Cardioprotective Regimen of Adaptation to Chronic Hypoxia Diversely Alters Myocardial Gene Expression in SHR and SHR-mtBN Conplastic Rat Strains
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30723458
PubMed Central
PMC6350269
DOI
10.3389/fendo.2018.00809
Knihovny.cz E-zdroje
- Klíčová slova
- SHR, SHR-mtBN, conplastic strain, hypoxia, left ventricle, metabolism,
- Publikační typ
- časopisecké články MeSH
Adaptation to continuous normobaric hypoxia (CNH) protects the heart against acute ischemia/reperfusion injury. Recently, we have demonstrated the infarct size-limiting effect of CNH also in hearts of spontaneously hypertensive rats (SHR) and in conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of more ischemia-resistant Brown Norway rats. Importantly, cardioprotective effect of CNH was more pronounced in SHR-mtBN than in SHR. Thus, here we aimed to identify candidate genes which may contribute to this difference between the strains. Rats were adapted to CNH (FiO2 0.1) for 3 weeks or kept at room air as normoxic controls. Screening of 45 transcripts was performed in left ventricles using Biomark Chip. Significant differences between the groups were analyzed by univariate analysis (ANOVA) and the genes contributing to the differences between the strains unmasked by CNH were identified by multivariate analyses (PCA, SOM). ANOVA with Bonferroni correction revealed that transcripts differently affected by CNH in SHR and SHR-mtBN belong predominantly to lipid metabolism and antioxidant defense. PCA divided four experimental groups into two main clusters corresponding to chronically hypoxic and normoxic groups, and differences between the strains were more pronounced after CNH. Subsequently, the following 14 candidate transcripts were selected by PCA, and confirmed by SOM analyses, that can contribute to the strain differences in cardioprotective phenotype afforded by CNH: Alkaline ceramidase 2 (Acer2), Fatty acid translocase (Cd36), Aconitase 1 (Aco1), Peroxisome proliferator activated receptor gamma (Pparg), Hemoxygenase 2 (Hmox2), Phospholipase A2 group IIA (Ppla2g2a), Dynamin-related protein (Drp), Protein kinase C epsilon (Pkce), Hexokinase 2 (Hk2), Sphingomyelin synthase 2 (Sgms2), Caspase 3 (Casp3), Mitofussin 1 (Mfn1), Phospholipase A2 group V (Pla2g5), and Catalase (Cat). Our data suggest that the stronger cardioprotective phenotype of conplastic SHR-mtBN strain afforded by CNH is associated with either preventing the drop or increasing the expression of transcripts related to energy metabolism, antioxidant response and mitochondrial dynamics.
Department of Cell Biology Faculty of Science Charles University Prague Czechia
Department of Physiology Faculty of Science Charles University Prague Czechia
Institute of Biotechnology Czech Academy of Sciences Prague Czechia
Institute of Physiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Franklin SS, Wong ND. Hypertension and cardiovascular disease: Contributions of the Framingham Heart Study. Glob Heart (2013) 8:49–57. 10.1016/j.gheart.2012.12.004 PubMed DOI
Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. (1963) 27:282–93. 10.1253/jcj.27.282 PubMed DOI
Hajri T, Ibrahimi A, Coburn CT, Knapp FFJ, Kurtz T, Pravenec M, et al. . Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem. (2001) 276:23661–6. 10.1074/jbc.M100942200 PubMed DOI
Reaven GM, Chang H. Relationship between blood pressure, plasma insulin and triglyceride concentration, and insulin action in spontaneous hypertensive and Wistar-Kyoto rats. Am J Hypertens. (1991) 4:34–8. 10.1093/ajh/4.1.34 PubMed DOI
Penna C, Tullio F, Moro F, Folino A, Merlino A, Pagliaro P. Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats. Basic Res Cardiol. (2010) 105:181–92. 10.1007/s00395-009-0075-6 PubMed DOI
Besík J, Szárszoi O, Kunes J, Netuka I, Malý J, Kolár F, et al. . Tolerance to acute ischemia in adult male and female spontaneously hypertensive rats. Physiol Res. (2007) 56:267–74. PubMed
Garlid KD, Costa ADT, Quinlan CL, Pierre SV. Cardioprotective signalling to mitochondria. J. Mol. Cell. Cardiol. (2009) 46:858–66. 10.1016/j.yjmcc.2008.11.019.Cardioprotective PubMed DOI PMC
Pravenec M, Hyakukoku M, Houstek J, Zidek V, Landa V, Mlejnek P, et al. . Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res. (2007) 17:1319–26. 10.1101/gr.6548207 PubMed DOI PMC
Neckar J, Svatonova A, Weissova R, Drahota Z, Zajickova P, Brabcova I, et al. . Selective replacement of mitochondrial DNA increases cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clin Sci. (2017) 131:865–81. 10.1042/CS20170083 PubMed DOI
Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol. (2015) 78:129–41. 10.1016/j.yjmcc.2014.08.018 PubMed DOI
Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. (2010) 38:841–60. 10.1042/BST0380841 PubMed DOI
Kasparova D, Neckar J, Dabrowska L, Novotny J, Mraz J, Kolar F, et al. Cardioprotective and non-protective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol Genom. (2015) 47:612–20. 10.1152/physiolgenomics.00058.2015 PubMed DOI
Kolar D, Gresikova M, Waskova-Arnostova P, Elsnicova B, Kohutova J, Hornikova D, et al. . Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult. Mol Cell Biochem. (2017) 432:99–108. 10.1007/s11010-017-3001-5 PubMed DOI
Nedvedova I, Kolar D, Elsnicova B, Hornikova D, Novotny J, Kalous M, et al. . Mitochondrial genome modulates myocardial Akt/GLUT/HK salvage pathway in spontaneously hypertensive rats adapted to chronic hypoxia. Physiol Genomics. (2018) 50:532–41. 10.1152/physiolgenomics.00040.2017 PubMed DOI
Waskova-Arnostova P, Kasparova D, Elsnicova B, Novotny J, Neckar J, Kolar F, et al. . Chronic hypoxia enhances expression and activity of mitochondrial creatine kinase and hexokinase in the rat ventricular myocardium. Cell Physiol Biochem. (2014) 33:310–20. 10.1159/000356671 PubMed DOI
Essop MF. Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol. (2007) 584:715–26. 10.1113/jphysiol.2007.143511 PubMed DOI PMC
Rumsey WL, Abbott B, Bertelsen D, Mallamaci M, Nelson D, Erecinska M, et al. . Adaptation to hypoxia alters energy metabolism in rat heart. AM J Physiol. (1999) 276(1 Pt 2):71–80. 10.1152/ajpheart.1999.276.1.H71 PubMed DOI
Krijnen PA, Meischl C, Nijmeijer R, Visser CA, Hack CE, Niessen HW. Inhibition of sPLA2-IIA, C-reactive protein or complement: new therapy for patients with acute myocardial infarction? Cardiovasc. Hematol. Disord. Targets (2006) 6:111–21. 10.2174/187152906777441830 PubMed DOI
Dutour A, Achard V, Sell H, Naour N, Collart F, Gaborit B, et al. . Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and overexpressed in patients with coronary artery disease. J Clin Endocrinol Metab. (2010) 95:963–7. 10.1210/jc.2009-1222 PubMed DOI
Nijmeijer R, Lagrand WK, Baidoshvili A, Lubbers YTP, Hermens WT, Meijer CJLM, et al. Secretory type II phospholipase A2 binds to ischemic myocardium during myocardial infarction in humans. Cardiovasc Res. (2002) 53:138–46. 10.1016/S0008-6363(01)00480-1 PubMed DOI
Van Dijk A, Krijnen PAJ, Vermond RA, Pronk A, Spreeuwenberg M, Visser FC, et al. Inhibition of type 2A secretory phospholipase A2 reduces death of cardiomyocytes in acute myocardial infarction. Apoptosis (2009) 14:753–63. 10.1007/s10495-009-0350-x PubMed DOI
Alanova P, Chytilova A, Neckar J, Hrdlicka J, Micova P, Holzerova K, et al. . Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol. (2017) 122:1452–61. 10.1152/japplphysiol.00671.2016 PubMed DOI
Cupillard L, Koumanov K, Mattei MG, Lazdunski M, Lambeau G. Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A2. J Biol Chem. (1997) 272:15745–52. 10.1074/jbc.272.25.15745 PubMed DOI
Ishikawa Y, Komiyama K, Masuda S, Murakami M, Akasaka Y, Ito K, et al. . Expression of type V secretory phospholipase A in myocardial remodelling after infarction. Histopathology (2005) 47:257–67. 10.1111/j.1365-2559.2005.02227.x PubMed DOI
Shinohara H, Balboa MA, Johnson CA, Balsinde J, Dennis EA. Regulation of delayed prostaglandin production in activated P388D1 macrophages by group IV cytosolic and group V secretory phospholipase A2s. J Biol Chem. (1999) 274:12263–8. 10.1074/jbc.274.18.12263 PubMed DOI
Sun W, Jin J, Xu R, Hu W, Szulc ZM, Bielawski J, et al. . Substrate specificity, membrane topology, and activity regulation of human alkaline ceramidase 2 (ACER2). J Biol Chem. (2010) 285:8995–9007. 10.1074/jbc.M109.069203 PubMed DOI PMC
Xu R, Jin J, Hu W, Sun W, Bielawski J, Szulc Z, et al. . Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. FASEB J. (2006) 20:1813–25. 10.1096/fj.05-5689com PubMed DOI
Van Brocklyn, JR, Williams JB. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol. (2012) 163:26–36. 10.1016/j.cbpb.2012.05.006 PubMed DOI
Holzerova K, Hlavackova M, Zurmanova J, Borchert G, Neckar J, Kolar F, et al. . Involvement of PKCepsilon in cardioprotection induced by adaptation to chronic continuous hypoxia. Physiol Res. (2015) 64:191–201. PubMed
