Soc Lond B Biol Sci. 1962;155(961):557-59. 10.1098/rspb.1962.0019
Borum K. Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res 1961;24(3):495–507. 10.1016/0014-4827(61)90449-9. PubMed
McClellan KA, Gosden R, Taketo T. Continuous loss of oocytes throughout meiotic prophase in the normal mouse ovary. Dev Biol. 2003;258(2):334–348. 10.1016/s0012-1606(03)00132-5. PubMed
Soares JM, Avelar GF, Franca LR. The seminiferous epithelium cycle and its duration in different breeds of dog (Canis familiaris) J Anat. 2009;215(4):462–471. doi: 10.1111/j.1469-7580.2009.01122.x. PubMed DOI PMC
Andersen AC, Simpson ME. The ovary and reproductive cycle of the dog (Beagle). Theriogenology 1974;1(1):39-42. 10.1016/0093-691X(74)90062-4.
Pravenec M, Kren V, Landa V, Mlejnek P, Musilova A, Silhavy J, Simakova M, Zidek V. Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res. 2014;63(Suppl 1):S1–S8. doi: 10.33549/physiolres.932622. PubMed DOI
Buard J, Barthes P, Grey C, de Massy B. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J. 2009;28(17):2616–2624. doi: 10.1038/emboj.2009.207. PubMed DOI PMC
Walker M, Billings T, Baker CL, Powers N, Tian H, Saxl RL, Choi K, Hibbs MA, Carter GW, Handel MA, Paigen K, Petkov PM. Affinity-seq detects genome-wide PRDM9 binding sites and reveals the impact of prior chromatin modifications on mammalian recombination hotspot usage. Epigenetics Chromatin. 2015;8(1):31. doi: 10.1186/s13072-015-0024-6. PubMed DOI PMC
Diagouraga B, Clement JAJ, Duret L, Kadlec J, de Massy B, Baudat F. PRDM9 methyltransferase activity is essential for meiotic DNA double-strand break formation at its binding sites. Mol Cell. 2018;69(5):853–865. doi: 10.1016/j.molcel.2018.01.033. PubMed DOI
Mihola O, Trachtulec Z. A mutation of the Prdm9 mouse hybrid sterility gene carried by a transgene. Folia Biol (Praha). 2017;63(1):27–30. Available at https://fb.cuni.cz/file/5834/fb2017a0005.pdf PubMed
Balcova M, Faltusova B, Gergelits V, Bhattacharyya T, Mihola O, Trachtulec Z, Knopf C, Fotopulosova V, Chvatalova I, Gregorova S, Forejt J. Hybrid sterility locus on chromosome X controls meiotic recombination rate in mouse. PLoS Genet. 2016;12(4):e1005906. doi: 10.1371/journal.pgen.1005906. PubMed DOI PMC
Bhattacharyya T, Gregorova S, Mihola O, Anger M, Sebestova J, Denny P, Simecek P, Forejt J. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc Natl Acad Sci U S A. 2013;110(6):E468–E477. doi: 10.1073/pnas.1219126110. PubMed DOI PMC
Bhattacharyya T, Reifova R, Gregorova S, Simecek P, Gergelits V, Mistrik M, Martincova I, Pialek J, Forejt J. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids. PLoS Genet. 2014;10(2):e1004088. doi: 10.1371/journal.pgen.1004088. PubMed DOI PMC
Baker CL, Kajita S, Walker M, Saxl RL, Raghupathy N, Choi K, Petkov PM, Paigen K. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination. PLoS Genet. 2015;11(1):e1004916. doi: 10.1371/journal.pgen.1004916. PubMed DOI PMC
Baker CL, Petkova P, Walker M, Flachs P, Mihola O, Trachtulec Z, Petkov PM, Paigen K. Multimer formation explains allelic suppression of PRDM9 recombination hotspots. PLoS Genet. 2015;11(9):e1005512. doi: 10.1371/journal.pgen.1005512. PubMed DOI PMC
Gregorova S, Gergelits V, Chvatalova I, Bhattacharyya T, Valiskova B, Fotopulosova V, Jansa P, Wiatrowska D, Forejt J. Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice. Elife. 2018;7 10.7554/eLife.34282. PubMed PMC
