From the Tunnels into the Treetops: New Lineages of Black Yeasts from Biofilm in the Stockholm Metro System and Their Relatives among Ant-Associated Fungi in the Chaetothyriales
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
27732675
PubMed Central
PMC5061356
DOI
10.1371/journal.pone.0163396
PII: PONE-D-16-19064
Knihovny.cz E-resources
- MeSH
- Ascomycota classification genetics physiology MeSH
- Bayes Theorem MeSH
- Biofilms MeSH
- DNA, Fungal chemistry isolation & purification metabolism MeSH
- Ants microbiology MeSH
- Fungal Proteins genetics MeSH
- Phylogeny MeSH
- Nucleic Acid Conformation MeSH
- DNA, Ribosomal chemistry isolation & purification metabolism MeSH
- RNA Polymerase II genetics MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Tubulin genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Sweden MeSH
- Names of Substances
- DNA, Fungal MeSH
- Fungal Proteins MeSH
- DNA, Ribosomal MeSH
- RNA Polymerase II MeSH
- Tubulin MeSH
Rock-inhabiting fungi harbour species-rich, poorly differentiated, extremophilic taxa of polyphyletic origin. Their closest relatives are often well-known species from various biotopes with significant pathogenic potential. Speleothems represent a unique rock-dwelling habitat, whose mycobiota are largely unexplored. Isolation of fungi from speleothem biofilm covering bare granite walls in the Kungsträdgården metro station in Stockholm yielded axenic cultures of two distinct black yeast morphotypes. Phylogenetic analyses of DNA sequences from six nuclear loci, ITS, nuc18S and nuc28S rDNA, rpb1, rpb2 and β-tubulin, support their placement in the Chaetothyriales (Ascomycota). They are described as a new genus Bacillicladium with the type species B. lobatum, and a new species Bradymyces graniticola. Bacillicladium is distantly related to the known five chaetothyrialean families and is unique in the Chaetothyriales by variable morphology showing hyphal, meristematic and yeast-like growth in vitro. The nearest relatives of Bacillicladium are recruited among fungi isolated from cardboard-like construction material produced by arboricolous non-attine ants. Their sister relationship is weakly supported by the Maximum likelihood analysis, but strongly supported by Bayesian inference. The genus Bradymyces is placed amidst members of the Trichomeriaceae and is ecologically undefined; it includes an opportunistic animal pathogen while two other species inhabit rock surfaces. ITS rDNA sequences of three species accepted in Bradymyces and other undescribed species and environmental samples were subjected to phylogenetic analysis and in-depth comparative analysis of ITS1 and ITS2 secondary structures in order to study their intraspecific variability. Compensatory base change criterion in the ITS2 secondary structure supported delimitation of species in Bradymyces, which manifest a limited number of phenotypic features useful for species recognition. The role of fungi in the speleothem biofilm and relationships of Bacillicladium and Bradymyces with other members of the Chaetothyriales are discussed.
Department of Biology University of Southern Denmark 5230 Odense Denmark
Department of Botany Faculty of Science Charles University Prague 128 01 Prague 2 Czech Republic
Department of Botany Swedish Museum of Natural History 104 05 Stockholm Sweden
Department of Ecology Environment and Plant Sciences Stockholm University 106 91 Stockholm Sweden
Department of Palaeobiology Swedish Museum of Natural History 104 05 Stockholm Sweden
See more in PubMed
Sterflinger K, de Baere R, de Hoog G, de Wachter R, Krumbein WE, Haase G. Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). Anton Leeuw J Microb. 1997;72: 349–363. PubMed
Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol. 2005;51: 1–32.
Gueidan C, Ruibal C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F. A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol. 2008;61: 111–119. 10.3114/sim.2008.61.11 PubMed DOI PMC
Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, et al. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol. 2009;64: 123–133. 10.3114/sim.2009.64.06 PubMed DOI PMC
Barr ME. 1987. New taxa and combinations in the Loculoascomycetes. Mycotaxon. 29: 501–505.
Hansford CG. The foliicolous ascomycetes, their parasites and associated fungi. Mycol Pap. 1946;15: 1–240.
Réblová M, Untereiner WA, Réblová K. Novel evolutionary lineages revealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PloS One. 2013;8(5):1–28. PubMed PMC
Gueidan C, Aptroot A, da Silva Cáceres ME, Badali H, Stenroos S. A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog. 2014;13: 1027–1039.
Munk A. The system of the Pyrenomycetes. Dansk botanisk Arkiv 1953;15: 1–163.
Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivas RG, et al. Fungal Planet Description Sheets: 371–399. Persoonia. 2015; 35: 264–327. 10.3767/003158515X690269 PubMed DOI PMC
Chomnunti P, Bhat DJ, Jones GEB, Chukeatirote K, Bahkali AH, Hyde KD. Trichomeriaceae, a new sooty mould family of Chaetothyriales. Fungal Divers. 2012;56: 63–76.
Hamada N, Abe N. Growth characteristics of four fungal species in bathrooms. Biocontrol Sci. 2010;15: 111–115. PubMed
Lian X, de Hoog GS. Indoor wet cells harbour melanized agents of cutaneous infection. Med Mycol. 2010;48: 622–628. 10.3109/13693780903405774 PubMed DOI
Blatrix R, Djiéto-Lordon C, Mondolot L, La Fisca P, Voglmayr H, McKey D. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions. Proc R Soc Lond B Biol Sci. 2012;279: 3940–3947. PubMed PMC
Mayer V, Voglmayr H. Mycelial carton galleries of Azteca brevis (Formicidae) as a multi-species network. Proc R Soc Lond B Biol Sci. 2009;276: 3265–3273. PubMed PMC
Voglmayr H, Mayer V, Maschwitz U, Moog J, Dieto-Lordon C, Blatrix R. The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol. 2011;115: 1077–1091. 10.1016/j.funbio.2010.11.006 PubMed DOI
Nepel M, Voglmayr H, Schönenberger J, Mayer VE. High diversity and low specificity of chaetothyrialean fungi in carton galleries in a neotropical ant-plant association. PloS One. 2015; 9(11):e112756. PubMed PMC
Ulson CM. Contribution to the study of the so-called 'black yeasts' Contribuicao para o estudo das chamadas ‘leveduras pretas’, Sao Paulo, Departamento de Publicacaes, Universidade de Sao Paulo; 1959.
De Hoog GS, Hermanides-Nijhof EJ. The black yeasts and allied hyphomycetes. Stud Mycol. 1977;15: 1–222.
Ajello L. The black yeasts as disease agents: historical perspective. In: The black and white yeasts. Bull Pan Am Health Organ. 1978;356: 9–16.
Staley JT, Palmer FE, Adams JB. Microcolonial inhabitants on desert rocks? Science. 1982;215: 1093–1095. PubMed
De Hoog GS (editor). Ecology and evolution of black yeasts and their relatives. Stud Mycol. 1999;43: 1–208.
Sterflinger K. Black yeast and meristematic fungi: Ecology, diversity and identification In: Péter G, Rosa C (editors). The yeast handbook. Biodiversity and ecophysiology of yeasts. Berlin, Heidelberg: Springer; 2006. pp. 501–514.
Vicente VA, Attili-Angelis D, Pie MR, Queiroz-Telles F, Cruz LM, Najafzadeh MJ, et al. Environmental isolation of black yeast-like fungi involved in human infection. Stud Mycol. 2008;61: 137–144. 10.3114/sim.2008.61.14 PubMed DOI PMC
Sterflinger K, Krumbein WE. Multiple stress factors affecting growth of rock inhabiting black fungi. Bot Acta. 1995;108: 467–538.
Wollenzien U, de Hoog GS, Krumbein WE, Urzì C. On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ. 1995;167: 287–294.
Wollenzien U, de Hoog GS, Krumbein WE, Uijthof JMJ. Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean basin. Anton Leeuw J Microb. 1997;71: 281–288. PubMed
Ruibal C, Platas G, Bills GF. High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia. 2008;21: 93–110. 10.3767/003158508X371379 PubMed DOI PMC
Krumbein WE, Urzí C, Gehrmann C. On the biocorrosion and biodeterioration of antique and mediaeval glass. Geomicrobiol J. 1991;9: 139–160.
Gorbushina AA, Krumbein WE, Hamann CH, Panina L, Soukharjevski S, Wollenzien U. Role of black fungi in color change and biodeterioration of antique marbles. Geomicrobiol J. 1993;11: 205–222.
Sterflinger K, Krumbein WE. Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J. 1997;14: 219–230.
Sterflinger K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol Rev. 2010;24: 47–55.
Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, et al. 2012. Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int Biodeter Biodegr. 2012;70: 40–46.
Sterflinger K, Piñar G. Microbial deterioration of cultural heritage and works of art—tilting at windmills? Appl Microbiol Biotechnol. 2013;97: 9637–9646. 10.1007/s00253-013-5283-1 PubMed DOI PMC
Onofri S, Zucconi L, Isola D, Selbmann L. Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area. Plant Biosyst. 2014;148: 384–391.
Isola D, Zucconi L, Onofri S, Caneva G, de Hoog GS, Selbmann L. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers. 2015;76: 75–96.
Barton HA, Spear JR, Pace NR. Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiol J. 2001;18: 359–368.
Jones B. Microbial activity in caves–a geological perspective. Geomicrobiol J. 2001;18: 345–357.
Jones B. Phosphatic precipitates associated with actinomycetes in speleothems from Grand Cayman, British West Indies. Sediment Geol. 2009;219: 302–317.
Baskar S, Baskar R, Lee N, Theophilus PK. Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities. Environ Geol. 2009;57: 1169–1186.
Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev. 2009;96: 141–162.
Pacton M, Breitenbach SFM, Lechleitner FA, Vaks A, Rollion-Bard C, Gutareva OS, et al. The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia—paleoenvironmental implications. Biogeosci. 2013;10: 6115–6130.
Vidal-Romaní JR, González-López L, Vaqueiro M, Sanjurjo-Sánchez J. Bioweathering related to groundwater circulation in cavities of magmatic rock massifs. Environ Earth Sci. 2015;73: 2997–3010.
Vidal-Romaní JR, Sanjurjo-Sánchez J, Vaqueiro Rodríguez M, González-López L, López-Galindo MJ. Speleothems in cavities developed in magmatic rocks. International Congress of Speleology Proceedings 2013;3: 479–482.
Norbäck Ivarsson L, Ivarsson M, Lundberg J, Sallstedt T, Rydin C. Epilithic and aerophilic diatoms in the artificial environment of Kungsträdgården metro station, Stockholm, Sweden. Int J Speleol 2013;42: 289–297.
Ivarsson M, Lundberg JEK, Ivarsson L, Sallstedt T, Scheuerer M, Wedin M. Kungsträdgården, a granitic subway station in stockholm: its ecosystem and speleothems. Proceedings of the 16th International Congress of Speleology. Abstract; 2013.
Sallstedt T, Ivarsson M, Lundberg J, Sjöberg R, Vidal Romaní JR. Speleothem and biofilm formation in a granite/dolerite cave, Northern Sweden. Int J Speleol. 2014;43: 305–313.
Ivarsson C, Johansson Å. U-Pb zircon dating of Stockholm granite at Frescati. Geologiska Föreningens Förhandlingar. 1995;117: 67–68.
Hubka V, Réblová M, Řehulka J, Selbmann L, Isola D, De Hoog SG, et al. Bradymyces gen. nov. (Chaetothyriales, Trichomeriaceae), a new ascomycete genus accommodating poorly differentiated melanized fungi. Anton Leeuw J Microb. 2014;106: 979–992. PubMed
Coleman AW. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist. 2000;151: 1–9. PubMed
Coleman AW, Vacquier VD. Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). J Mol Evol. 2002;54: 246–257. PubMed
Müller T, Philippi N, Dandekar T, Schultz J, Wolf M. Distinguishing species. RNA. 2007;13: 1469–1472. PubMed PMC
Vidal Romaní JR, Sanjurjo Sánchez J, Vaqueiro M, Fernández Mosquera D. Speleothems of granite caves. Comunicações Geológicas. 2010;97: 71–80.
Atlas RM. Handbook of Microbiological Media. CRC Press, Boca Raton, FL; 2010.
Fassatiová O. Moulds and filamentous fungi in technical microbiology Elsevier, Amsterdam: et al.; 1986.
Kelly KL. Inter-society color council–National bureau of standards color name charts illustrated with centroid colors US Government Printing Office, Washington; 1964.
Doyle J, Doyle JL. Genomic plant DNA preparation from fresh tissue—CTAB method. Phytochem Bull. 1987;19: 11–15.
Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172: 4238–4246. PubMed PMC
Borneman J, Hartin RJ. PCR Primers That Amplify Fungal rRNA Genes from Environmental Samples. Appl Environ Microbiol. 2000;66: 4356–4360. PubMed PMC
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: A guide to methods and applications, Academic Press, San Diego; 1990. pp. 315–322.
Bonants P, Weerdt M, van Gent-Pelzer M, Lacourt I, Cooke D, Duncan J. Detection and identification of Phytophthora fragariae Hickman by the polymerase chain reaction. Eur J Plant Pathol 1997;103: 345–55.
Koprivica M, Dulic-Markovic I, Jevtic R, Cooke DEL. Methods for detection of Phytophthora fragariae var. rubi on raspberry. Pesticides Phytomed. 2009;24: 177–184.
Robideau GP, de Cock AWAM, Coffey MD, Voglmayr H, Brouwer H, Bala K, Lévesque CA. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Res. 2011;11: 1002–1011. PubMed PMC
Staden R. The Staden Sequence Analysis Package. Mol Biotechnol. 1996;5: 233–241. PubMed
Hubka V, Nováková A, Kolařík M, Jurjevic Ž, Peterson SW. Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia. 2015;107: 169–208. 10.3852/14-059 PubMed DOI
Gargas A, Taylor JW. Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia. 1992;84: 589–592.
De Hoog GS, Gerrits van den Ende AHG. Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 1998;41: 183–189. PubMed
Gueidan C, Roux C, Lutzoni F. Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Eurotiomycetes, Ascomycota). Mycol Res. 2007;111: 1145–1168. PubMed
Hofstetter V, Miadlikowska J, Kauff F, Lutzoni F. Phylogenetic comparison of protein-coding versus ribosomal RNA coding sequence data: a case study of the Lecanoromycetes (Ascomycota). Mol Phyl Evol. 2007;44: 412–426. PubMed
Schmitt I, Crespo A, Divakar PK, Frankhauser JD, Herman-Sackett E, Kalb K, et al. New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia. 2009;23: 35–40. 10.3767/003158509X470602 PubMed DOI PMC
Hubka V, Lyskova P, Frisvad JC, Peterson SW, Skorepova M, Kolarik M. Aspergillus pragensis sp. nov. discovered during molecular re-identification of clinical isolates belonging to Aspergillus section Candidi. Med Mycol. 2014;52: 565–576. 10.1093/mmy/myu022 PubMed DOI
Hall TA. BioEdit 5.0.9: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41: 95–98.
Untereiner WA, Naveau FA. Molecular systematics of the Herpotrichiellaceae with an assessment of the phylogenetic positions of Exophiala dermatitidis and Phialophora americana. Mycologia. 1999;91: 67–83.
Crous PE, Schubert K, Braun U, de Hoog GS, Hocking AD, Shin HD, et al. Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Stud Mycol. 2007;58: 185–217. 10.3114/sim.2007.58.07 PubMed DOI PMC
Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, Hofstetter V, et al. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia. 2006;98: 1054–1065. PubMed
Tsuneda A, Hambleton S, Currah RS. The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces, and Phaeococcomyces. Botany. 2011;89: 523–536.
Gutell RR. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res. 1993;21: 3051–3054. PubMed PMC
Gutell RR, Gray MW, Schnare MN. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures. Nucleic Acids Res. 1993;21: 3055–3074. PubMed PMC
Réblová M, Réblová K. RNA secondary structure, an important bioinformatics tool to enhance multiple sequence alignment: a case study (Sordariomycetes, Fungi). Mycol Prog. 2013;12: 305–319.
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–2690. PubMed
Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;21: 456–463. PubMed
Mason-Gamer RJ, Kellogg EA. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol. 1996;45: 524–545.
Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754–755. PubMed
Nylander J. MrModeltest2 v. 2.3 (Program for selecting DNA substitution models using PAUP*). Evolutionary Biology Centre, Uppsala, Sweden; 2008.
Rambaut A, Suchard MA, Xie D, Drummond AJ. MCMC Trace Analysis Tool Version v1.6.0; 2013. Available from http://beast.bio.ed.ac.uk/Tracer.
Larget B, Simon DL. Markov Chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol. 1999;16: 750–759.
Sukosd Z, Knudsen B, Kjems J, Pedersen CNS. PPfold 3.0: Fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics. 2012;28: 2691–2692. 10.1093/bioinformatics/bts488 PubMed DOI
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31: 3406–3415. PubMed PMC
Darty K, Denise A, Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25: 1974–1975. 10.1093/bioinformatics/btp250 PubMed DOI PMC
Leontis NB, Stombaugh J, Westhof E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002;30: 3497–3531. PubMed PMC
Moreno-Rico O, Groenewald JZ, Crous PW. Foliicolous fungi from Arctostaphylos pungens in Mexico. IMA Fungus. 2014;5: 7–15. 10.5598/imafungus.2014.05.01.02 PubMed DOI PMC
Di Martino P. 2015. What about biofilms on the surface of stone monuments? The Open Conference Proc J. 2015;6 (Suppl. 1: M2): 52–61.
Kronstedt T. Lessertia dentichelis: en för Sverige ny dvärgspindel i Stockholms tunnelbana. Fauna & Flora. 1992;87: 49–55.
Le Campion-Alsumard T, Golubic S, Priess K. Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser. 1995;117: 137–147.
Sterflinger K, Scholz J. Fungal infection and bryozoan morphology. Cour Forschungsinst. Senckenberg. 1997;201: 433–447.
Palmer RJ, Friedmann EI. Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi. Polarforschung. 1988;58: 189–191. PubMed
Wainwright M. Oligotrophic growth of fungi—stress or natural state? In: Jennings DH, (editor). Stress tolerance of fungi. New York: Marcel Dekker; 1993. pp. 127–144.
Blazquez F, Garcia-Vallez M, Krumbein WE, Sterflinger K, Vendrell-Saz M. Microstromatolithic deposits on granitic monuments: development and decay. Eur J Mineral. 1997;9: 889–901.
Sterflinger K. Fungi as geologic agents. Geomicrobiol J. 2000;17: 97–124.
Gams W. Cephalosporium-like Hyphomycetes: Some tropical species. Trans Br Mycol Soc. 1975;64: 389–404.
Sugita T, Kikuchi K, Makimura K, Urata K, Someya T, Kamei K, Niimi M, Uehara Y. Trichosporon species isolated from guano samples obtained from bat-inhabited caves in Japan. Appl Environ Microbiol. 2005;71: 7626–7629. PubMed PMC
Sugita T. Trichosporon Behrend 1890 In: Kurtzman C, Fell JW, Boekhout T. (Eds.). The yeasts: A taxonomic study. 5th ed. Elsevier Science, Amsterdam; 2011. pp. 2015–2061.
Mariné M, Brown NA, Riaño-Pachón DM, Goldman GH. On and Under the Skin: Emerging Basidiomycetous Yeast Infections Caused by Trichosporon Species. PloS Pathog. 2015;11(7): e1004982 10.1371/journal.ppat.1004982 PubMed DOI PMC
Kaszycki P, Czechowska K, Petryszak P, Miedzobrodzki J, Pawlik B, Kołoczek H. Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Pol. 2006;53: 463–473. PubMed
Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 2011;90: 1219–1227. 10.1007/s00253-011-3200-z PubMed DOI
Xiong L, Huang C, Li XM, Chen XF, Wang B, Wang C, Zeng XA, Chen XD. Acetone-Butanol-Ethanol (ABE) Fermentation Wastewater Treatment by Oleaginous Yeast Trichosporon cutaneum. Appl Biochem Biotech. 2015;176: 563–571. PubMed
Blasi B, Poyntner C, Rudavsky T, Prenafeta-Boldú FX, de Hoog S, Tafer H, Sterflinger K. Pathogenic yet environmentally friendly? Black fungal candidates for bioremediation of pollutants. Geomicrobiol J. 2016; 33: 308–317. PubMed PMC
Vazquez-Nion D, Rodríguez-Castro J, López-Rodríguez MC, Fernández-Silva I, Prieto B. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures. Biofouling. 2016; 32:657–669. 10.1080/08927014.2016.1183121 PubMed DOI
Schlick-Steiner BC, Steiner FM, Konrad H, Seifert B, Christian E, Moder K, et al. Specificity and transmission mosaic of ant nest-wall fungi. Proc Natl Acad Sci USA. 2008;105: 940–943. 10.1073/pnas.0708320105 PubMed DOI PMC
Defossez E, Selosse MA, Dubois MP, Mondolot L, Faccio A, Djieto-Lordon C, et al. Ant-plants and fungi: a new threeway symbiosis. New Phytol. 2009;182: 942–949. PubMed
Prenafeta-Boldú FX, Ballerstedt H, Gerritse J, Grotenhuis JTC. Bioremediation of BTEX hydrocarbons: effect of soil inoculation with the toluene-growing fungus Cladophialophora sp. strain T1. Biodegradation. 2004;15: 59–65. PubMed
Prenafeta-Boldú FX, Summerbell R, de Hoog GS. Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev. 2006;30: 109–130. PubMed
Zhao J, Zeng J, De Hoog GS, Attili-Angelis D, Prenafeta-Boldú FX. Isolation and identification of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microbial Ecol. 2010;60: 149–156. PubMed PMC
Attygalle AB, Morgan ED. Chemicals from the glands of ants. Chem Soc Rev. 1984;13: 245–278.
Morgan ED. Chemical sorcery for sociality: Exocrine secretions of ants (Hymenoptera: Formicidae). Myrmecol News. 2008;11: 79–90.
Schlüns H, Crozier RH. Molecular and chemical immune defenses in ants (Hymenoptera: Formicidae). Myrmecol News. 2009;12: 237e249.
Crous PW, Wingfield MJ, Guarro J, Hernández-Restrepo M, Sutton DA, Acharya A, et al. Fungal Planet Description Sheets: 320–370. Persoonia. 2015;34: 167–266. 10.3767/003158515X688433 PubMed DOI PMC
Hutchison LJ, Untereiner WA, Hiratsuka Y. Knufia cryptophialidica gen. et sp. nov., a dematiaceous hyphomycete isolated from black galls of trembling aspen (Populus tremuloides). Mycologia. 1995;87: 902–908.
Li DM, de Hoog GS, Lindhardt Saunte DM, Gerrits van den Ende AHG, Chen XR. Coniosporium epidermidis sp. nov., a new species from human skin. Stud Mycol. 2008;61: 131–136. 10.3114/sim.2008.61.13 PubMed DOI PMC
Batista AC, Ciferri R. The Chaetothyriales. Sydowia. 1962;3: 1–129.
Papendorf MC. New South African soil fungi. Trans Br Mycol Soc. 1969;52: 483–489.
Yang H, Chomnunti P, Ariyawansa HA, Wu HX, Hyde KD. The genus Phaeosaccardinula (Chaetothyriales) from Yunnan, China, introducing two new species. Chaing Mai J Sci. 2014;41: 873–884.
Swart L, Crous PW, Denman S, Palm ME. Fungi occurring on Proteaceae. I. S Afr J Bot. 1998;64: 137–146.
Crous PW, Braun U, Wingfield MJ, Wood AR, Shin H, Summerell BA, et al. Phylogeny and taxonomy of obscure genera of microfungi. Persoonia. 2009;22: 139–161. 10.3767/003158509X461701 PubMed DOI PMC
Crous PW, Shivas RG, Quaedvlieg W, van der Bank M, Zhang, Summerell BA, et al. Fungal Planet Description Sheets: 214–280. Persoonia. 2014;32: 184–306. 10.3767/003158514X682395 PubMed DOI PMC
Nascimento MM, Selbmann L, Sharifynia S, Al-Hatmi AM, Voglmayr H, Vidente VA, et al. Arthrocladium, an unexpected human opportunist in Trichomeriaceae (Chaetothyriales). Fungal Biol. 2016;120: 207–218. 10.1016/j.funbio.2015.08.018 PubMed DOI
Crous PW, Schroers H-J, Groenewald JZ, Braun U, Schubert K. Metulocladosporiella gen. nov. for the causal organism of Cladosporium speckle disease of banana. Mycol Res. 2006;110: 264–275. PubMed
Egenlauf B, Schuhmann B, Giese T, Junghanss T, Kapaun T, Tintelnot K, et al. Disseminierte Mykose mit Arthrocladium Species gefährdete Patientin mit GATA-2 Defekt. Pneumonologie. 2015;69.
Untereiner WA, Gueidan C, Orr M-J, Diederich P. The phylogenetic position of the lichenicolous ascomycete Capronia peltigerae. Fungal Divers. 2011;49: 225–233.
Mai JC, Coleman AW. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J Mol Evol. 1997;44: 258–271. PubMed
Joseph N, Krauskopf E, Vera MI, Michot B. Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucleic Acids Res. 1999;27: 4533–4540. PubMed PMC
Coleman AW, Mai JC. Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol. 1997;45: 168–177. PubMed
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109: 6241–6246. 10.1073/pnas.1117018109 PubMed DOI PMC
Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genet. 2003;19: 370–375. PubMed
Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007;35: 3322–3329. PubMed PMC
Mayr E. The growth of biological thought Harvard University Press, Cambridge, MA; 1982.
Gutell RR, Larsen N, Woese CR. Lessons from an evolving ribosomal-RNA– 16S and 23S ribosomal-RNA structures from a comparative perspective. Microbiol Rev. 1994;58: 10–26. PubMed PMC
Coleman AW, Jaenicke J, Starr RC. Genetics and sexual behaviour of the pheromone producer Chlamydomonas allensworthii (Chlorophyceae). J Phycol. 2001;37: 345–349.
Fungal Keratitis Caused by Colletotrichum dematium: Case Study and Review