Guo D, Nguyen T, Ogbi M, Tawfik H, Ma G, Yu Q, et al. . Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol. (2007) 293:H2219–30. 10.1152/ajpheart.01306.2006 PubMed DOI
Budas G, Costa HMJ, Ferreira JCB, Teixeira da Silva Ferreira A, Perales J, Krieger JE, et al. . Identification of epsilonPKC targets during cardiac ischemic injury. Circ J. (2012) 76:1476–85. 10.1253/circj.CJ-11-1360 PubMed DOI PMC
Baines CP, Zhang J, Wang G-W, Zheng Y-T, Xiu JX, Cardwell EM, et al. Mitochondrial PKC? and MAPK Form Signaling Modules in the Murine Heart Enhanced Mitochondrial PKC?-MAPK Interactions and Differential MAPK Activation in PKC?-Induced Cardioprotection. Circulation (2002) 90:390–7. 10.1161/01.RES.0000012702.90501.8D PubMed DOI
Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, et al. . Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science (2003) 299:896–9. 10.1126/science.1079368 PubMed DOI
Choi YS, Kim S, Kyu Lee H, Lee K-U, Pak YK. In vitro methylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A. Biochem Biophys Res Commun. (2004) 314:118–22. 10.1016/j.bbrc.2003.12.065 PubMed DOI
Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA. (1994) 91:1309–13. 10.1073/pnas.91.4.1309 PubMed DOI PMC
Hondares E, Mora O, Yubero P, Rodriguez de la Concepcion M, Iglesias R, Giralt M, et al. . Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology (2006) 147:2829–38. 10.1210/en.2006-0070 PubMed DOI
Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. (2004) 95:568–78. 10.1161/01.RES.0000141774.29937.e3 PubMed DOI
Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. (2003) 24:78–90. 10.1210/er.2002-0012 PubMed DOI
Ding G, Fu M, Qin Q, Lewis W, Kim HW, Fukai T, et al. . Cardiac peroxisome proliferator-activated receptor gamma is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res. (2007) 76:269–79. 10.1016/j.cardiores.2007.06.027 PubMed DOI
Burns KA, Vanden Heuvel JP. Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta (2007) 1771:952–60. 10.1016/j.bbalip.2007.04.018 PubMed DOI PMC
Tsao W-C, Wu H-M, Chi K-H, Chang Y-H, Lin W-W. Proteasome inhibitors induce peroxisome proliferator-activated receptor transactivation through RXR accumulation and a protein kinase C-dependent pathway. Exp Cell Res. (2005) 304:234–43. 10.1016/j.yexcr.2004.11.004 PubMed DOI
Williams SEJ, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, et al. . Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science (2004) 306:2093–7. 10.1126/science.1105010 PubMed DOI
Ayer A, Zarjou A, Agarwal A, Stocker R. Heme oxygenases in cardiovascular health and disease. Physiol Rev. (2016) 96:1449–508. 10.1152/physrev.00003.2016 PubMed DOI PMC
Nohl H, Hegner D. Evidence for the existence of catalase in the matrix space ofrat-heart mitochondria. FEBS Lett. (1978) 89:126–30. 10.1016/0014-5793(78)80537-7 PubMed DOI
Li G, Chen Y, Saari JT, Kang YJ. Catalase-overexpressing transgenic mouse heart is resistant to ischemia-reperfusion injury. Am J Physiol. (1997) 273:H1090–5. 10.1152/ajpheart.1997.273.3.H1090 PubMed DOI
Fisher AB. Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A 2 activities. Antioxid Redox Signal. (2011) 15:831–44. 10.1089/ars.2010.3412 PubMed DOI PMC
Pacifici F, Arriga R, Sorice GP, Capuani B, Scioli MG, Pastore D, et al. . Peroxiredoxin 6, a novel player in the pathogenesis of diabetes. Diabetes (2014) 63:3210–20. 10.2337/db14-0144 PubMed DOI
Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M. Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem. (2003) 278:8597–605. 10.1074/jbc.M211761200 PubMed DOI
Koch A, Yoon Y, Bonekamp NA, McNiven MA, Schrader M. A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell (2005) 16:5077–86. 10.1091/mbc.E05-02-0159 PubMed DOI PMC
Schrader M, Bonekamp NA, Islinger M. Fission and proliferation of peroxisomes. Biochim Biophys Acta (2012) 1822:1343–57. 10.1016/j.bbadis.2011.12.014 PubMed DOI
Moorjani N, Ahmad M, Catarino P, Brittin R, Trabzuni D, Al-Mohanna F, et al. . Activation of apoptotic caspase cascade during the transition to pressure overload-induced heart failure. J Am Coll Cardiol. (2006) 48:1451–8. 10.1016/j.jacc.2006.05.065 PubMed DOI
Khalil H, Peltzer N, Walicki J, Yang J-Y, Dubuis G, Gardiol N, et al. . Caspase-3 protects stressed organs against cell death. Mol Cell Biol. (2012) 32:4523–33. 10.1128/MCB.00774-12 PubMed DOI PMC
Mancini M, DW N, Roy S, Thornberry NA, Peterson EP. The caspase 3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol. (1998) 140:1485. 10.1083/jcb.140.6.1485 PubMed DOI PMC
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences