Adding New Pieces to the Puzzle of Karyotype Evolution in Harttia (Siluriformes, Loricariidae): Investigation of Amazonian Species

. 2021 Sep 16 ; 10 (9) : . [epub] 20210916

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34571799

Grantová podpora
2020/11772-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
2020/02681 Fundação de Amparo à Pesquisa do Estado de São Paulo

A remarkable morphological diversity and karyotype variability can be observed in the Neotropical armored catfish genus Harttia. These fishes offer a useful model to explore both the evolution of karyotypes and sex chromosomes, since many species possess male-heterogametic sex chromosome systems and a high rate of karyotype repatterning. Based on the karyotype organization, the chromosomal distribution of several repetitive DNA classes, and the rough estimates of genomic divergences at the intraspecific and interspecific levels via Comparative Genomic Hybridization, we identified shared diploid chromosome numbers (2n = 54) but different karyotype compositions in H. dissidens (20m + 26sm + 8a) and Harttia sp. 3 (16m + 18sm + 14st + 6a), and different 2n in H. guianensis (2n = 58; 20m + 26sm + 2st + 10a). All species further displayed similar patterns of chromosomal distribution concerning constitutive heterochromatin, 18S ribosomal DNA (rDNA) sites, and most of the surveyed microsatellite motifs. Furthermore, differences in the distribution of 5S rDNA sites and a subset of microsatellite sequences were identified. Heteromorphic sex chromosomes were lacking in H. dissidens and H. guianensis at the scale of our analysis. However, one single chromosome pair in Harttia sp. 3 males presented a remarkable accumulation of male genome-derived probe after CGH, pointing to a tentative region of early sex chromosome differentiation. Thus, our data support already previously outlined evidence that Harttia is a vital model for the investigation of teleost karyotype and sex chromosome dynamics.

Zobrazit více v PubMed

Fricke R., Eschmeyer W.N., van der Laan R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. [(accessed on 24 August 2020)]. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z.-I., Knowler D.J., Lévêque C., Naiman R.J., Prieur-Richard A.-H., Soto D., Stiassny M.L.J. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006;81:163–182. doi: 10.1017/S1464793105006950. PubMed DOI

Nelson J.S., Grande T.C., Wilson M.V.H. Fishes of the World. 5th ed. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Volff J.N. Genome evolution and biodiversity in teleost fish. Heredity. 2005;94:280–294. doi: 10.1038/sj.hdy.6800635. PubMed DOI

Ravi V., Venkatesh B. Rapidly evolving fish genomes and teleost diversity. Curr. Opin. Genet. Dev. 2008;18:544–550. doi: 10.1016/j.gde.2008.11.001. PubMed DOI

Lee A.P., Kerk S.Y., Tan Y.Y., Brenner S., Venkatesh B. Ancient vertebrate conserved noncoding elements have been evolving rapidly in teleost fishes. Mol. Biol. Evol. 2011;28:1205–1215. doi: 10.1093/molbev/msq304. PubMed DOI

Sallan L.C. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol. Rev. 2014;89:950–971. doi: 10.1111/brv.12086. PubMed DOI

Mable B.K., Alexandrou M.A., Taylor M.I. Genome duplication in amphibians and fish: An extended synthesis. J. Zool. 2011;284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x. DOI

Braasch I., Postlethwait J.H. Polyploidy and Genome Evolution. Springer; Berlin/Heidelberg, Germany: 2012. Polyploidy in fish and the teleost genome duplication; pp. 341–383.

Bernardi G. Speciation in fishes. Mol. Ecol. 2013;22:5487–5502. doi: 10.1111/mec.12494. PubMed DOI

Pörtner H.O., Schulte P.M., Wood C.M., Schiemer F. Niche dimensions in fishes: An integrative view. Physiol. Biochem. Zool. 2010;83:808–826. doi: 10.1086/655977. PubMed DOI

Reis R.E., Albert J.S., Di Dario F., Mincarone M.M., Petry P., Rocha L.A. Fish biodiversity and conservation in South America. J. Fish Biol. 2016;89:12–47. doi: 10.1111/jfb.13016. PubMed DOI

Albert J.S., Reis R. Historical Biogeography of Neotropical Freshwater Fishes. Univ of California Press; Berkeley, CA, USA: 2011.

