Systems genetic analysis of brown adipose tissue function
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
PubMed
29127223
PubMed Central
PMC5866413
DOI
10.1152/physiolgenomics.00091.2017
PII: physiolgenomics.00091.2017
Knihovny.cz E-zdroje
- Klíčová slova
- brown adipose tissue, coexpression modules, quantitative trait locus, recombinant inbred strains, spontaneously hypertensive rat,
- MeSH
- genetická predispozice k nemoci genetika MeSH
- glukosa metabolismus MeSH
- hnědá tuková tkáň metabolismus MeSH
- krysa rodu Rattus MeSH
- lokus kvantitativního znaku genetika MeSH
- metabolický syndrom genetika metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glukosa MeSH
Brown adipose tissue (BAT) has been suggested to play an important role in lipid and glucose metabolism in rodents and possibly also in humans. In the current study, we used genetic and correlation analyses in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), to identify genetic determinants of BAT function. Linkage analyses revealed a quantitative trait locus (QTL) associated with interscapular BAT mass on chromosome 4 and two closely linked QTLs associated with glucose oxidation and glucose incorporation into BAT lipids on chromosome 2. Using weighted gene coexpression network analysis (WGCNA) we identified 1,147 gene coexpression modules in the BAT from BXH/HXB rats and mapped their module eigengene QTLs. Through an unsupervised analysis, we identified modules related to BAT relative mass and function. The Coral4.1 coexpression module is associated with BAT relative mass (includes Cd36 highly connected gene), and the Darkseagreen coexpression module is associated with glucose incorporation into BAT lipids (includes Hiat1, Fmo5, and Sort1 highly connected transcripts). Because multiple statistical criteria were used to identify candidate modules, significance thresholds for individual tests were not adjusted for multiple comparisons across modules. In summary, a systems genetic analysis using genomic and quantitative transcriptomic and physiological information has produced confirmation of several known genetic factors and significant insight into novel genetic components functioning in BAT and possibly contributing to traits characteristic of the metabolic syndrome.
Institute for Clinical and Experimental Medicine Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Aitman TJ, Gotoda T, Evans AL, Imrie H, Heath KE, Trembling PM, Truman H, Wallace CA, Rahman A, Doré C, Flint J, Kren V, Zidek V, Kurtz TW, Pravenec M, Scott J. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 16: 197–201, 1997. doi:10.1038/ng0697-197. PubMed DOI
Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St Lezin E, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21: 76–83, 1999. doi:10.1038/5013. PubMed DOI
Amri EZ, Scheideler M. Small non coding RNAs in adipocyte biology and obesity. Mol Cell Endocrinol 456: 87–94, 2017. doi:10.1016/j.mce.2017.04.009. PubMed DOI
Ansari A, Rahman MS, Saha SK, Saikot FK, Deep A, Kim KH. Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell 16: 4–16, 2017. doi:10.1111/acel.12538. PubMed DOI PMC
Avau B, Bauters D, Steensels S, Vancleef L, Laermans J, Lesuisse J, Buyse J, Lijnen HR, Tack J, Depoortere I. The gustatory signaling pathway and bitter taste receptors affect the development of obesity and adipocyte metabolism in mice. PLoS One 10: e0145538, 2015. doi:10.1371/journal.pone.0145538. PubMed DOI PMC
Azzu V, Jastroch M, Divakaruni AS, Brand MD. The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta 1797: 785–791, 2010. doi:10.1016/j.bbabio.2010.02.035. PubMed DOI PMC
Bargut TC, Aguila MB, Mandarim-de-Lacerda CA. Brown adipose tissue: Updates in cellular and molecular biology. Tissue Cell 48: 452–460, 2016. doi:10.1016/j.tice.2016.08.001. PubMed DOI
Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes 34, Suppl 1: S36–S42, 2010. doi:10.1038/ijo.2010.182. PubMed DOI PMC
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmüller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. Brown adipose tissue activity controls triglyceride clearance. Nat Med 17: 200–205, 2011. doi:10.1038/nm.2297. PubMed DOI
Bartelt A, Heeren J. The holy grail of metabolic disease: brown adipose tissue. Curr Opin Lipidol 23: 190–195, 2012. doi:10.1097/MOL.0b013e328352dcef. PubMed DOI
Bielavská E, Křen V, Musilová A, Zídek V, Pravenec M. Genome scanning of the HXB/BXH sets of recombinant inbred strains of the rat for quantitative trait loci associated with conditioned taste aversion. Behav Genet 32: 51–56, 2002. doi:10.1023/A:1014407928865. PubMed DOI
Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890, 2003. doi:10.1093/bioinformatics/btg112. PubMed DOI
Cardamone MD, Tanasa B, Chan M, Cederquist CT, Andricovich J, Rosenfeld MG, Perissi V. GPS2/KDM4A pioneering activity regulates promoter-specific recruitment of PPARγ. Cell Reports 8: 163–176, 2014. doi:10.1016/j.celrep.2014.05.041. PubMed DOI PMC
Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med 14: 10–26, 2012. doi:10.1038/gim.0b013e31822bead0. PubMed DOI
Chilton JK. Molecular mechanisms of axon guidance. Dev Biol 292: 13–24, 2006. doi:10.1016/j.ydbio.2005.12.048. PubMed DOI
Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971, 1994. PubMed PMC
Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev Genet 15: 34–48, 2014. doi:10.1038/nrg3575. PubMed DOI PMC
Clarke RJ, Catauro M, Rasmussen HH, Apell HJ. Quantitative calculation of the role of the Na(+),K(+)-ATPase in thermogenesis. Biochim Biophys Acta 1827: 1205–1212, 2013. doi:10.1016/j.bbabio.2013.06.010. PubMed DOI
Di Lorenzo A, Bedford MT. Histone arginine methylation. FEBS Lett 585: 2024–2031, 2011. doi:10.1016/j.febslet.2010.11.010. PubMed DOI PMC
Dramane G, Akpona S, Besnard P, Khan NA. Cell mechanisms of gustatory lipids perception and modulation of the dietary fat preference. Biochimie 107: 11–14, 2014. doi:10.1016/j.biochi.2014.06.018. PubMed DOI
Duan Z, Brakora KA, Seiden MV. MM-TRAG (MGC4175), a novel intracellular mitochondrial protein, is associated with the taxol- and doxorubicin-resistant phenotype in human cancer cell lines. Gene 340: 53–59, 2004. doi:10.1016/j.gene.2004.06.013. PubMed DOI
Farook VS, Puppala S, Schneider J, Fowler SP, Chittoor G, Dyer TD, Allayee H, Cole SA, Arya R, Black MH, Curran JE, Almasy L, Buchanan TA, Jenkinson CP, Lehman DM, Watanabe RM, Blangero J, Duggirala R. Metabolic syndrome is linked to chromosome 7q21 and associated with genetic variants in CD36 and GNAT3 in Mexican Americans. Obesity (Silver Spring) 20: 2083–2092, 2012. doi:10.1038/oby.2012.74. PubMed DOI PMC
Gilbertson TA, Damak S, Margolskee RF. The molecular physiology of taste transduction. Curr Opin Neurobiol 10: 519–527, 2000. doi:10.1016/S0959-4388(00)00118-5. PubMed DOI
Giordano A, Coppari R, Castellucci M, Cinti S. Sema3a is produced by brown adipocytes and its secretion is reduced following cold acclimation. J Neurocytol 30: 5–10, 2001. doi:10.1023/A:1011916822633. PubMed DOI
Giralt A, Villarroya F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444: 1–10, 2012. doi:10.1042/BJ20120030. PubMed DOI
Gonzalez Malagon SG, Melidoni AN, Hernandez D, Omar BA, Houseman L, Veeravalli S, Scott F, Varshavi D, Everett J, Tsuchiya Y, Timms JF, Phillips IR, Shephard EA. The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. Biochem Pharmacol 96: 267–277, 2015. doi:10.1016/j.bcp.2015.05.013. PubMed DOI PMC
Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 19: 1252–1263, 2013. doi:10.1038/nm.3361. PubMed DOI
Harrall KK, Kechris KJ, Tabakoff B, Hoffman PL, Hines LM, Tsukamoto H, Pravenec M, Printz M, Saba LM. Uncovering the liver’s role in immunity through RNA co-expression networks. Mamm Genome 27: 469–484, 2016. doi:10.1007/s00335-016-9656-5. PubMed DOI PMC
Hasanagic M, Waheed A, Eissenberg JC. Different pathways to the lysosome: Sorting out alternatives. Int Rev Cell Mol Biol 320: 75–101, 2015. doi:10.1016/bs.ircmb.2015.07.008. PubMed DOI
Huang J, Cardamone MD, Johnson HE, Neault M, Chan M, Floyd ZE, Mallette FA, Perissi V. Exchange factor TBL1 and arginine methyltransferase PRMT6 cooperate in protecting G protein pathway suppressor 2 (GPS2) from proteasomal degradation. J Biol Chem 290: 19044–19054, 2015. doi:10.1074/jbc.M115.637660. PubMed DOI PMC
Hübner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zídek V, Musilová A, Křen V, Causton H, Game L, Born G, Schmidt S, Müller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37: 243–253, 2005. doi:10.1038/ng1522. PubMed DOI
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47: 118–148, 2014. doi:10.1016/j.biocel.2013.11.021. PubMed DOI PMC
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15, 2003. doi:10.1093/nar/gng015. PubMed DOI PMC
Kadowaki T, Kido MA, Hatakeyama J, Okamoto K, Tsukuba T, Yamamoto K. Defective adipose tissue development associated with hepatomegaly in cathepsin E-deficient mice fed a high-fat diet. Biochem Biophys Res Commun 446: 212–217, 2014. doi:10.1016/j.bbrc.2014.02.089. PubMed DOI
Kim S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 22: 665–674, 2015. doi:10.5351/CSAM.2015.22.6.665. PubMed DOI PMC
Kim WS, Park HS, Sung JH. The pivotal role of PDGF and its receptor isoforms in adipose-derived stem cells. Histol Histopathol 30: 793–799, 2015. doi:10.14670/HH-11-598. PubMed DOI
Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109: 145–148, 2002. doi:10.1016/S0092-8674(02)00718-3. PubMed DOI
Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288: 2709–2716, 2002. doi:10.1001/jama.288.21.2709. PubMed DOI
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559, 2008. doi:10.1186/1471-2105-9-559. PubMed DOI PMC
Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199, 1989. PubMed PMC
Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11: 241–247, 1995. doi:10.1038/ng1195-241. PubMed DOI
Lee KM, Nam K, Oh S, Lim J, Lee T, Shin I. ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2. Cell Signal 27: 228–235, 2015. doi:10.1016/j.cellsig.2014.11.004. PubMed DOI
Lekholm E, Perland E, Eriksson MM, Hellsten SV, Lindberg FA, Rostami J, Fredriksson R. Putative membrane-bound transporters MFSD14A and MFSD14B are neuronal and affected by nutrient availability. Front Mol Neurosci 10: 11, 2017. doi:10.3389/fnmol.2017.00011. PubMed DOI PMC
Li JJ, Ferry RJ Jr, Diao S, Xue B, Bahouth SW, Liao FF. Nedd4 haploinsufficient mice display moderate insulin resistance, enhanced lipolysis, and protection against high-fat diet-induced obesity. Endocrinology 156: 1283–1291, 2015. doi:10.1210/en.2014-1909. PubMed DOI PMC
Love-Gregory L, Sherva R, Sun L, Wasson J, Schappe T, Doria A, Rao DC, Hunt SC, Klein S, Neuman RJ, Permutt MA, Abumrad NA. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum Mol Genet 17: 1695–1704, 2008. doi:10.1093/hmg/ddn060. PubMed DOI PMC
Love-Gregory L, Abumrad NA. CD36 genetics and the metabolic complications of obesity. Curr Opin Clin Nutr Metab Care 14: 527–534, 2011. doi:10.1097/MCO.0b013e32834bbac9. PubMed DOI PMC
Luo X, Jia R, Luo XQ, Wang G, Zhang QL, Qiao H, Wang N, Yan JQ. Cold exposure differentially stimulates angiogenesis in BAT and WAT of mice: Implication in adrenergic activation. Cell Physiol Biochem 42: 974–986, 2017. doi:10.1159/000478680. PubMed DOI
Martin C, Passilly-Degrace P, Gaillard D, Merlin JF, Chevrot M, Besnard P. The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS One 6: e24014, 2011. doi:10.1371/journal.pone.0024014. PubMed DOI PMC
Matsuo N, Kawamoto S, Matsubara K, Okubo K. Cloning of a cDNA encoding a novel sugar transporter expressed in the neonatal mouse hippocampus. Biochem Biophys Res Commun 238: 126–129, 1997. doi:10.1006/bbrc.1997.7252. PubMed DOI
McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. Wiley Interdiscip Rev RNA 6: 173–189, 2015. doi:10.1002/wrna.1266. PubMed DOI PMC
Morimoto-Kobayashi Y, Ohara K, Takahashi C, Kitao S, Wang G, Taniguchi Y, Katayama M, Nagai K. Matured hop bittering components induce thermogenesis in brown adipose tissue via sympathetic nerve activity. PLoS One 10: e0131042, 2015. doi:10.1371/journal.pone.0131042. PubMed DOI PMC
Mossmann D, Meisinger C, Vögtle FN. Processing of mitochondrial presequences. Biochim Biophys Acta 1819: 1098–1106, 2012. doi:10.1016/j.bbagrm.2011.11.007. PubMed DOI
Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B. PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta 1740: 293–304, 2005. doi:10.1016/j.bbadis.2005.02.003. PubMed DOI
Nerstedt A, Cansby E, Andersson CX, Laakso M, Stančáková A, Blüher M, Smith U, Mahlapuu M. Serine/threonine protein kinase 25 (STK25): a novel negative regulator of lipid and glucose metabolism in rodent and human skeletal muscle. Diabetologia 55: 1797–1807, 2012. doi:10.1007/s00125-012-2511-7. PubMed DOI
Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92: 1479–1514, 2012. doi:10.1152/physrev.00022.2011. PubMed DOI PMC
Plein A, Fantin A, Ruhrberg C. Neuropilin regulation of angiogenesis, arteriogenesis, and vascular permeability. Microcirculation 21: 315–323, 2014. doi:10.1111/micc.12124. PubMed DOI PMC
Pravenec M, Křen V, Landa V, Mlejnek P, Musilová A, Šilhavý J, Šimáková M, Zídek V. Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res 63, Suppl 1: S1–S8, 2014. PubMed
Pravenec M, Zídek V, Musilová A, Vorlícek J, Křen V, St Lezin E, Kurtz TW. Genetic isolation of a blood pressure quantitative trait locus on chromosome 2 in the spontaneously hypertensive rat. J Hypertens 19: 1061–1064, 2001. doi:10.1097/00004872-200106000-00010. PubMed DOI
Pravenec M, Zídek V, Šimáková M, Křen V, Křenová D, Horký K, Jáchymová M, Miková B, Kazdová L, Aitman TJ, Churchill PC, Webb RC, Hingarh NH, Yang Y, Wang JM, Lezin EM, Kurtz TW. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J Clin Invest 103: 1651–1657, 1999. doi:10.1172/JCI6691. PubMed DOI PMC
Pravenec M, Landa V, Zídek V, Musilová A, Křen V, Kazdová L, Aitman TJ, Glazier AM, Ibrahimi A, Abumrad NA, Qi N, Wang JM, St Lezin EM, Kurtz TW. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet 27: 156–158, 2001. doi:10.1038/84777. PubMed DOI
Pravenec M, Churchill PC, Churchill MC, Viklický O, Kazdová L, Aitman TJ, Petretto E, Hübner N, Wallace CA, Zimdahl H, Zídek V, Landa V, Dunbar J, Bidani A, Griffin K, Qi N, Maxová M, Křen V, Mlejnek P, Wang J, Kurtz TW. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet 40: 952–954, 2008. doi:10.1038/ng.164. PubMed DOI
Primeaux SD, Braymer HD, Bray GA. High fat diet differentially regulates the expression of olfactory receptors in the duodenum of obesity-prone and obesity-resistant rats. Dig Dis Sci 58: 72–76, 2013. doi:10.1007/s10620-012-2421-z. PubMed DOI PMC
Primeaux SD, Braymer HD, Bray GA. CD36 mRNA in the gastrointestinal tract is differentially regulated by dietary fat intake in obesity-prone and obesity-resistant rats. Dig Dis Sci 58: 363–370, 2013. doi:10.1007/s10620-012-2364-4. PubMed DOI PMC
Ramseyer VD, Granneman JG. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte 5: 119–129, 2016. doi:10.1080/21623945.2016.1145846. PubMed DOI PMC
Reinhard L, Tidow H, Clausen MJ, Nissen P. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase. Cell Mol Life Sci 70: 205–222, 2013. doi:10.1007/s00018-012-1039-9. PubMed DOI PMC
Riederer MA, Soldati T, Shapiro AD, Lin J, Pfeffer SR. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J Cell Biol 125: 573–582, 1994. doi:10.1083/jcb.125.3.573. PubMed DOI PMC
Qi L, Heredia JE, Altarejos JY, Screaton R, Goebel N, Niessen S, Macleod IX, Liew CW, Kulkarni RN, Bain J, Newgard C, Nelson M, Evans RM, Yates J, Montminy M. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science 312: 1763–1766, 2006. doi:10.1126/science.1123374. PubMed DOI
Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G, Kiianmaa K, Bell RL, Printz MP, Flodman P, Koob G, Richardson HN, Lombardo J, Hoffman PL, Tabakoff B. The sequenced rat brain transcriptome–its use in identifying networks predisposing alcohol consumption. FEBS J 282: 3556–3578, 2015. doi:10.1111/febs.13358. PubMed DOI PMC
Saito M. Brown adipose tissue as a therapeutic target for human obesity. Obes Res Clin Pract 7: e432–e438, 2013. doi:10.1016/j.orcp.2013.09.001. PubMed DOI
Sakamoto T, Takahashi N, Goto T, Kawada T. Dietary factors evoke thermogenesis in adipose tissues. Obes Res Clin Pract 8: e533–e539, 2014. doi:10.1016/j.orcp.2013.12.002. PubMed DOI
Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158: 647–657, 2002. doi:10.1083/jcb.200205057. PubMed DOI PMC
Scott F, Gonzalez Malagon SG, O’Brien BA, Fennema D, Veeravalli S, Coveney CR, Phillips IR, Shephard EA. Identification of flavin-containing monooxygenase 5 (FMO5) as a regulator of glucose homeostasis and a potential sensor of gut bacteria. Drug Metab Dispos 45: 982–989, 2017. doi:10.1124/dmd.117.076612. PubMed DOI PMC
Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, Andersson P, Nakamura M, Näslund E, Ylä-Herttuala S, Sun M, Iwamoto H, Li X, Liu Y, Samani NJ, Cao Y. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun 7: 12152, 2016. doi:10.1038/ncomms12152. PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504, 2003. doi:10.1101/gr.1239303. PubMed DOI PMC
Shepard BD, Cheval L, Peterlin Z, Firestein S, Koepsell H, Doucet A, Pluznick JL. A renal olfactory receptor aids in kidney glucose handling. Sci Rep 6: 35215, 2016. doi:10.1038/srep35215. PubMed DOI PMC
Shi J, Kandror KV. Sortilin is essential and sufficient for the formation of Glut4 storage vesicles in 3T3-L1 adipocytes. Dev Cell 9: 99–108, 2005. doi:10.1016/j.devcel.2005.04.004. PubMed DOI
Shi J, Kandror KV. The luminal Vps10p domain of sortilin plays the predominant role in targeting to insulin-responsive Glut4-containing vesicles. J Biol Chem 282: 9008–9016, 2007. doi:10.1074/jbc.M608971200. PubMed DOI
Sieberts SK, Schadt EE. Moving toward a system genetics view of disease. Mamm Genome 18: 389–401, 2007. doi:10.1007/s00335-007-9040-6. PubMed DOI PMC
Srivastava S, Li Z, Lin L, Liu G, Ko K, Coetzee WA, Skolnik EY. The phosphatidylinositol 3-phosphate phosphatase myotubularin- related protein 6 (MTMR6) is a negative regulator of the Ca2+-activated K+ channel KCa3.1. Mol Cell Biol 25: 3630–3638, 2005. doi:10.1128/MCB.25.9.3630-3638.2005. PubMed DOI PMC
STAR Consortium; Saar K, Beck A, Bihoreau MT, Birney E, Brocklebank D, Chen Y, Cuppen E, Demonchy S, Dopazo J, Flicek P, Foglio M, Fujiyama A, Gut IG, Gauguier D, Guigo R, Guryev V, Heinig M, Hummel O, Jahn N, Klages S, Kren V, Kube M, Kuhl H, Kuramoto T, Kuroki Y, Lechner D, Lee YA, Lopez-Bigas N, Lathrop GM, Mashimo T, Medina I, Mott R, Patone G, Perrier-Cornet JA, Platzer M, Pravenec M, Reinhardt R, Sakaki Y, Schilhabel M, Schulz H, Serikawa T, Shikhagaie M, Tatsumoto S, Taudien S, Toyoda A, Voigt B, Zelenika D, Zimdahl H, Hubner N. SNP and haplotype mapping for genetic analysis in the rat. Nat Genet 40: 560–566, 2008. doi:10.1038/ng.124. PubMed DOI PMC
Tsujita K, Itoh T, Kondo A, Oyama M, Kozuka-Hata H, Irino Y, Hasegawa J, Takenawa T. Proteome of acidic phospholipid-binding proteins: spatial and temporal regulation of Coronin 1A by phosphoinositides. J Biol Chem 285: 6781–6789, 2010. doi:10.1074/jbc.M109.057018. PubMed DOI PMC
Vasconcelos LH, Souza IL, Pinheiro LS, Silva BA. Ion channels in obesity: Pathophysiology and potential therapeutic targets. Front Pharmacol 7: 58, 2016. doi:10.3389/fphar.2016.00058. PubMed DOI PMC
Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD. Brown adipose tissue in morbidly obese subjects. PLoS One 6: e17247, 2011. doi:10.1371/journal.pone.0017247. PubMed DOI PMC
Virtanen KA. The rediscovery of BAT in adult humans using imaging. Best Pract Res Clin Endocrinol Metab 30: 471–477, 2016. doi:10.1016/j.beem.2016.09.001. PubMed DOI
Wei H, Mundade R, Lange KC, Lu T. Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle 13: 32–41, 2014. doi:10.4161/cc.27353. PubMed DOI PMC
Wei P, Sun FD, Zuo LM, Qu J, Chen P, Xu LD, Luo SZ. Critical residues and motifs for homodimerization of the first transmembrane domain of the plasma membrane glycoprotein CD36. J Biol Chem 292: 8683–8693, 2017. doi:10.1074/jbc.M117.779595. PubMed DOI PMC
Wilson SM, Lee SC, Shook S, Pappone PA. ATP and beta-adrenergic stimulation enhance voltage-gated K current inactivation in brown adipocytes. Am J Physiol Cell Physiol 279: C1847–C1858, 2000. doi:10.1152/ajpcell.2000.279.6.C1847. PubMed DOI
Ylikallio E, Pöyhönen R, Zimon M, De Vriendt E, Hilander T, Paetau A, Jordanova A, Lönnqvist T, Tyynismaa H. Deficiency of the E3 ubiquitin ligase TRIM2 in early-onset axonal neuropathy. Hum Mol Genet 22: 2975–2983, 2013. doi:10.1093/hmg/ddt149. PubMed DOI
Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J Cell Biol 191: 367–381, 2010. doi:10.1083/jcb.201008051. PubMed DOI PMC
Yuan Z, Cai T, Tian J, Ivanov AV, Giovannucci DR, Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell 16: 4034–4045, 2005. doi:10.1091/mbc.E05-04-0295. PubMed DOI PMC
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4: Article17, 2005. doi:10.2202/1544-6115.1128. PubMed DOI
Zhong LY, Cayabyab FS, Tang CK, Zheng XL, Peng TH, Lv YC. Sortilin: A novel regulator in lipid metabolism and atherogenesis. Clin Chim Acta 460: 11–17, 2016. doi:10.1016/j.cca.2016.06.013. PubMed DOI