Prdm9 deficiency of rat oocytes causes synapsis among non-homologous chromosomes and aneuploidy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35596034
DOI
10.1007/s00335-022-09954-z
PII: 10.1007/s00335-022-09954-z
Knihovny.cz E-zdroje
- MeSH
- aneuploidie * MeSH
- chromozomy MeSH
- histonlysin-N-methyltransferasa * genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- meióza * genetika MeSH
- oocyty metabolismus MeSH
- párování chromozomů * genetika MeSH
- potkani inbrední SHR MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa * MeSH
Aneuploidy (abnormal chromosome number) accompanies reduced ovarian function in humans and mice, but the reasons behind this concomitance remain underexplored. Some variants in the human gene encoding histone-3-lysine-4,36-trimethyltransferase PRDM9 are associated with aneuploidy, and other variants with ovarian function reduced by premature ovarian failure (POF), but no link between POF and aneuploidy has been revealed. SHR/OlaIpcv rat females lacking PRDM9 manifest POF-a reduced follicle number, litter size, and reproductive age. Here, we explored this model to test how POF relates to oocyte euploidy. The mutant rat females displayed increased oocyte aneuploidy and embryonic death of their offspring compared to controls. Because rat PRDM9 positions meiotic DNA breaks, we investigated the repair of these breaks. Fertile control rodents carry pachytene oocytes with synapsed homologous chromosomes and repaired breaks, while sterile Prdm9-deficient mice carry pachytene-like oocytes with many persisting breaks and asynapsed chromosomes. However, most PRDM9-lacking rat oocytes displayed a few persisting breaks and non-homologous synapsis (NHS). HORMAD2 protein serves as a barrier to sister-chromatid repair and a signal for the synapsis and DNA repair checkpoints. NHS but not asynapsis was associated with HORMAD2 levels similar to the levels on rat pachytene chromosomes with homologous synapsis. NHS was accompanied by crossing-over decreased below the minimum that is essential for euploidy. We argue that the increased mutant rat aneuploidy is due to NHS, which allows some oocytes to pass meiotic checkpoints without one crossing-over per chromosomal pair, leading to segregation errors, and thereby NHS links POF to aneuploidy.
Zobrazit více v PubMed
Agca Y (2019) In vitro culture of rat preimplantation embryos. In: Herrick J (ed) Comparative embryo culture. Methods in molecular biology, vol 2006. Humana, New York, pp 33–43. https://doi.org/10.1007/978-1-4939-9566-0_3 DOI
Almanzar DE, Gordon SG, Rog O (2021) Meiotic sister chromatid exchanges are rare in C. elegans. Curr Biol 31:1499-1507.e3. https://doi.org/10.1016/j.cub.2020.11.018 PubMed DOI PMC
Andersen A-MN, Wohlfahrt J, Christens P, Olsen J, Melbye M (2000) Maternal age and fetal loss: population based register linkage study. BMJ 320:1708–1712. https://doi.org/10.1136/BMJ.320.7251.1708 DOI PMC
Ashley T, Cacheiro NLA (1990) Correlation between meiotic behavior and breakpoints with respect to G-bands in two X-4 mouse translocations: T(X;4)7R1 and T(X;4)8R1. Cytogenet Genome Res 53:178–184. https://doi.org/10.1159/000132926 DOI
Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc R Soc London Ser B 158:417–433. https://doi.org/10.1098/RSPB.1963.0055 DOI
Balcova M, Faltusova B, Gergelits V, Bhattacharyya T, Mihola O, Trachtulec Z, Knopf C, Fotopulosova V, Chvatalova I, Gregorova S, Forejt J (2016) Hybrid sterility locus on chromosome X controls meiotic recombination rate in mouse. PLoS Genet 12:e1005906. https://doi.org/10.1371/journal.pgen.1005906 PubMed DOI PMC
Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–840. https://doi.org/10.1126/science.1183439 PubMed DOI
Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998. https://doi.org/10.1016/S1097-2765(00)00098-8 PubMed DOI
Beaumont HM, Mandl AM (1962) A quantitative and cytological study of oogonia and oocytes in the foetal and neonatal rat. Proc R Soc London Ser B 155:557–579. https://doi.org/10.1098/rspb.1962.0019 DOI
Bishop DK, Zickler D (2004) Early decision: meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15. https://doi.org/10.1016/S0092-8674(04)00297-1 PubMed DOI
Bolcun-Filas E, Schimenti JC (2012) Genetics of meiosis and recombination in mice. Int Rev Cell Mol Biol 298:179–227. https://doi.org/10.1016/B978-0-12-394309-5.00005-5 PubMed DOI
Borum K (1961) Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res 24:495–507. https://doi.org/10.1016/0014-4827(61)90449-9 PubMed DOI
Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV (2012) Genetic recombination is directed away from functional genomic elements in mice. Nature 485:642–645. https://doi.org/10.1038/nature11089 PubMed DOI PMC
Chernus JM, Allen EG, Zeng Z, Hoffman ER, Hassold TJ, Feingold E, Sherman SL (2019) A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21. PLoS Genet 15:e1008414. https://doi.org/10.1371/journal.pgen.1008414 PubMed DOI PMC
Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA (2010) Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol 20:1522–1528. https://doi.org/10.1016/J.CUB.2010.06.069 PubMed DOI PMC
Chiang T, Schultz RM, Lampson MA (2012) Meiotic origins of maternal age-related aneuploidy. Biol Reprod 86:1–7. https://doi.org/10.1095/biolreprod.111.094367 PubMed DOI
Coulam CB, Adamson SC, Annegers JF (1986) Incidence of premature ovarian failure. Obstet Gynecol 67:604–606. https://doi.org/10.1097/00006254-198742030-00020 PubMed DOI
de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, te Riele H (1999) Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev 13:523–531. https://doi.org/10.1101/gad.13.5.523 PubMed DOI PMC
Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, Jasin M (2005) Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA 102:737–742. https://doi.org/10.1073/pnas.0406212102 PubMed DOI PMC
Diagouraga B, Clément JAJ, Duret L, Kadlec J, de Massy B, Baudat F (2018) PRDM9 methyltransferase activity is essential for meiotic dna double-strand break formation at its binding sites. Mol Cell 69:853-865.e6. https://doi.org/10.1016/j.molcel.2018.01.033 PubMed DOI
Dresser ME, Ewing DJ, Harwell SN, Coody D, Conrad MN (1994) Nonhomologous synapsis and reduced crossing over in a heterozygous paracentric inversion in Saccharomyces cerevisiae. Genetics 138:633–647. https://doi.org/10.1093/genetics/138.3.633 PubMed DOI PMC
Flachs P, Mihola O, Šimeček P, Gregorová S, Schimenti JC, Matsui Y, Baudat F, de Massy B, Piálek J, Forejt J, Trachtulec Z (2012) Interallelic and intergenic incompatibilities of the Prdm9 (Hst1) gene in mouse hybrid sterility. PLoS Genet 8:e1003044. https://doi.org/10.1371/journal.pgen.1003044 PubMed DOI PMC
Flachs P, Bhattacharyya T, Mihola O, Piálek J, Forejt J, Trachtule Z (2014) Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids. PLoS ONE 9:e95806. https://doi.org/10.1371/journal.pone.0095806 PubMed DOI PMC
Forejt J, Jansa P, Parvanov E (2021) Hybrid sterility genes in mice (Mus musculus): a peculiar case of PRDM9 incompatibility. Trends Genet 37:1095–1108. https://doi.org/10.1016/J.TIG.2021.06.008 PubMed DOI
Fu X, Cheng J, Hou Y, Zhu S (2014) The association between the oocyte pool and aneuploidy: a comparative study of the reproductive potential of young and aged mice. J Assist Reprod Genet 31:323–331. https://doi.org/10.1007/s10815-013-0160-5 PubMed DOI
Grey C, Barthès P, Friec G, Langa F, Baudat F, de Massy B (2011) Mouse Prdm9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination. PLoS Biol 9:e1001176. https://doi.org/10.1371/journal.pbio.1001176 PubMed DOI PMC
Haadsma ML, Mooij TM, Groen H, Burger CW, Lambalk CB, Broekmans FJM, Van Leeuwen FE, Bouman K, Hoek A (2010) A reduced size of the ovarian follicle pool is associated with an increased risk of a trisomic pregnancy in IVF-treated women. Hum Reprod 25:552–558. https://doi.org/10.1093/humrep/dep404 PubMed DOI
Hassold T, Hunt P (2001) To err (meiotically) is human: The genesis of human aneuploidy. Nat Rev Genet 2:280–291. https://doi.org/10.1038/35066065 PubMed DOI
Hayashi K, Yoshida K, Matsui Y (2005) A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–378. https://doi.org/10.1038/nature04112 PubMed DOI
Huang C, Guo T, Qin Y (2021) Meiotic recombination defects and premature ovarian insufficiency. Front Cell Dev Biol 9:652407. https://doi.org/10.3389/fcell.2021.652407 PubMed DOI PMC
Jacobs PA (1992) The chromosome complement of human gametes. Oxf Rev Reprod Biol 14:47–72 PubMed
Jagarlamudi K, Reddy P, Adhikari D, Liu K (2010) Genetically modified mouse models for premature ovarian failure (POF). Mol Cell Endocrinol 315:1–10. https://doi.org/10.1016/j.mce.2009.07.016 PubMed DOI
Kline J, Kinney A, Levin B, Warburton D (2000) Trisomic pregnancy and earlier age at menopause. Am J Hum Genet 67:395–404. https://doi.org/10.1086/303009 PubMed DOI PMC
Kusari F, Mihola O, Schimenti JC, Trachtulec Z (2020) Meiotic epigenetic factor PRDM9 impacts sperm quality of hybrid mice. Reproduction 160:53–64. https://doi.org/10.1530/REP-19-0528 PubMed DOI
Lane S, Kauppi L (2019) Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell Mol Life Sci 76:1135–1150. https://doi.org/10.1007/s00018-018-2986-6 PubMed DOI
Lee EH, Han SE, Park MJ, Kim HJ, Kim HG, Kim CW, Joo BS, Lee KS (2018) Establishment of effective mouse model of premature ovarian failure considering treatment duration of anticancer drugs and natural recovery time. J Menopausal Med 24:196–203. https://doi.org/10.6118/jmm.2018.24.3.196 PubMed DOI PMC
LeMaire-Adkins R, Radke K, Hunt PA (1997) Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 139:1611–1619. https://doi.org/10.1083/jcb.139.7.1611 PubMed DOI PMC
Liu H, Gordon SG, Rog O (2021) Heterologous synapsis in C. elegans is regulated by meiotic double-strand breaks and crossovers. Chromosoma 130:237–250. https://doi.org/10.1007/S00412-021-00763-Y PubMed DOI
Liu L, Keefe DL (2008) Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod Biomed Online 16:103–112. https://doi.org/10.1016/S1472-6483(10)60562-7 PubMed DOI
Liu W, Wang L, Zhao W, Song G, Xu R, Wang G, Wang F, Li W, Lian J, Tian H, Wang X, Sun F (2014) Phosphorylation of CDK2 at threonine 160 regulates meiotic pachytene and diplotene progression in mice. Dev Biol 392:108–116. https://doi.org/10.1016/j.ydbio.2014.04.018 PubMed DOI
Marangos P, Stevense M, Niaka K, Lagoudaki M, Nabti I, Jessberger R, Carroll J (2015) DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nat Commun 6:8706. https://doi.org/10.1038/ncomms9706 PubMed DOI
McGee EA, Hsueh AJW (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214. https://doi.org/10.1210/edrv.21.2.0394 PubMed DOI
Mihola O, Landa V, Pratto F, Brick K, Kobets T, Kusari F, Gasic S, Smagulova F, Grey C, Flachs P, Gergelits V, Tresnak K, Silhavy J, Mlejnek P, Camerini-Otero RD, Pravenec M, Petukhova GV, Trachtulec Z (2021) Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility. BMC Biol 19:86. https://doi.org/10.1186/s12915-021-01017-0 PubMed DOI PMC
Mihola O, Pratto F, Brick K, Linhartova E, Kobets T, Flachs P, Baker CL, Sedlacek R, Paigen K, Petkov PM, Daniel Camerini-Otero R, Trachtulec Z (2019) Histone methyltransferase PRDM9 is not essential for meiosis in male mice. Genome Res 29:1078–1086. https://doi.org/10.1101/gr.244426.118 PubMed DOI PMC
Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J (2009) A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323:373–375. https://doi.org/10.1126/science.1163601 PubMed DOI
Moses MJ, Poorman PA, Roderick TH, Davisson MT (1982) Synaptonemal complex analysis of mouse chromosomal rearrangements - IV. Synapsis and synaptic adjustment in two paracentric inversions. Chromosoma 84:457–474. https://doi.org/10.1007/BF00292848 PubMed DOI
Muñoz-Fuentes V, Rienzo A, Vilà C (2011) Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes. PLoS ONE 6:e25498. https://doi.org/10.1371/journal.pone.0025498 PubMed DOI PMC
Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–879. https://doi.org/10.1126/science.1182363 PubMed DOI
Narasimhan VM, Hunt KA, Mason D, Baker CL, Karczewski KJ, Barnes MR, Barnett AH, Bates C, Bellary S, Bockett NA et al (2016) Health and population effects of rare gene knockouts in adult humans with related parents. Science 352:474–477. https://doi.org/10.1126/science.aac8624 PubMed DOI PMC
Oliver TR, Middlebrooks C, Harden A, Scott N, Johnson B, Jones J, Walker C, Wilkerson C, Saffold SH, Akinseye A, Smith T, Feingold E, Sherman SL (2016) Variation in the zinc finger of PRDM9 is associated with the absence of recombination along nondisjoined chromosomes 21 of maternal origin. J Down Syndr Chromosome Abnorm 2:115. https://doi.org/10.4172/2472-1115.1000115 DOI
Park HR, Park JE, Kim JH, Shin H, Yu SH, Son S, Yi G, Lee SS, Kim HH, Huh JH (2020) Meiotic chromosome stability and suppression of crossover between non-homologous chromosomes in xBrassicoraphanus, an intergeneric allotetraploid derived from a cross between Brassica rapa and Raphanus sativus. Front Plant Sci 11:851. https://doi.org/10.3389/fpls.2020.00851 PubMed DOI PMC
Parvanov ED, Paigen K, Petkov PM (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 372:835. https://doi.org/10.1126/science.1181495 DOI
Petukhova GV, Romanienko PJ, Camerini-Otero RD (2003) The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev Cell 5:927–936. https://doi.org/10.1016/S1534-5807(03)00369-1 PubMed DOI
Powers N, Dumont B, Emori C, Lawal RA, Brunton C, Paigen K, Handel MA, Bolcun-Filas E, Petkov P, Bhattacharyya T (2020) Sexual dimorphism in the meiotic requirement for PRDM9: a mammalian evolutionary safeguard. Sci Adv 6:eabb6606. https://doi.org/10.1126/sciadv.abb6606 PubMed DOI PMC
Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM, Paigen K (2016) The meiotic recombination activator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLoS Genet 12:e1006146. https://doi.org/10.1371/journal.pgen.1006146 PubMed DOI PMC
Richards JS, Hedin L (1988) Molecular aspects of hormone action in ovarian follicular development, ovulation, and luteinization. Annu Rev Physiol 50:441–463. https://doi.org/10.1146/annurev.ph.50.030188.002301 PubMed DOI
Rinaldi VD, Bolcun-Filas E, Kogo H, Kurahashi H, Schimenti JC (2017) The DNA damage checkpoint eliminates mouse oocytes with chromosome synapsis failure. Mol Cell 67:1026-1036.e2. https://doi.org/10.1016/j.molcel.2017.07.027 PubMed DOI PMC
Saadallah N, Hultén M (1986) EM investigations of surface spread synaptonemal complexes in a human male carrier of a pericentric inversion inv(13)(p12q14): the role of heterosynapsis for spermatocyte survival. Ann Hum Genet 50:369–383. https://doi.org/10.1111/J.1469-1809.1986.TB01758.X PubMed DOI
Sengupta P (2013) The laboratory rat: Relating its age with human’s. Int J Prev Med 4:624–630 PubMed PMC
Singh P, Fragoza R, Blengini CS, Tran TN, Pannafino G, Al-Sweel N, Schimenti KJ, Schindler K, Alani EA, Yu H, Schimenti JC (2021) Human MLH1/3 variants causing aneuploidy, pregnancy loss, and premature reproductive aging. Nat Commun 12:5005. https://doi.org/10.1038/s41467-021-25028-1 PubMed DOI PMC
Speed RM (1982) Meiosis in the foetal mouse ovary - I. An analysis at the light microscope level using surface-spreading. Chromosoma 85:427–437. https://doi.org/10.1007/BF00330366 PubMed DOI
Spruce C, Dlamini S, Ananda G, Bronkema N, Tian H, Paigen K, Carter GW, Baker CL (2020) HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots. Genes Dev 34:398–412. https://doi.org/10.1101/gad.333542.119 PubMed DOI PMC
Sun F, Fujiwara Y, Reinholdt LG, Hu J, Saxl RL, Baker CL, Petkov PM, Paigen K, Handel MA (2015) Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis. Chromosoma 124:397–415. https://doi.org/10.1007/S00412-015-0511-3 PubMed DOI PMC
Touati SA, Wassmann K (2016) How oocytes try to get it right: spindle checkpoint control in meiosis. Chromosoma 125:321–335. https://doi.org/10.1007/s00412-015-0536-7 PubMed DOI
Wang Y, Guo T, Ke H, Zhang Q, Li S, Luo W, Qin Y (2021) Pathogenic variants of meiotic double strand break (DSB) formation genes PRDM9 and ANKRD31 in premature ovarian insufficiency. Genet Med 23:2309–2315. https://doi.org/10.1038/s41436-021-01266-y PubMed DOI PMC
Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, Anastassiadis K, Francis Stewart A, Reményi A, Turner JMA, Tóth A (2012) Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes Dev 26:958–973. https://doi.org/10.1101/gad.187559.112 PubMed DOI PMC
Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, Eckmann CR, Cooke HJ, Jasin M, Keeney S, McKay MJ, Toth A (2009) Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet 5:e1000702. https://doi.org/10.1371/journal.pgen.1000702 PubMed DOI PMC
Woods A, Sherwin T, Sasse R, MacRae TH, Baines AJ, Gull K (1989) Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci 93:491–500 PubMed DOI
Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T (1998) The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1:707–718. https://doi.org/10.1016/S1097-2765(00)80070-2 PubMed DOI
Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Höög C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–1118. https://doi.org/10.1126/science.1070594 PubMed DOI
Zuccotti M, Merico V, Cecconi S, Redi CA, Garagna S (2011) What does it take to make a developmentally competent mammalian egg? Hum Reprod Update 17:525–540. https://doi.org/10.1093/humupd/dmr009 PubMed DOI