Raudsepp T, Chowdhary BP. The eutherian pseudoautosomal region. Cytogenet Genome Res. 2015;147(2-3):81–94. doi: 10.1159/000443157. PubMed DOI
Chen J, Cui X, Jia S, Luo D, Cao M, Zhang Y, Hu H, Huang K, Zhu Z, Hu W. Disruption of dmc1 produces abnormal sperm in medaka (Oryzias latipes) Sci Rep. 2016;6(1):30912. doi: 10.1038/srep30912. PubMed DOI PMC
Oka A, Mita A, Takada Y, Koseki H, Shiroishi T. Reproductive isolation in hybrid mice due to spermatogenesis defects at three meiotic stages. Genetics. 2010;186(1):339–351. doi: 10.1534/genetics.110.118976. PubMed DOI PMC
Widmayer SJ, Handel MA, Aylor DL. Age and genetic background modify hybrid male sterility in house mice. Genetics. 2020;216(2):585–597. doi: 10.1534/genetics.120.303474. PubMed DOI PMC
Kusari F, Mihola O, Schimenti JC, Trachtulec Z. Meiotic epigenetic factor PRDM9 impacts sperm quality of hybrid mice. Reproduction. 2020;160(1):53–64. doi: 10.1530/REP-19-0528. PubMed DOI
Mihola O, Kobets T, Krivankova K, Linhartova E, Gasic S, Schimenti JC, Trachtulec Z. Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints. Chromosoma. 2020;129(1):69–82. doi: 10.1007/s00412-019-00730-8. PubMed DOI
Albrechtova J, Albrecht T, Dureje L, Pallazola VA, Pialek J. Sperm morphology in two house mouse subspecies: do wild-derived strains and wild mice tell the same story? PLoS One. 2014;9(12):e115669. doi: 10.1371/journal.pone.0115669. PubMed DOI PMC
Turner LM, Harr B. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. Elife. 2014;3 10.7554/eLife.02504. PubMed PMC
Pravenec M, Kurtz TW. Recent advances in genetics of the spontaneously hypertensive rat. Curr Hypertens Rep. 2010;12(1):5–9. doi: 10.1007/s11906-009-0083-9. PubMed DOI PMC
Ivics Z, Mates L, Yau TY, Landa V, Zidek V, Bashir S, Hoffmann OI, Hiripi L, Garrels W, Kues WA, et al. Germline transgenesis in rodents by pronuclear microinjection of sleeping beauty transposons. Nat Protoc. 2014;9(4):773–793. doi: 10.1038/nprot.2014.008. PubMed DOI
Anderson LK, Reeves A, Webb LM, Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999;151(4):1569–79. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1460565/pdf/10101178.pdf PubMed PMC
Grey C, Clement JA, Buard J, Leblanc B, Gut I, Gut M, Duret L, de Massy B. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites. Genome Res. 2017;27(4):580–590. doi: 10.1101/gr.217240.116. PubMed DOI PMC
Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC
Brick K, Pratto F, Sun CY, Camerini-Otero RD, Petukhova G. Analysis of meiotic double-strand break initiation in mammals. Methods Enzymol. 2018;601:391–418. doi: 10.1016/bs.mie.2017.11.037. PubMed DOI PMC
Khil PP, Smagulova F, Brick KM, Camerini-Otero RD, Petukhova GV. Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA. Genome Res. 2012;22(5):957–965. doi: 10.1101/gr.130583.111. PubMed DOI PMC
Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated tools. Brief Bioinform. 2013;14(2):144–161. doi: 10.1093/bib/bbs038. PubMed DOI PMC
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–1191. doi: 10.1038/nprot.2009.97. PubMed DOI PMC
Mihola O, Landa V, Pratto F, Brick K, Smagulova F, Kobets T, Flachs P, Gergelits V, Tresnak K, Silhavy J, Mlejnek P, Camerini-Otero RD, Pravenec M, Galina P, Trachtulec Z. Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility. NCBI GEO https://identifiers.org/ncbi/geo:GSE163474. Accessed on 10 Apr 2021. PubMed PMC