Albert J.S., Tagliacollo V.A., Dagosta F. Diversification of Neotropical freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 2020;51:27–53. doi: 10.1146/annurev-ecolsys-011620-031032. DOI

Arai R. Fish Karyotypes: A Check List. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2011.

Gregory T.R. Animal Genome Size Database. [(accessed on 19 August 2021)]. Available online: http://www.genomesize.com.

Yoshida K., Kitano J. Tempo and mode in karyotype evolution revealed by a probabilistic model incorporating both chromosome number and morphology. PLoS Genet. 2021;17:e1009502. doi: 10.1371/journal.pgen.1009502. PubMed DOI PMC

Devlin R.H., Nagahama Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364. doi: 10.1016/S0044-8486(02)00057-1. DOI

Schartl M., Schmid M., Nanda I. Dynamics of vertebrate sex chromosome evolution: From equal size to giants and dwarfs. Chromosoma. 2016;125:553–571. doi: 10.1007/s00412-015-0569-y. PubMed DOI

Guiguen Y., Fostier A., Herpin A. Sex determination and differentiation in fish: Genetic, genomic, and endocrine aspects. In: Wang H.-P., Piferrer F., Chen S.-L., editors. Sex Control in Aquaculture. 1st ed. John Wiley & Sons; Hoboken, NJ, USA: 2018. pp. 35–63.

Shen Z., Wang H. Environmental sex determination and sex differentiation in teleost—How sex is established. In: Wang H.-P., Piferrer F., Chen S.-L., editors. Sex Control in Aquaculture. 1st ed. John Wiley & Sons; Hoboken, NJ, USA: 2018. pp. 85–115.

Kuwamura T., Sunobe T., Sakai Y., Kadota T., Sawada K. Hermaphroditism in fishes: An annotated list of species, phylogeny, and mating system. Ichthyol. Res. 2020;67:341–360. doi: 10.1007/s10228-020-00754-6. DOI

Schaefer S.A., Lauder G.V. Historical transformation of functional design: Evolutionary morphology of feeding mechanisms in loricarioid catfishes. Syst. Zool. 1986;35:489–508. doi: 10.2307/2413111. DOI

Reis R.E., Kullander S., Ferraris C.J. Check List of the Freshwater Fishes of South and Central America. Edipucrs; Porto Alegre, Brazil: 2003.

Kavalco K.F., Pazza R., Bertollo L.A.C., Moreira-Filho O. Karyotypic diversity and evolution of Loricariidae (Pisces, Siluriformes) Heredity. 2005;94:180–186. doi: 10.1038/sj.hdy.6800595. PubMed DOI

Takagui F.H., Baumgärtner L., Venturelli N.B., Paiz L.M., Viana P., Dionísio J.F., Pompeo L.R.S., Margarido V.P., Fenocchio A.S., da Rosa R. Unrevealing the karyotypic evolution and cytotaxonomy of armored catfishes (Loricariinae) with emphasis in Sturisoma, Loricariichthys, Loricaria, Proloricaria, Pyxiloricaria, and Rineloricaria. Zebrafish. 2020;17:319–332. doi: 10.1089/zeb.2020.1893. PubMed DOI

Giuliano-Caetano L. Polimorfismo Cromossômico Robertsoniano Em Populações de Rineloricaria latirostris (Pisces, Loricariinae) Universidade Federal de Sâo Carlos; São Carlo, Brazil: 1998.

de Lara Kamei M.C.S., Baumgärtner L., Paiva S., Zawadzki C.H., Martins-Santos I.C., de Portela-Castro A.L.B. Chromosomal diversity of three species of Hypostomus Lacépède, 1803 (Siluriformes, Loricariidae), from the Paraná River Basin, Brazil: A species complex in Hypostomus Ancistroides reinforced by a ZZ/ZW sex chromosome system. Zebrafish. 2017;14:357–363. doi: 10.1089/zeb.2017.1429. PubMed DOI

Takagui F.H., de Moura L.F., Ferreira D.C., Centofante L., de A. Vitorino C., Bueno V., Margarido V.P., Venere P.C. Karyotype diversity in Doradidae (Siluriformes, Doradoidea) and presence of the heteromorphic ZZ/ZW sex chromosome system in the family. Zebrafish. 2017;14:236–243. doi: 10.1089/zeb.2016.1368. PubMed DOI

Rocha-Reis D.A., de Oliveira Brandão K., de Almeida-Toledo L.F., Pazza R., Kavalco K.F. The persevering cytotaxonomy: Discovery of a unique XX/XY sex chromosome system in catfishes suggests the existence of a new, endemic and rare species. Cytogenet. Genome Res. 2018;156:45–55. doi: 10.1159/000492959. PubMed DOI

de Oliveira L.C., Ribeiro M.O., de Medeiros Costa G., Zawadzki C.H., Prizon-Nakajima A.C., Borin-Carvalho L.A., Martins-Santos I.C., de Brito Portela-Castro A.L. Cytogenetic characterization of Hypostomus soniae Hollanda-Carvalho & Weber, 2004 from the Teles Pires River, southern Amazon basin: Evidence of an early stage of an XX/XY sex chromosome system. Comp. Cytogenet. 2019;13:411. PubMed PMC

Glugoski L., Deon G., Schott S., Vicari M.R., Nogaroto V., Moreira-Filho O. Comparative cytogenetic analyses in Ancistrus species (Siluriformes: Loricariidae) Neotrop. Ichthyol. 2020;18:e200013. doi: 10.1590/1982-0224-2020-0013. DOI

Centofante L., Bertollo L.A.C., Moreira-Filho O. Cytogenetic characterization and description of an XX/XY1Y2 sex chromosome system in catfish Harttia carvalhoi (Siluriformes, Loricariidae) Cytogenet. Genome Res. 2006:320–324. doi: 10.1159/000089887. PubMed DOI

Blanco D.R., Vicari M.R., Lui R.L., Traldi J.B., Bueno V., de Martinez J.F., Brandão H., Oyakawa O.T., Moreira Filho O. Karyotype diversity and evolutionary trends in armored catfish species of the genus Harttia (Siluriformes: Loricariidae) Zebrafish. 2017;14:169–176. doi: 10.1089/zeb.2016.1377. PubMed DOI

Deon G.A., Glugoski L., Vicari M.R., Nogaroto V., Sassi F.M.C., Cioffi M.B., Liehr T., Bertollo L.A.C., Moreira-Filho O. Highly rearranged karyotypes and multiple sex chromosome systems in armored catfishes from the genus Harttia (Teleostei, Siluriformes) Genes. 2020;11:1366. doi: 10.3390/genes11111366. PubMed DOI PMC

Sassi F.M.C., Deon G.A., Moreira-Filho O., Vicari M.R., Bertollo L.A.C., Liehr T., de Oliveira E.A., Cioffi M.B. Multiple sex chromosomes and evolutionary relationships in Amazonian catfishes: The outstanding model of the genus Harttia (Siluriformes: Loricariidae) Genes. 2020;11:1179. doi: 10.3390/genes11101179. PubMed DOI PMC

De Oliveira J.C., Oyakawa O.T. New loricariid fishes from headwaters on Serra da Mantiqueira and Complexo do Espinhaço, Minas Gerais State, Brazil (Teleostei: Siluriformes: Loricariidae) Zootaxa. 2019;4586:401–424. doi: 10.11646/zootaxa.4586.3.1. PubMed DOI

Rodrigues R.M. Ph.D. Thesis. Universidade de São Paulo; São Paulo, Brazil: 2010. Estudos Cromossômicos e Moleculares em Loricariinae Com Ênfase em Espécies de Rineloricaria (Siluriformes, Loricariidae): Uma Perspectiva Evolutiva.

Alves A.L., Oliveira C., Foresti F. Karyotype variability in eight species of the subfamilies Loricariinae and Ancistrinae (Teleostei, Siluriformes, Loricariidae) Caryologia. 2003;56:57–63. doi: 10.1080/00087114.2003.10589308. DOI

Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Boca Raton, FL, USA: 2015. pp. 21–26.

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Pendás A.M., Móran P., Freije J.P., Garcia-Vásquez E. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell Genet. 1994;67:31–36. doi: 10.1159/000133792. PubMed DOI

Cioffi M.B., Martins C., Centofante L., Jacobina U.P., Bertollo L.A.C. Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: Mapping of three classes of repetitive DNAs. Cytogenet. Genome Res. 2009;125:132–141. doi: 10.1159/000227838. PubMed DOI

Phimphan S., Chaiyasan P., Suwannapoom C., Reungsing M., Juntaree S., Tanomtong A., Supiwong W. Comparative karyotype study of three Cyprinids (Cyprinidae, Cyprininae) in Thailand by classical cytogenetic and FISH techniques. Comp. Cytogenet. 2020;14:597. doi: 10.3897/CompCytogen.v14i4.54428. PubMed DOI PMC

Kubat Z., Hobza R., Vyskot B., Kejnovský E. Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI

Yano C.F., Bertollo L.A.C., Cioffi M.B. Fish-FISH: Molecular cytogenetics in fish species. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer; Berlin, Germany: 2017. pp. 429–444.

Sember A., Bertollo L.A.C., Ráb P., Yano C.F., Hatanaka T., de Oliveira E.A., Cioffi M.B. Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae) Front. Genet. 2018;9:71. doi: 10.3389/fgene.2018.00071. PubMed DOI PMC

Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. Volume 855 Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.

Zwick M.S., Hanson R.E., Mcknight T.D., Islam-Faridi M.H., Stelly D.M., Wing R.A., Price H.J. A rprocedure for the isolation of C0t−1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI

Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI

Londoño-Burbano A., Reis R.E. A combined molecular and morphological phylogeny of the Loricariinae (Siluriformes: Loricariidae), with emphasis on the Harttiini and Farlowellini. PLoS ONE. 2021;16:e0247747. doi: 10.1371/journal.pone.0247747. PubMed DOI PMC

Covain R., Fisch-Muller S., Oliveira C., Mol J.H., Montoya-Burgos J.I., Dray S. Molecular phylogeny of the highly diversified catfish subfamily Loricariinae (Siluriformes, Loricariidae) reveals incongruences with morphological classification. Mol. Phylogenet. Evol. 2016;94:492–517. doi: 10.1016/j.ympev.2015.10.018. PubMed DOI

Ziemniczak K., Barros A.V., Rosa K.O., Nogaroto V., Almeida M.C., Cestari M.M., Moreira-Filho O., Artoni R.F., Vicari M.R. Comparative cytogenetics of Loricariidae (Actinopterygii: Siluriformes): Emphasis in Neoplecostominae and Hypoptopomatinae. Ital. J. Zool. 2012;79:492–501. doi: 10.1080/11250003.2012.676677. DOI

Barros A.V., Wolski M.A.V., Nogaroto V., Almeida M.C., Moreira-Filho O., Vicari M.R. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role? Gene. 2017;608:20–27. doi: 10.1016/j.gene.2017.01.013. PubMed DOI

Glugoski L., Giuliano-Caetano L., Moreira-Filho O., Vicari M.R., Nogaroto V. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene. 2018;650:49–54. doi: 10.1016/j.gene.2018.01.099. PubMed DOI

Molina W.F., Galetti-Jr P.M. Robertsonian rearrangements in the reef fish Chromis (Perciformes, Pomacentridae) involving chromosomes bearing 5S rRNA genes. Genet. Mol. Biol. 2002;25:373–377. doi: 10.1590/S1415-47572002000400004. DOI

Rosa K.O., Ziemniczak K., de Barros A.V., Nogaroto V., Almeida M.C., Cestari M.M., Artoni R.F., Vicari M.R. Numeric and structural chromosome polymorphism in Rineloricaria lima (Siluriformes: Loricariidae): Fusion points carrying 5S rDNA or telomere sequence vestiges. Rev. Fish. Biol. Fish. 2012;22:739–749. doi: 10.1007/s11160-011-9250-6. DOI

Kushwaha B., Baisvar V.S., Kumar R. 18S rDNA mapping revealed conservation and rearrangements of chromosome segments in two Channa species. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021:1–5. doi: 10.1007/s40011-021-01257-8. DOI

Getlekha N., Molina W.F., Cioffi M.B., Yano C.F., Maneechot N., Bertollo L.A.C., Supiwong W., Tanomtong A. Repetitive DNAs highlight the role of chromosomal fusions in the karyotype evolution of Dascyllus species (Pomacentridae, Perciformes) Genetica. 2016;144:203–211. doi: 10.1007/s10709-016-9890-5. PubMed DOI

Cazaux B., Catalan J., Veyrunes F., Douzery E.J.P., Britton-Davidian J. Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae) BMC Evol. Biol. 2011;11:124. doi: 10.1186/1471-2148-11-124. PubMed DOI PMC

Tchurikov N.A., Uroshlev L.A., Klushevskaya E.S., Alembekov I.R., Lagarkova M.A., Kravatskaya G.I., Makeev V.Y., Kravatsky Y. V Chromosomal translocations in NK-cell lymphomas originate from inter-chromosomal contacts of active rDNA clusters possessing hot spots of DSBs. Cancers. 2021;13:3889. doi: 10.3390/cancers13153889. PubMed DOI PMC

Schöfer C., Weipoltshammer K. Nucleolus and chromatin. Histochem. Cell Biol. 2018;150:209–225. doi: 10.1007/s00418-018-1696-3. PubMed DOI PMC

Berthelot C., Muffato M., Abecassis J., Crollius H.R. The 3D organization of chromatin explains evolutionary fragile genomic regions. Cell Rep. 2015;10:1913–1924. doi: 10.1016/j.celrep.2015.02.046. PubMed DOI

Warmerdam D.O., Wolthuis R.M.F. Keeping ribosomal DNA intact: A repeating challenge. Chromosome Res. 2019;27:57–72. doi: 10.1007/s10577-018-9594-z. PubMed DOI PMC

Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI

Ocalewicz K. Telomeres in fishes. Cytogenet. Genome Res. 2013;141:114–125. doi: 10.1159/000354278. PubMed DOI

Rapp Py-Daniel L.H., Oliveira E.C. Seven new species of Harttia from the Amazonian-Guyana region (Siluriformes: Loricariidae) Ichthyol. Explor. Freshw. 2001;12:79–96.

Oyakawa O.T., Fichberg I., Py-Daniel L.R. Three new species of Harttia (Loricariidae: Loricariinae) from Serra do Cachimbo, Rio Xingu basin, Pará, Northern Brazil. Zootaxa. 2018;4387:75–90. doi: 10.11646/zootaxa.4387.1.3. PubMed DOI

Lahn B.T., Page D.C. Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nat. Genet. 1999;21:429–433. doi: 10.1038/7771. PubMed DOI

Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI

Bergero R., Charlesworth D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol. 2009;24:94–102. doi: 10.1016/j.tree.2008.09.010. PubMed DOI

Ortiz-Barrientos D., Engelstädter J., Rieseberg L.H. Recombination rate evolution and the origin of species. Trends Ecol. Evol. 2016;31:226–236. doi: 10.1016/j.tree.2015.12.016. PubMed DOI

Charlesworth D. The guppy sex chromosome system and the sexually antagonistic polymorphism hypothesis for Y chromosome recombination suppression. Genes. 2018;9:264. doi: 10.3390/genes9050264. PubMed DOI PMC

Wellenreuther M., Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 2018;33:427–440. doi: 10.1016/j.tree.2018.04.002. PubMed DOI

Connallon T., Olito C., Dutoit L., Papoli H., Ruzicka F., Yong L. Local adaptation and the evolution of inversions on sex chromosomes and autosomes. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20170423. doi: 10.1098/rstb.2017.0423. PubMed DOI PMC

Natri H.M., Merilä J., Shikano T. The evolution of sex determination associated with a chromosomal inversion. Nat. Commun. 2019;10:145. doi: 10.1038/s41467-018-08014-y. PubMed DOI PMC

Peichel C.L., McCann S.R., Ross J.A., Naftaly A.F.S., Urton J.R., Cech J.N., Grimwood J., Schmutz J., Myers R.M., Kingsley D.M. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol. 2020;21:177. doi: 10.1186/s13059-020-02097-x. PubMed DOI PMC

Cioffi M.B., Bertollo L.A.C. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos M.A., editor. Repetitive DNA. Karger; Basel, Switzerland: 2012. pp. 197–221. PubMed

Blommaert J., Riss S., Hecox-Lea B., Welch D.B.M., Stelzer C.-P. Small, but surprisingly repetitive genomes: Transposon expansion and not polyploidy has driven a doubling in genome size in a metazoan species complex. BMC Genom. 2019;20:466. doi: 10.1186/s12864-019-5859-y. PubMed DOI PMC

Bracewell R., Chatla K., Nalley M.J., Bachtrog D. Dynamic turnover of centromeres drives karyotype evolution in Drosophila. eLife. 2019;8:e49002. doi: 10.7554/eLife.49002. PubMed DOI PMC

Ávila Robledillo L., Neumann P., Koblížková A., Novák P., Vrbová I., Macas J. Extraordinary sequence diversity and promiscuity of Ccentromeric Ssatellites in the Llegume tribe Fabeae. Mol. Biol. Evol. 2020;37:2341–2356. doi: 10.1093/molbev/msaa090. PubMed DOI PMC

Blanco D.R., Vicari M.R., Artoni R.F., Traldi J.B., Moreira-Filho O. Chromosomal characterization of armored catfish Harttia longipinna (Siluriformes, Loricariidae): First report of B chromosomes in the genus. Zoolog. Sci. 2012;29:604–609. doi: 10.2108/zsj.29.604. PubMed DOI

Sember A., Nguyen P., Perez M.F., Altmanová M., Ráb P., Cioffi M.B. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: State of the art and future challenges. Philos. Trans. R. Soc. B. 2021;376:20200098. doi: 10.1098/rstb.2020.0098. PubMed DOI PMC

Vara C., Paytuví-Gallart A., Cuartero Y., Álvarez-González L., Marín-Gual L., Garcia F., Florit-Sabater B., Capilla L., Sanchéz-Guillén R.A., Sarrate Z. The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nat. Commun. 2021;12:2981. doi: 10.1038/s41467-021-23270-1. PubMed DOI PMC

Traut W., Winking H. Meiotic chromosomes and stages of sex chromosome evolution in fish: Zebrafish, platyfish and guppy. Chromosome Res. 2001;9:659–672. doi: 10.1023/A:1012956324417. PubMed DOI

Gamble T. Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Mol. Ecol. 2016;25:2114–2116. doi: 10.1111/mec.13648. PubMed DOI

Kuhl H., Guiguen Y., Höhne C., Kreuz E., Du K., Klopp C., Lopez-Roques C., Yebra-Pimentel E.S., Ciorpac M., Gessner J. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos. Trans. R. Soc. B. 2021;376:20200089. doi: 10.1098/rstb.2020.0089. PubMed DOI PMC

Chalopin D., Volff J.-N., Galiana D., Anderson J.L., Schartl M. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res. 2015;23:545–560. doi: 10.1007/s10577-015-9490-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace