Heat Stroke Induces Pyroptosis in Spermatogonia via the cGAS-STING Signaling Pathway

. 2024 Mar 11 ; 73 (1) : 117-125.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38466010

To explore the mechanism whereby cGAS-STING pathway regulates the pyroptosis of cryptorchidism cells, with a view to finding a new strategy for clinically treating cryptorchidism-induced infertility. Spermatogonial GC-1 cells were heat stimulated to simulate the heat hurt microenvironment of cryptorchidism. The cell viability was assayed by CCK-8, and cellular DNA damage was detected by gamma-H2AX immunofluo-rescence assay. Flow cytometry was employed to assess pyroptosis index, while western blot, ELISA and PCR were used to examine the expressions of pyroptosis-related proteins (Caspase-1, IL-1beta, NLRP3) and cGAS-STING pathway proteins (cGAS, STING). After STING silencing by siRNA, the expressions of pyroptosis-related proteins were determined. Pyroptosis occurred after heat stimulation of cells. Morphological detection found cell swelling and karyopyknosis. According to the gamma-H2AX immunofluorescence (IFA) assay, the endonuclear green fluorescence was significantly enhanced, the gamma-H2AX content markedly increased, and the endonuclear DNA was damaged. Flow cytometry revealed a significant increase in pyroptosis index. Western blot and PCR assays showed that the expressions of intracellular pyrogenic proteins like Caspase-1, NLRP3 and GSDMD were elevated. The increased STING protein and gene expressions in cGAS-STING pathway suggested that the pathway was intracellularly activated. Silencing STING protein in cGAS-STING pathway led to significantly inhibited pyroptosis. These results indicate that cGAS-STING pathway plays an important role in heat stress-induced pyroptosis of spermatogonial cells. After heat stimulation of spermatogonial GC-1 cells, pyroptosis was induced and cGAS-STING pathway was activated. This study can further enrich and improve the molecular mechanism of cryptorchidism.

Zobrazit více v PubMed

Kübarsepp V, Varik K, Varendi H, Antson A, Veinla M, Nellis G, Merila M, et al. Prevalence of congenital cryptorchidism in Estonia. Andrology. 2022;10:303–309. doi: 10.1111/andr.13121. PubMed DOI

Shiraishi K, Takihara H, Matsuyama H. Testicular Temperature and the Effects of Orchiopexy in Infants with Cryptorchidism. J Urol. 2021;206:1031–1037. doi: 10.1097/JU.0000000000001896. PubMed DOI

Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res. 2023;72:1–13. doi: 10.33549/physiolres.934971. PubMed DOI PMC

Zhang RN, Sun ZJ, Zhang L. Pyroptosis in inflammatory bone diseases:Molecular insights and targeting strategies. FASEB J. 2022;36:e22670. doi: 10.1096/fj.202201229R. PubMed DOI

Al Mamun A, Ara Mimi A, Wu Y, Zaeem M, Abdul Aziz M, Aktar Suchi S, Alyafeai E, et al. Pyroptosis in diabetic nephropathy. Clin Chim Acta. 2021;523:131–143. doi: 10.1016/j.cca.2021.09.003. PubMed DOI

Atabaki R, Khaleghzadeh-Ahangar H, Esmaeili N, Mohseni-Moghaddam P. Role of pyroptosis, a Pro-inflammatory Programmed Cell Death, in Epilepsy. Cell Mol Neurobiol. 2023;43:1049–1059. doi: 10.1007/s10571-022-01250-3. PubMed DOI

Fraczek M, Kurpisz M. Cytokines in the male reproductive tract and their role in infertility disorders. J Reprod Immunol. 2015;108:98–104. doi: 10.1016/j.jri.2015.02.001. PubMed DOI

Horváth C, Jarabicová I, Rajtík T, Bartošová L, Ferenczyová K, Kaločayová B, Barteková M, et al. Analysis of Signaling Pathways of Necroptotic and Pyroptotic Cell Death in the Hearts of Rats With Type 2 Diabetes Mellitus. Physiol Res. 2023;72(Suppl 1):S23–S29. doi: 10.33549/physiolres.935020. PubMed DOI PMC

Li Q, Cao Y, Dang C, Han B, Han R, Ma H, Hao J, Wang L. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol Med. 2020;12:e11002. doi: 10.15252/emmm.201911002. PubMed DOI PMC

Luteijn RD, Zaver SA, Gowen BG, Wyman SK, Garelis NE, Onia L, McWhirter SM, et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature. 2019;573:434–438. doi: 10.1038/s41586-019-1553-0. PubMed DOI PMC

Hong Z, Ma T, Liu X, Wang C. cGAS-STING pathway: post-translational modifications and functions in sterile inflammatory diseases. FEBS J. 2022;289:6187–6208. doi: 10.1111/febs.16137. PubMed DOI

Zhang X, Bai X, Chen Z. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity. 2020;53:43–53. doi: 10.1016/j.immuni.2020.05.013. PubMed DOI

Kosaka A, Yajima Y, Yasuda S, Komatsuda H, Nagato T, Oikawa K, Kobayashi H, Ohkuri T. Celecoxib promotes the efficacy of STING-targeted therapy by increasing antitumor CD8+ T-cell functions via modulating glucose metabolism of CD11b+ Ly6G+ cells. Int J Cancer. 2023;152:1685–1697. doi: 10.1002/ijc.34394. PubMed DOI

McLemore AF, Hou HA, Meyer BS, Lam NB, Ward GA, Aldrich AL, Rodrigues MA, et al. Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS/STING/NLRP3 axis in myelodysplastic syndromes. JCI Insight. 2022;7:e159430. doi: 10.1172/jci.insight.159430. PubMed DOI PMC

Liu Z, Wang M, Wang X, Bu Q, Wang Q, Su W, Li L, et al. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury. Redox Biol. 2022;52:102305. doi: 10.1016/j.redox.2022.102305. PubMed DOI PMC

Ding R, Li H, Liu Y, Ou W, Zhang X, Chai H, Huang X, et al. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation. 2022;19:137. doi: 10.1186/s12974-022-02511-0. PubMed DOI PMC

Yan M, Li Y, Luo Q, Zeng W, Shao X, Li L, Wang Q, et al. Mitochondrial damage and activation of the cytosolic DNA sensor cGAS-STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice. Cell Death Discov. 2022;8:258. doi: 10.1038/s41420-022-01046-w. PubMed DOI PMC

Wang Z, Wang Q, Cui N, Xiao L, Wei H, Kang J, Sheng X, et al. Heat stress and hypoxia inhibit the secretion of androgens and induce epithelial-to-mesenchymal transition associated with activated TGF-β/Smad signalling in canine cryptorchidism. Reprod Domest Anim. 2022;57:1046–1055. doi: 10.1111/rda.14174. PubMed DOI

Seth A, Bournat JC, Medina-Martinez O, Rivera A, Moore J, Flores H, Rosenfeld JA, et al. Loss of WNT4 in the gubernaculum causes unilateral cryptorchidism and fertility defects. Development. 2022;149:dev201093. doi: 10.1242/dev.201093. PubMed DOI PMC

Pereira GR, de Lazari FL, Dalberto PF, Bizarro CV, Sontag ER, Koetz C, Junior, Menegassi SRO, et al. Effect of scrotal insulation on sperm quality and seminal plasma proteome of Brangus bulls. Theriogenology. 2020;144:194–203. doi: 10.1016/j.theriogenology.2020.01.014. PubMed DOI

Tekayev M, Bostancieri N, Saadat KASM, Turker M, Yuncu M, Ulusal H, Cicek H, Arman K. Effects of Moringa oleifera Lam Extract (MOLE) in the heat shock protein 70 expression and germ cell apoptosis on experimentally induced cryptorchid testes of rats. Gene. 2019;688:140–150. doi: 10.1016/j.gene.2018.11.091. PubMed DOI

Hildorf S, Cortes D, Thorup J, Clasen-Linde E, Hutson J, Li R. During infancy low levels of follicle-stimulating hormone may result in high rate of germ cell apoptosis. J Pediatr Surg. 2021;56:2399–2406. doi: 10.1016/j.jpedsurg.2021.02.012. PubMed DOI

Loebenstein M, Thorup J, Cortes D, Clasen-Linde E, Hutson JM, Li R. Cryptorchidism, gonocyte development, and the risks of germ cell malignancy and infertility: A systematic review. J Pediatr Surg. 2020;55:1201–1210. doi: 10.1016/j.jpedsurg.2019.06.023. PubMed DOI

Atabaki R, Khaleghzadeh-Ahangar H, Esmaeili N, Mohseni-Moghaddam P. Role of Pyroptosis, a Pro-inflammatory Programmed Cell Death, in Epilepsy. Cell Mol Neurobiol. 2023;43:1049–1059. doi: 10.1007/s10571-022-01250-3. PubMed DOI

Ebata T, Terkawi MA, Kitahara K, Yokota S, Shiota J, Nishida Y, Matsumae G, et al. Noncanonical Pyroptosis Triggered by Macrophage-Derived Extracellular Vesicles in Chondrocytes Leading to Cartilage Catabolism in Osteoarthritis. Arthritis Rheumatol. 2023;75:1358–1369. doi: 10.1002/art.42505. PubMed DOI

Atabaki R, Khaleghzadeh-Ahangar H, Esmaeili N, Mohseni-Moghaddam P. Role of Pyroptosis, a Pro-inflammatory Programmed Cell Death, in Epilepsy. Cell Mol Neurobiol. 2023;43:1049–1059. doi: 10.1007/s10571-022-01250-3. PubMed DOI

Pravenec M, Šilhavý J, Mlejnek P, Šimáková M, Mráček T, Pecinová A, Tauchmannová K, et al. Conplastic strains for identification of retrograde effects of mitochondrial DNA variation on cardiometabolic traits in the spontaneously hypertensive rat. Physiol Res. 2021;70(Suppl 4):S471–S484. doi: 10.33549/physiolres.934740. PubMed DOI PMC

Michaličková D, Šíma M, Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol Res. 2020;69:1–19. doi: 10.33549/physiolres.934276. PubMed DOI PMC

Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–521. doi: 10.1038/s41580-020-0244-x. PubMed DOI

Kwon J, Bakhoum SF. The Cytosolic DNA-Sensing cGAS-STING Pathway in cancer. Cancer Discov. 2020;10:26–39. doi: 10.1158/2159-8290.CD-19-0761. PubMed DOI PMC

Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol. 2021;11:624597. doi: 10.3389/fimmu.2020.624597. PubMed DOI PMC

Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F, Zuber S, O'Duill F, Schmid-Burgk JL, Hoss F, Buhmann R, Wittmann G, Latz E, Subklewe M, Hornung V. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell. 2017;171:1110–1124.e18. doi: 10.1016/j.cell.2017.09.039. PubMed DOI PMC

Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, Tang Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol. 2019;24:101215. doi: 10.1016/j.redox.2019.101215. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace