Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28290047
DOI
10.1007/s11010-017-3001-5
PII: 10.1007/s11010-017-3001-5
Knihovny.cz E-zdroje
- Klíčová slova
- Heart, Hexokinase, Hypoxia, Ischemia/reperfusion, Mitochondria, Protein kinase B/Akt,
- MeSH
- hexokinasa metabolismus MeSH
- krysa rodu Rattus MeSH
- myokard enzymologie patologie MeSH
- potkani Wistar MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- reperfuzní poškození myokardu enzymologie patologie MeSH
- srdeční mitochondrie enzymologie patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hexokinasa MeSH
- protoonkogenní proteiny c-akt MeSH
Adaptation to chronic hypoxia represents a potential cardioprotective intervention reducing the extent of acute ischemia/reperfusion (I/R) injury, which is a major cause of death worldwide. The main objective of this study was to investigate the anti-apoptotic Akt/hexokinase 2 (HK2) pathway in hypoxic hearts subjected to I/R insult. Hearts isolated from male Wistar rats exposed either to continuous normobaric hypoxia (CNH; 10% O2) or to room air for 3 weeks were perfused according to Langendorff and subjected to 10 min of no-flow ischemia and 10 min of reperfusion. The hearts were collected either after ischemia or after reperfusion and used for protein analyses and quantitative fluorescence microscopy. The CNH resulted in increased levels of HK1 and HK2 proteins and the total HK activity after ischemia compared to corresponding normoxic group. Similarly, CNH hearts exhibited increased ischemic level of Akt protein phosphorylated on Ser473. The CNH also strengthened the interaction of HK2 with mitochondria and prevented downregulation of mitochondrial creatine kinase after reperfusion. The Bax/Bcl-2 ratio was significantly lower after I/R in CNH hearts than in normoxic ones, suggesting a lower probability of apoptosis. In conclusion, the Akt/HK2 pathway is likely to play a role in the development of a cardioprotective phenotype of CNH by preventing the detachment of HK2 from mitochondria at reperfusion period and decreases the Bax/Bcl-2 ratio during I/R insult, thereby lowering the probability of apoptosis activation in the mitochondrial compartment.
Department of Physiology Faculty of Science Charles University Prague Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
J Biol Chem. 2003 May 16;278(20):17760-6 PubMed
EMBO J. 1996 Dec 2;15(23):6541-51 PubMed
J Mol Cell Cardiol. 2015 Jan;78:129-41 PubMed
Biochim Biophys Acta. 2002 Sep 10;1555(1-3):14-20 PubMed
J Bioenerg Biomembr. 2008 Jun;40(3):171-82 PubMed
Trends Endocrinol Metab. 2015 Aug;26(8):422-9 PubMed
Physiol Genomics. 2015 Dec;47(12 ):612-20 PubMed
J Biol Chem. 2003 Jan 10;278(2):1125-30 PubMed
J Biol Chem. 1974 Mar 10;249(5):1341-7 PubMed
Circ Res. 2011 May 13;108(10):1165-9 PubMed
Biochim Biophys Acta. 2009 May;1787(5):421-30 PubMed
J Appl Physiol (1985). 1999 Nov;87(5):1990-5 PubMed
Oncogene. 1998 Jul 23;17(3):313-25 PubMed
Cell. 2012 Feb 3;148(3):399-408 PubMed
Biochim Biophys Acta. 2005 Dec 20;1710(2-3):78-86 PubMed
Cell Physiol Biochem. 2014;33(2):310-20 PubMed
J Neurosci. 2004 Nov 3;24(44):9993-10002 PubMed
Biochim Biophys Acta. 2009 Oct;1788(10):2032-47 PubMed
Am J Physiol Endocrinol Metab. 2002 Dec;283(6):E1239-48 PubMed
J Appl Physiol (1985). 2009 Jun;106(6):1909-16 PubMed
Cell Death Differ. 2008 Mar;15(3):521-9 PubMed
Biochim Biophys Acta. 1991 Jul 8;1074(2):302-11 PubMed
J Biol Chem. 2013 Aug 16;288(33):23798-806 PubMed
Biochimie. 2008 Oct;90(10):1566-77 PubMed
Physiol Rev. 2011 Jul;91(3):1023-70 PubMed
Curr Pharm Des. 2013;19(39):6880-9 PubMed
Respir Physiol Neurobiol. 2007 Sep 30;158(2-3):224-36 PubMed
PLoS One. 2011 Mar 09;6(3):e17674 PubMed
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H378-86 PubMed
Cell. 1997 Oct 17;91(2):231-41 PubMed
Cell Physiol Biochem. 2013;31(1):66-79 PubMed
Am J Physiol Heart Circ Physiol. 2001 Jun;280(6):H2770-8 PubMed
J Bioenerg Biomembr. 2009 Apr;41(2):181-5 PubMed
Cell. 2006 Oct 6;127(1):125-37 PubMed
J Biol Chem. 2006 Dec 8;281(49):37361-71 PubMed
Circ Res. 2007 Mar 2;100(4):474-88 PubMed
Antioxid Redox Signal. 2005 May-Jun;7(5-6):538-46 PubMed
J Biol Chem. 2002 Mar 1;277(9):7610-8 PubMed
PLoS One. 2008 Mar 19;3(3):e1852 PubMed
J Mol Cell Cardiol. 2008 Feb;44(2):419-28 PubMed
Nat Methods. 2012 Jun 28;9(7):676-82 PubMed
J Clin Invest. 2004 Aug;114(4):495-503 PubMed
J Physiol. 2003 Oct 15;552(Pt 2):335-44 PubMed
J Appl Physiol (1985). 2015 Dec 15;119(12 ):1487-93 PubMed
J Biol Chem. 2008 May 9;283(19):13482-90 PubMed
J Biol Chem. 2007 Jun 22;282(25):18069-82 PubMed
Genes Dev. 2001 Jun 1;15(11):1406-18 PubMed
J Am Heart Assoc. 2013 Nov 04;2(6):e000355 PubMed
Am J Transl Res. 2010 Jan 01;2(1):19-42 PubMed
Biochim Biophys Acta. 1998 Jan 5;1368(1):7-18 PubMed
Mol Cell. 2004 Dec 3;16(5):819-30 PubMed
Arch Biochem Biophys. 1984 Jul;232(1):391-9 PubMed
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2004 Jun;21(3):401-5 PubMed
J Clin Invest. 1992 Nov;90(5):1972-7 PubMed
J Am Heart Assoc. 2012 Dec 31;2(1):e005645 PubMed
Lab Invest. 2015 Jan;95(1):14-25 PubMed
Curr Biol. 2000 Apr 20;10(8):439-48 PubMed
Biochem J. 2011 Jun 1;436(2):493-505 PubMed
The involvement of protein kinases in the cardioprotective effect of chronic hypoxia