Turnover of multiple sex chromosomes in Harttia catfish (Siluriformes, Loricariidae): a glimpse from whole chromosome painting

. 2023 ; 14 () : 1226222. [epub] 20230728

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37576550

The remarkable fish biodiversity encompasses also great sex chromosome variability. Harttia catfish belong to Neotropical models for karyotype and sex chromosome research. Some species possess one of the three male-heterogametic sex chromosome systems, XY, X1X2Y or XY1Y2, while other members of the genus have yet uncharacterized modes of sex determination. Particularly the XY1Y2 multiple sex chromosome system shows a relatively low incidence among vertebrates, and it has not been yet thoroughly investigated. Previous research suggested two independent X-autosome fusions in Harttia which led to the emergence of XY1Y2 sex chromosome system in three of its species. In this study, we investigated evolutionary trajectories of synteny blocks involved in this XY1Y2 system by probing six Harttia species with whole chromosome painting (WCP) probes derived from the X (HCA-X) and the chromosome 9 (HCA-9) of H. carvalhoi. We found that both painting probes hybridize to two distinct chromosome pairs in Amazonian species, whereas the HCA-9 probe paints three chromosome pairs in H. guianensis, endemic to Guyanese drainages. These findings demonstrate distinct evolutionary fates of mapped synteny blocks and thereby elevated karyotype dynamics in Harttia among the three evolutionary clades.

Zobrazit více v PubMed

Albert J. S., Tagliacollo V. A., Dagosta F. (2020). Diversification of Neotropical freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 51, 27–53. 10.1146/annurev-ecolsys-011620-031032 DOI

Araya-Jaime C., Mateussi N. T. B., Utsunomia R., Costa-Silva G. J., Oliveira C., Foresti F. (2017). ZZ/Z0: The new system of sex chromosomes in Eigenmannia aff. Trilineata (Teleostei: Gymnotiformes: Sternopygidae) characterized by molecular cytogenetics and DNA barcoding. Zebrafish 14 (5), 464–470. 10.1089/zeb.2017.1422 PubMed DOI

Artoni R. F., Bertollo L. A. C. (2001). Trends in the karyotype evolution of Loricariidae fish (Siluriformes). Hereditas 134 (3), 201–210. 10.1111/j.1601-5223.2001.00201.x PubMed DOI

Bellafronte E., Margarido V. P., Moreira-Filho O. (2005). Cytotaxonomy of Parodon nasus and Parodon tortuosus (Pisces, Characiformes). A case of synonymy confirmed by cytogenetic analyses. Genet. Mol. Biol. 28, 710–716. 10.1590/S1415-47572005000500010 DOI

Bertollo L. A. C., Cioffi M. B., Moreira-Filho O. (2015). “Direct chromosome preparation from freshwater teleost fishes,” in Fish cytogenetic techniques. Editors Ozouf-Costaz C., Pisano E., Foresti F., Almeida-Toledo L. F. (Boca Raton, FL: CRC Press; ), 31–36.

Blanco D. R., Vicari M. R., Lui R. L., Bertollo L. A. C., Traldi J. B., Moreira-Filho O. (2013). The role of the Robertsonian rearrangements in the origin of the XX/XY1Y2 sex chromosome system and in the chromosomal differentiation in Harttia species (Siluriformes, Loricariidae). Rev. Fish. Biol. Fish. 23, 127–134. 10.1007/s11160-012-9283-5 DOI

Blanco D. R., Vicari M. R., Lui R. L., Traldi J. B., Bueno V., Martinez J. D. F., et al. (2017). Karyotype diversity and evolutionary trends in armored catfish species of the genus Harttia (Siluriformes: Loricariidae). Zebrafish 14 (2), 169–176. 10.1089/zeb.2016.1377 PubMed DOI

Caldas L., Cherobim A. M., Langeani F. (2022). A new species of Harttia from the rio São Francisco basin (Siluriformes: Loricariidae). Neotrop. Ichthyol. 20 (4), e220051. 10.1590/1982-0224-2022-0051 DOI

Centofante L., Bertollo L. A. C., Moreira-Filho O. (2006). Cytogenetic characterization and description of an XX/XY1Y2 sex chromosome system in catfish Harttia carvalhoi (Siluriformes, Loricariidae). Cytogenet. Genome Res. 112 (3-4), 320–324. 10.1159/000089887 PubMed DOI

Cherobim A. M. (2022). Phylogenetic analysis of Harttia Steindachner, 1877 (Siluriformes: Loricariidae: Loricariinae). [PhD Thesis]. [São José do Rio Preto (SP)]: Universidade Estadual Paulista.

Cioffi M. B., Moreira-Filho O., Ráb P., Sember A., Molina W. F., Bertollo L. A. C. (2018). Conventional cytogenetic approaches—useful and indispensable tools in discovering fish biodiversity. Curr. Genet. Med. Rep. 6, 176–186. 10.1007/s40142-018-0148-7 DOI

Cioffi M. B., Yano C. F., Sember A., Bertollo L. A. C. (2017). Chromosomal evolution in lower vertebrates: Sex chromosomes in neotropical fishes. Genes 8 (10), 258. 10.3390/genes8100258 PubMed DOI PMC

Covain R., Fisch-Muller S., Oliveira C., Mol J. H., Montoya-Burgos J. I., Dray S. (2016). Molecular phylogeny of the highly diversified catfish subfamily Loricariinae (Siluriformes, Loricariidae) reveals incongruences with morphological classification. Mol. Phylogenet. Evol. 94, 492–517. 10.1016/j.ympev.2015.10.018 PubMed DOI

de Araújo L., Ramos L. I., Vieira M. M. D. R., Oliveira A. V. D., Portela-Castro A. L. D. B., Borin-Carvalho L. A., et al. (2023). Cytogenetic and molecular characterization of Eigenmannia aff. desantanai (gymnotiformes: Sternopygidae): A first report of system of sex chromosomes ZW1W2/ZZ in Gymnotiformes. Zebrafish 20 (2), 77–85. 10.1089/zeb.2022.0059 PubMed DOI

de Paula G. B., Gavazzoni M., Zawadzki C. H., Fernandes C. A., Portela-Castro A. L., Lui R. L., et al. (2022). Identification of cryptic species in allopatric populations of Hypostomus tietensis (Siluriformes: Loricariidae) through cytogenetics analyses. Neotrop. Ichthyol. 20 (2), e210158. 10.1590/1982-0224-2021-0158 DOI

de Souza F. H. S., Sassi F. M. C., Ferreira P. H. N., Bertollo L. A. C., Ezaz T., Liehr T., et al. (2022). Integrating cytogenetics and population genomics: Allopatry and neo-sex chromosomes may have shaped the genetic divergence in the Erythrinus erythrinus species complex (Teleostei, Characiformes). Biology 11, 315. 10.3390/biology11020315 PubMed DOI PMC

Deon G. A., Glugoski L., Hatanaka T., Sassi F. M. C., Nogaroto V., Bertollo L. A. C., et al. (2022a). Evolutionary breakpoint regions and chromosomal remodeling in Harttia (Siluriformes: Loricariidae) species diversification. Genet. Mol. Biol. 45 (2), e20210170. 10.1590/1678-4685-GMB-2021-0170 PubMed DOI PMC

Deon G. A., Glugoski L., Sassi F. M. C., Hatanaka T., Nogaroto V., Bertollo L. A. C., et al. (2022b). Chromosomal rearrangements and origin of the multiple XX/XY1Y2 sex chromosome system in Harttia species (Siluriformes: Loricariidae). Front. Genet. 13, 877522. 10.3389/fgene.2022.877522 PubMed DOI PMC

Deon G. A., Glugoski L., Vicari M. R., Nogaroto V., Sassi F. M. C., Cioffi M. B., et al. (2020). Highly rearranged karyotypes and multiple sex chromosome systems in armored catfishes from the genus Harttia (Teleostei, Siluriformes). Genes 11 (11), 1366. 10.3390/genes11111366 PubMed DOI PMC

Devlin R. H., Nagahama Y. (2002). Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 208 (3–4), 191–364. 10.1016/S0044-8486(02)00057-1 DOI

El Taher A., Ronco F., Matschiner M., Salzburger W., Böhne A. (2021). Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Sci. Adv. 7 (36), eabe8215. 10.1126/sciadv.abe8215 PubMed DOI PMC

Ferchaud A. L., Mérot C., Normandeau E., Ragoussis J., Babin C., Djambazian H., et al. (2022). Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland halibut (Reinhardtius hippoglossoides). G3 (Bethesda) 12 (1), jkab376. 10.1093/g3journal/jkab376 PubMed DOI PMC

Fricke R., Eschmeyer W. N., Van der Laan R. (2023). ESCHMEYER'S catalog of fishes: GENERA, species, references . http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (Accessed April 15, 2023).

Gavazzoni M., Pavanelli C. S., Graça W. J., De Oliveira E. A., Moreira-Filho O., Margarido V. P. (2023). Species delimitation in Psalidodon fasciatus (Cuvier, 1819) complex (Teleostei: Characidae) from three hydrographic basins. Biol. J. Linn. Soc. 138 (1), 51–67. 10.1093/biolinnean/blac139 DOI

Giuliano-Caetano L. (1998). Polimorfismo cromossômico Robertsoniano em populações de Rineloricaria latirostris (Pisces, Loricariinae). [Ph.D Thesis]. [São Carlos (SP)]: Universidade Federal de São Carlos.

Glugoski L., Deon G., Schott S., Vicari M. R., Nogaroto V., Moreira-Filho O. (2020). Comparative cytogenetic analyses in ancistrus species (Siluriformes: Loricariidae). Neotrop. Ichthyol. 18 (2), e200013. 10.1590/1982-0224-2020-0013 DOI

Glugoski L., Giuliano-Caetano L., Moreira-Filho O., Vicari M. R., Nogaroto V. (2018). Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene 650, 49–54. 10.1016/j.gene.2018.01.099 PubMed DOI

Godwin J., Roberts R. (2018). “Environmental and genetic sex determining mechanisms in fishes,” in Transitions between sexual systems. Editor Leonard J. (Cham: Springer; ), 311–344. 10.1007/978-3-319-94139-4_11 DOI

Guiguen Y., Fostier A., Herpin A. (2019). “Sex determination and differentiation in fish: Genetic, genomic, and endocrine aspects,” in Sex control in aquaculture. Editors Wang H. P., Piferrer F., Chen S. L. (Hoboken: John Wiley & Sons; ), 35–63. 10.1002/9781119127291.ch2 DOI

Kavalco K. F., Pazza R., Bertollo L. A. C., Moreira-Filho O. (2005). Karyotypic diversity and evolution of Loricariidae (Pisces, Siluriformes). Heredity 94 (2), 180–186. 10.1038/sj.hdy.6800595 PubMed DOI

King M. (1993). Species evolution: The role of chromosome change. Cambridge: Cambridge University Press.

Krysanov E., Demidova T. (2018). Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes). Comp. Cytogenet. 12 (3), 387–402. 10.3897/CompCytogen.v12i3.25092 PubMed DOI PMC

Lande R. (1977). The influence of the mating system on the maintenance of genetic variability in polygenic characters. Genetics 86 (2), 485–498. 10.1093/genetics/86.2.485 PubMed DOI PMC

Londoño-Burbano A., Reis R. E. (2021). A combined molecular and morphological phylogeny of the Loricariinae (Siluriformes: Loricariidae), with emphasis on the Harttiini and Farlowellini. PloS One 16 (3), 0247747. 10.1371/journal.pone.0247747 PubMed DOI PMC

Marajó L., Viana P. F., Ferreira A. M. V., Py‐Daniel L. H. R., Cioffi M. B., Sember A., et al. (2023). Chromosomal rearrangements and the first indication of an ♀X1X1X2X2/♂X1X2Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). J. Fish. Biol. 102 (2), 443–454. 10.1111/jfb.15275 PubMed DOI

Meisel R. P. (2022). Ecology and the evolution of sex chromosomes. J. Evol. Biol. 35 (12), 1601–1618. 10.1111/jeb.14074 PubMed DOI

Nirchio M., Oliveira C., Cioffi M. B., Sassi F. M. C., Valdiviezo J., Paim F. G., et al. (2023). Occurrence of sex chromosomes in fish of the genus Ancistrus with a new description of multiple sex chromosomes in the Ecuadorian endemic Ancistrus clementinae (Loricariidae). Genes 14 (2), 306. 10.3390/genes14020306 PubMed DOI PMC

Novák J., Hofmann J., Hohl D., Magalhães A. L. B., Patoka J. (2022). Enigmatic armoured catfishes (Siluriformes: Callichthyidae and Loricariidae) in ornamental aquaculture: A new insight into neotropical fish diversity. Aquaculture 547, 737460. 10.1016/j.aquaculture.2021.737460 DOI

Oyakawa O. T., Fichberg I., Py-Daniel L. R. (2018). Three new species of Harttia (Loricariidae: Loricariinae) from serra do Cachimbo, rio Xingu basin, Pará, Northern Brazil. Zootaxa 4387 (1), 75–90. 10.11646/zootaxa.4387.1.3 PubMed DOI

Pennell M. W., Kirkpatrick M., Otto S. P., Vamosi J. C., Peichel C. L., Valenzuela N., et al. (2015). Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 11 (5), e1005237. 10.1371/journal.pgen.1005237 PubMed DOI PMC

Porto F. E., Gindri B. S., Vieira M. M. R., Borin L. A., Portela-Castro A. L. B., Martins-Santos I. C. (2014). Polymorphisms of the nucleolus organizing regions in Loricaria cataphracta (Siluriformes, Loricariidae) of the upper Paraguay River basin indicate an association with transposable elements. Genet. Mol. Res. 13, 1627–1634. 10.4238/2014.March.12.15 PubMed DOI

Primo C. C., Glugoski L., Almeida M. C., Zawadski C. H., Moreira-Filho O., Vicari M. R., et al. (2017). Mechanisms of chromosomal diversification in species of Rineloricaria (Actinopterygii: Siluriformes: Loricariidae). Zebrafish 14 (2), 161–168. 10.1089/zeb.2016.1386 PubMed DOI

Rocha-Reis D. A., Brandão K. O., Almeida-Toledo L. F., Pasa R., Kavalco K. F. (2018). The persevering cytotaxonomy: Discovery of a unique XX/XY sex chromosome system in catfishes suggests the existence of a new, endemic and rare species. Cytogenet. Genome Res. 156, 45–55. 10.1159/000492959 PubMed DOI

Rodrigues R. M. (2010). Estudos cromossômicos e moleculares em Loricariinae com ênfase em espécies de Rineloricaria (Siluriformes, Loricariidae): uma perspectiva evolutiva. São Paulo: Universidade de São Paulo. [PhD Thesis]. [São Paulo (SP)].

Rosa K. O., Ziemniczak K., de Barros A. V., Nogaroto V., Almeida M. C., Cestari M. M., et al. (2012). Numeric and structural chromosome polymorphism in Rineloricaria lima (Siluriformes: Loricariidae): Fusion points carrying 5S rDNA or telomere sequence vestiges. Rev. Fish. Biol. Fish. 22, 739–749. 10.1007/s11160-011-9250-6 DOI

Roxo F. F., Ochoa L. E., Sabaj M. H., Lujan N. K., Covain R., Silva G. S., et al. (2019). Phylogenomic reappraisal of the Neotropical catfish family Loricariidae (Teleostei: Siluriformes) using ultraconserved elements. Mol. Phylogenet. Evol. 135, 148–165. 10.1016/j.ympev.2019.02.017 PubMed DOI

Sassi F. M. C., Deon G. A., Moreira-Filho O., Vicari M. R., Bertollo L. A. C., Liehr T., et al. (2020). Multiple sex chromosomes and evolutionary relationships in Amazonian catfishes: The outstanding model of the genus Harttia (Siluriformes: Loricariidae). Genes 11 (10), 1179. 10.3390/genes11101179 PubMed DOI PMC

Sassi F. M. C., Moreira-Filho O., Deon G. A., Sember A., Bertollo L. A. C., Liehr T., et al. (2021). Adding new pieces to the puzzle of karyotype evolution in Harttia (Siluriformes, Loricariidae): Investigation of Amazonian species. Biology 10 (9), 922. 10.3390/biology10090922 PubMed DOI PMC

Sassi F. M. C., Toma G. A., Cioffi M. B. (2023). “FISH—In fish chromosomes,” in Cytogenetics and molecular cytogenetics. Editor Liehr T. (Boca Raton, FL: CRC Press; ), 281–296.

Saunders P. A., Neuenschwander S., Perrin N. (2018). Sex chromosome turnovers and genetic drift: A simulation study. J. Evol. Biol. 31 (9), 1413–1419. 10.1111/jeb.13336 PubMed DOI

Scavone M. D. P., Júlio H. F., Jr (1994). Cytogenetic analysis and probable supernumerary chromosomes of Loricaria prolixa and Loricaria sp. females (Loricariidae-Siluriformes) from the Paraná River basin. Rev. Ictiol. 2 (3), 41–47.

Schartl M., Georges A., Graves J. A. M. (2023). Polygenic sex determination in vertebrates–is there any such thing? Trends Genet. 39, 242–250. 10.1016/j.tig.2022.12.002 PubMed DOI PMC

Schubert I., Lysak M. A. (2011). Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27 (6), 207–216. 10.1016/j.tig.2011.03.004 PubMed DOI

Sember A., Nguyen P., Perez M. F., Altmanová M., Ráb P., Cioffi M. B. (2021). Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: State of the art and future challenges. Phil. Trans. R. Soc. B Biol. Sci. 376 (1833), 20200098. 10.1098/rstb.2020.0098 PubMed DOI PMC

Shen Z. G., Wang H. P. (2018). “Environmental sex determination and sex differentiation in teleosts–how sex is established,” in Sex control in aquaculture. Editors Wang H-P., Piferrer F., Chen S-L., Shen Z-G. (Hoboken, NJ: John Wiley & Sons; ), 85–115.

Štundlová J., Hospodářská M., Lukšíková K., Voleníková A., Pavlica T., Altmanová M., et al. (2022). Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci . Chromosome Res. 30 (4), 309–333. 10.1007/s10577-022-09707-3 PubMed DOI

Takagui F. H., Baumgärtner L., Venturelli N. B., Paiz L. M., Viana P., Pompeo L. R. S., et al. (2020). Unrevealing the karyotypic evolution and cytotaxonomy of armored catfishes (Loricariinae) with emphasis in Sturisoma, Loricariichthys, Loricaria, Proloricaria, Pyxiloricaria, and Rineloricaria . Zebrafish 17, 319–332. 10.1089/zeb.2020.1893 PubMed DOI

Takagui F. H., Rubert M., Dionisio J. F., Baumgärtner L., Cardoso Y. P., Jerep F. C., et al. (2023). Cytogenetic markers reinforce the redescription of the armored pleco Hypostomus spiniger (Loricariidae-Hypostominae), an endemic species in the Uruguay River basin and Patos Lagoon system. Braz. Arch. Biol. Tech. 66, e23220154. 10.1590/1678-4324-2023220154 DOI

Veller C., Muralidhar P., Constable G. W., Nowak M. A. (2017). Drift-induced selection between male and female heterogamety. Genetics 207 (2), 711–727. 10.1534/genetics.117.300151 PubMed DOI PMC

Yang F., Graphodatsky A. S. (2009). “Animal probes and ZOO-FISH,” in Fluorescence in situ hybridization (FISH)—application guide. Editor Liehr T. (Berlin: Springer; ), 323–346.

Yang F., Trifonov V., Ng B. L., Kosyakova N., Carter N. P. (2009). “Generation of paint probes by flow-sorted and microdissected chromosomes,” in Fluorescence in situ hybridization (FISH)—application guide. Editor Liehr T. (Berlin: Springer; ).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace