Conplastic strains for identification of retrograde effects of mitochondrial dna variation on cardiometabolic traits in the spontaneously hypertensive rat
Jazyk angličtina Země Česko Médium print
Typ dokumentu přehledy, časopisecké články
PubMed
35199537
PubMed Central
PMC9054184
DOI
10.33549/physiolres.934740
PII: 934740
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- kardiovaskulární nemoci * metabolismus MeSH
- krysa rodu Rattus MeSH
- mitochondriální DNA * genetika MeSH
- mitochondrie metabolismus MeSH
- potkani inbrední F344 MeSH
- potkani inbrední SHR MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální DNA * MeSH
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus. Recently, natural mitochondrial genome (mtDNA) polymorphisms (haplogroups) received increasing attention in the pathophysiology of human common diseases. However, retrograde effects of mtDNA variants on such traits are difficult to study in humans. The conplastic strains represent key animal models to elucidate regulatory roles of mtDNA haplogroups on defined nuclear genome background. To analyze the relationship between mtDNA variants and cardiometabolic traits, we derived a set of rat conplastic strains (SHR-mtBN, SHR-mtF344 and SHR-mtLEW), harboring all major mtDNA haplotypes present in common inbred strains on the nuclear background of the spontaneously hypertensive rat (SHR). The BN, F344 and LEW mtDNA differ from the SHR in multiple amino acid substitutions in protein coding genes and also in variants of tRNA and rRNA genes. Different mtDNA haplotypes were found to predispose to various sets of cardiometabolic phenotypes which provided evidence for significant retrograde effects of mtDNA in the SHR. In the future, these animals could be used to decipher individual biochemical components involved in the retrograde signaling.
Zobrazit více v PubMed
AITMAN TJ, GLAZIER AM, WALLACE CA, COOPER LD, NORSWORTHY PJ, WAHID FN, AL-MAJALI KM, TREMBLING PM, MANN CJ, SHOULDERS CC, GRAF D, ST LEZIN E, KURTZ TW, KREN V, PRAVENEC M, IBRAHIMI A, ABUMRAD NA, STANTON LW, SCOTT J. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999;21:76–83. doi: 10.1038/5013. PubMed DOI
ALCOLADO JC, LAJI K, GILL-RANDALL R. Maternal transmission of diabetes. Diabet Med. 2002;19:89–98. doi: 10.1046/j.1464-5491.2002.00675.x. PubMed DOI
AW WC, TOWARNICKI SG, MELVIN RG, YOUNGSON NA, GARVIN MR, HU Y, NIELSEN S, THOMAS T, PICKFORD R, BUSTAMANTE S, VILA-SANJURJO A, SMYTH GK, BALLARD JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet. 2018;14:e1007735. doi: 10.1371/journal.pgen.1007735. PubMed DOI PMC
CYPROVÁ M, BENÁK D, HLAVÁČKOVÁ M, ŠILHAVÝ J, PRAVENEC M, KOLÁŘ F, NECKÁŘ J. Cardiac ischemic tolerance of spontaneously hypertensive rats with replaced mitochondrial DNA: Effect of adaptation to chronic hypoxia. J Mol Cell Cardiol. 2018;120(Suppl 1):5. doi: 10.1016/j.yjmcc.2018.05.027. DOI
DUNHAM-SNARY KJ, SANDEL MW, SAMMY MJ, WESTBROOK DG, XIAO R, MCMONIGLE RJ, RATCLIFFE WF, PENN A, YOUNG ME, BALLINGER SW. Mitochondrial - nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. EBioMedicine. 2018;36:316–328. doi: 10.1016/j.ebiom.2018.08.036. PubMed DOI PMC
GOIOS A, PEREIRA L, BOGUE M, MACAULAY V, AMORIM A. mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res. 2007;17:293–298. doi: 10.1101/gr.5941007. PubMed DOI PMC
HAHNOVÁ K, BRABCOVÁ I, NECKÁŘ J, WEISSOVA R, SVATOŇOVÁ A, NOVÁKOVÁ O, ŽURMANOVÁ J, KALOUS M, ŠILHAVY J, PRAVENEC M, KOLÁŘ F, NOVOTNÝ J. Beta-Adrenergic signaling, monoamine oxidase A and antioxidant defence in the myocardium of SHR and SHR-mtBN conplastic rat strains: the effect of chronic hypoxia. J Physiol Sci. 2018;68:441–454. doi: 10.1007/s12576-017-0546-8. PubMed DOI PMC
HOUŠTEK J, HEJZLAROVÁ K, VRBACKÝ M, DRAHOTA Z, LANDA V, ZÍDEK V, MLEJNEK P, ŠIMÁKOVÁ M, ŠILHAVÝ J, MIKŠÍK I, KAZDOVÁ L, OLIYARNYK O, KURTZ T, PRAVENEC M. Nonsynonymous variants in mt-Nd2, mt-Nd4, and mt-Nd5 are linked to effects on oxidative phosphorylation and insulin sensitivity in rat conplastic strains. Physiol Genomics. 2012;44:487–494. doi: 10.1152/physiolgenomics.00156.2011. PubMed DOI PMC
HOUŠTÊK J, VRBACKÝ M, HEJZLAROVÁ K, ZÍDEK V, LANDA V, ŠILHAVÝ J, ŠIMÁKOVÁ M, MLEJNEK P, KAZDOVÁ L, MIKŠÍK I, NECKÁŘ J, PAPOUŠEK F, KOLÁŘ F, KURTZ TW, PRAVENEC M. Effects of mtDNA in SHR-mtF344 versus SHR conplastic strains on reduced OXPHOS enzyme levels, insulin resistance, cardiac hypertrophy, and systolic dysfunction. Physiol Genomics. 2014;46:671–678. doi: 10.1152/physiolgenomics.00069.2014. PubMed DOI
KESTERSON RA, JOHNSON LW, LAMBERT LJ, VIVIAN JL, WELCH DR, BALLINGER SW. Generation of mitochondrial-nuclear exchange mice via pronuclear transfer. Bio Protoc. 2016;6:e1976. doi: 10.21769/BioProtoc.1976. PubMed DOI PMC
KRAJA AT, LIU C, FETTERMAN JL, GRAFF M, HAVE CT, GU C, YANEK LR, FEITOSA MF, ARKING DE, CHASMAN DI, YOUNG K, LIGTHART S, HILL WD, WEISS S, LUAN J, GIULIANINI F, LI-GAO R, HARTWIG FP, LIN SJ, WANG L, RICHARDSON TG, YAO J, FERNANDEZ EP, GHANBARI M, WOJCZYNSKI MK, LEE WJ, ARGOS M, ARMASU SM, BARVE RA, RYAN KA, AN P, et al. Associations of mitochondrial and nuclear mitochondrial variants and genes with seven metabolic traits. Am J Hum Genet. 2019;104:112–138. doi: 10.1016/j.ajhg.2018.12.001. PubMed DOI PMC
KUMARASAMY S, GOPALAKRISHNAN K, SHAFTON A, NIXON J, THANGAVEL J, FARMS P, JOE B. Mitochondrial polymorphisms in rat genetic models of hypertension. Mamm Genome. 2010;21:299–306. doi: 10.1007/s00335-010-9259-5. PubMed DOI PMC
KUMARASAMY S, GOPALAKRISHNAN K, ABDUL-MAJEED S, PARTOW-NAVID R, FARMS P, JOE B. Construction of two novel reciprocal conplastic rat strains and characterization of cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2013;304:H22–32. doi: 10.1152/ajpheart.00534.2012-. PubMed DOI PMC
LATORRE-PELLICER A, MORENO-LOSHUERTOS R, LECHUGA-VIECO AV, SÁNCHEZ-CABO F, TORROJA C, ACÍN-PÉREZ R, CALVO E, AIX E, GONZÁLEZ-GUERRA A, LOGAN A, BERNAD-MIANA ML, ROMANOS E, CRUZ R, COGLIATI S, SOBRINO B, CARRACEDO Á, PÉREZ-MARTOS A, FERNÁNDEZ-SILVA P, RUÍZ-CABELLO J, MURPHY MP, FLORES I, VÁZQUEZ J, ENRÍQUEZ JA. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature. 2016;535:561–565. doi: 10.1038/nature18618. PubMed DOI
LOTT MT, LEIPZIG JN, DERBENEVA O, XIE HM, CHALKIA D, SARMADY M, PROCACCIO V, WALLACE DC. mtDNA variation and analysis using mitomap and mitomaster. Curr Protoc Bioinformatics. 2013;44:1.23. 1–1.23.26. doi: 10.1002/0471250953.bi0123s44. PubMed DOI PMC
MAROM S, FRIGER M, MISHMAR D. MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci Rep. 2017;7:43449. doi: 10.1038/srep43449. PubMed DOI PMC
McDERMOTT-ROE C, YE J, AHMED R, SUN XM, SERAFÍN A, WARE J, BOTTOLO L, MUCKETT P, CAÑAS X, ZHANG J, ROWE GC, BUCHAN R, LU H, BRAITHWAITE A, MANCINI M, HAUTON D, MARTÍ R, GARCÍA-ARUMÍ E, HUBNER N, JACOB H, SERIKAWA T, ZIDEK V, PAPOUSEK F, KOLAR F, CARDONA M, RUIZ-MEANA M, GARCÍA-DORADO D, COMELLA JX, FELKIN LE, BARTON PJ, ARANY Z, PRAVENEC M, PETRETTO E, SANCHIS D, COOK SA. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature. 2011;478:114–118. doi: 10.1038/nature10490. PubMed DOI PMC
MISHMAR D, RUIZ-PESINI E, GOLIK P, MACAULAY V, CLARK AG, HOSSEINI S, BRANDON M, EASLEY K, CHEN E, BROWN MD, SUKERNIK RI, OLCKERS A, WALLACE DC. Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A. 2003;100:171–176. doi: 10.1073/pnas.0136972100. PubMed DOI PMC
MITCHELL SL, HALL JB, GOODLOE RJ, BOSTON J, FARBER-EGER E, PENDERGRASS SA, BUSH WS, CRAWFORD DC. Investigating the relationship between mitochondrial genetic variation and cardiovascular-related traits to develop a framework for mitochondrial phenome-wide association studies. BioData Min. 2014;7:6. doi: 10.1186/1756-0381-7-6. PubMed DOI PMC
NECKÁŘ J, SVATOŇOVÁ A, WEISSOVÁ R, DRAHOTA Z, ZAJÍČKOVÁ P, BRABCOVÁ I, KOLÁŘ D, ALÁNOVÁ P, VAŠINOVÁ J, ŠILHAVÝ J, HLAVÁČKOVÁ M, TAUCHMANNOVÁ K, MILEROVÁ M, OŠŤÁDAL B, ČERVENKA L, ŽURMANOVÁ J, KALOUS M, NOVÁKOVÁ O, NOVOTNÝ J, PRAVENEC M, KOLÁŘ F. Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clin Sci (Lond) 2017;131:865–881. doi: 10.1042/CS20170083. PubMed DOI
NEDVÊDOVÁ I, KOLÁŘ D, ELSNICOVÁ B, HORNÍKOVÁ D, NOVOTNÝ J, KALOUS M, PRAVENEC M, NECKÁŘ J, KOLÁŘ F, ŽURMANOVÁ JM. Mitochondrial genome modulates myocardial Akt/Glut/HK salvage pathway in spontaneously hypertensive rats adapted to chronic hypoxia. hysiol Genomics. 2018;50:532–541. doi: 10.1152/physiolgenomics.00040.2017. PubMed DOI
NEDVÊDOVÁ I, KOLÁŘ D, NECKÁŘ J, KALOUS M, PRAVENEC M, ŠILHAVÝ J, KOŘENKOVÁ V, KOLÁŘ F, ŽURMANOVÁ JM. Cardioprotective regimen of adaptation to chronic hypoxia diversely alters myocardial gene expression in SHR and SHR-mtBN conplastic rat strains. Front Endocrinol (Lausanne) 2019;9:809. doi: 10.3389/fendo.2018.00809. PubMed DOI PMC
PRAVENEC M, HYAKUKOKU M, HOUŠTÊK J, ZÍDEK V, LANDA V, MLEJNEK P, MIKŠÍK I, DUDOVÁ-MOTHEJZÍKOVÁ K, PECINA P, VRBACKÝ M, DRAHOTA Z, VOJTÍŠKOVÁ A, MRÁČEK T, KAZDOVÁ L, OLIYARNYK O, WANG J, HO C, QI N, SUGIMOTO K, KURTZ T. Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res. 2007;17:1319–1326. doi: 10.1101/gr.6548207. PubMed DOI PMC
PRAVENEC M, CHURCHILL PC, CHURCHILL MC, VIKLICKÝ O, KAZDOVÁ L, AITMAN TJ, PETRETTO E, HÜBNER N, WALLACE CA, ZIMDAHL H, ZÍDEK V, LANDA V, DUNBAR J, BIDANI A, GRIFFIN K, QI N, MAXOVÁ M, KŘEN V, MLEJNEK P, WANG J, KURTZ TW. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet. 2008;40:952–954. doi: 10.1038/ng.164. PubMed DOI
PRAVENEC M, KŘEN V, LANDA V, MLEJNEK P, MUSILOVÁ A, ŠILHAVÝ J, ŠIMÁKOVÁ M, ZÍDEK V. Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res. 2014;63(Suppl 1):S1–S8. doi: 10.33549/physiolres.932622. PubMed DOI
PRAVENEC M, ZÍDEK V, LANDA V, MLEJNEK P, ŠILHAVÝ J, ŠIMÁKOVÁ M, TRNOVSKÁ J, ŠKOP V, MARKOVÁ I, MALÍNSKÁ H, HÜTTL M, KAZDOVÁ L, BARDOVÁ K, TAUCHMANNOVÁ K, VRBACKÝ M, NŮSKOVÁ H, MRÁČEK T, KOPECKÝ J, HOUŠTÊK J. Mutant Wars2 gene in spontaneously hypertensive rats impairs brown adipose tissue function and predisposes to visceral obesity. Physiol Res. 2017;66:917–924. doi: 10.33549/physiolres.933811. PubMed DOI
PRAVENEC M, SABA LM, ZÍDEK V, LANDA V, MLEJNEK P, ŠILHAVÝ J, ŠIMÁKOVÁ M, STRNAD H, TRNOVSKÁ J, ŠKOP V, HÜTTL M, MARKOVÁ I, OLIYARNYK O, MALÍNSKÁ H, KAZDOVÁ L, SMITH H, TABAKOFF B. Systems genetic analysis of brown adipose tissue function. Physiol Genomics. 2018;50:52–66. doi: 10.1152/physiolgenomics.00091.2017. PubMed DOI PMC
RUIZ-PESINI E, MISHMAR D, BRANDON M, PROCACCIO V, WALLACE DC. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science. 2004;303:223–226. doi: 10.1126/science.1088434. PubMed DOI
SAXENA R, DE BAKKER PI, SINGER K, MOOTHA V, BURTT N, HIRSCHHORN JN, GAUDET D, ISOMAA B, DALY MJ, GROOP L, ARDLIE KG, ALTSHULER D. Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am J Hum Genet. 2006;79:54–61. doi: 10.1086/504926. PubMed DOI PMC
SCHLICK NE, JENSEN-SEAMAN MI, ORLEBEKE K, KWITEK AE, JACOB HJ, LAZAR J. Sequence analysis of the complete mitochondrial DNA in 10 commonly used inbred rat strains. Am J Physiol Cell Physiol. 2006;291:C1183–1192. doi: 10.1152/ajpcell.00234.2006. PubMed DOI
SONG S, PURSELL ZF, COPELAND WC, LONGLEY MJ, KUNKEL TA, MATHEWS CK. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc Natl Acad Sci U S A. 2005;102:4990–4995. doi: 10.1073/pnas.0500253102. PubMed DOI PMC
SUN F, CUI J, GAVRAS H, SCHWARTZ F. A novel class of tests for the detection of mitochondrial DNA-mutation involvement in diseases. Am J Hum Genet. 2003;72:1515–1526. doi: 10.1086/375656. PubMed DOI PMC
WANG M, SIPS P, KHIN E, ROTIVAL M, SUN X, AHMED R, WIDJAJA AA, SCHAFER S, YUSOFF P, CHOKSI PK, KO NS, SINGH MK, EPSTEIN D, GUAN Y, HOUŠTÊK J, MRACEK T, NUSKOVA H, MIKELL B, TAN J, PESCE F, KOLAR F, BOTTOLO L, MANCINI M, HUBNER N, PRAVENEC M, PETRETTO E, MACRAE C, COOK SA. Wars2 is a determinant of angiogenesis. Nat Commun. 2016;7:12061. doi: 10.1038/ncomms12061. PubMed DOI PMC
YU X, GIMSA U, WESTER-ROSENLÖF L, KANITZ E, OTTEN W, KUNZ M, IBRAHIM SM. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res. 2009;19:159–165. doi: 10.1101/gr.078865.108. PubMed DOI PMC
Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome
Heat Stroke Induces Pyroptosis in Spermatogonia via the cGAS-STING Signaling Pathway