New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31852206
PubMed Central
PMC8565962
DOI
10.33549/physiolres.934276
PII: 934276
Knihovny.cz E-zdroje
- MeSH
- antioxidancia metabolismus terapeutické užití MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- oxidace-redukce * MeSH
- reaktivní formy kyslíku metabolismus MeSH
- roztroušená skleróza imunologie metabolismus terapie MeSH
- zánět metabolismus MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- reaktivní formy kyslíku MeSH
- železo MeSH
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination and axonal damage and resulting in a range of physical, mental or even psychiatric symptoms. Key role of oxidative stress (OS) in the pathogenesis of MS has been suggested, as indicated by the biochemical analysis of cerebrospinal fluid and blood samples, tissue homogenates, and animal models of multiple sclerosis. OS causes demyelination and neurodegeneration directly, by oxidation of lipids, proteins and DNA but also indirectly, by inducing a dysregulation of the immunity and favoring the state of pro-inflammatory response. In this review, we discuss the interrelated mechanisms of the impaired redox signaling, of which the most important are inflammation-induced production of free radicals by activated immune cells and growth factors, release of iron from myelin sheath during demyelination and mitochondrial dysfunction and consequent energy failure and impaired oxidative phosphorylation. Review also provides an overview of the interplay between inflammation, immunity and OS in MS. Finally, this review also points out new potential targets in MS regarding attenuation of OS and inflammatory response in MS.
Zobrazit více v PubMed
ABAIS JM, XIA M, ZHANG Y, BOINI KM, LI P-L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22:1111–1129. doi: 10.1089/ars.2014.5994. PubMed DOI PMC
ABDIN AA, HASBY EA. Modulatory effect of celastrol on Th1/Th2 cytokines profile, TLR2 and CD3+ T-lymphocyte expression in a relapsing-remitting model of multiple sclerosis in rats. Eur J Pharmacol. 2014;742:102–112. doi: 10.1016/j.ejphar.2014.09.001. PubMed DOI
ABDULSALAM SF, THOWFEIK FS, MERINO EJ. Excessive reactive oxygen species and exotic DNA lesions as an exploitable liability. Biochemistry. 2016;55:5341–5352. doi: 10.1021/acs.biochem.6b00703. PubMed DOI PMC
ADAMCZYK-SOWA M, SOWA P, ADAMCZYK J, NIEDZIELA N, MISIOLEK H, OWCZAREK M, ZWIRSKA-KORCZALA K. Effect of melatonin supplementation on plasma lipid hydroperoxides, homocysteine concentration and chronic fatigue syndrome in multiple sclerosis patients treated with interferons-beta and mitoxantrone. J Physiol Pharmacol. 2016;67:235–242. doi: 10.1016/j.jns.2017.08.671. PubMed DOI
ADAMCZYK B, ADAMCZYK-SOWA M. New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev. 2016:1973834–2016. doi: 10.1155/2016/1973834. PubMed DOI PMC
BAIRD L, DINKOVA-KOSTOVA AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85:241–272. doi: 10.1007/s00204-011-0674-5. PubMed DOI
BARANCIK M, GRESOVA L, BARTEKOVÁ M, DOVINOVÁ I. Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol Res. 2016;65(Suppl 1):S1–S10. PubMed
BICKER G. Nitric oxide: an unconventional messenger in the nervous system of an orthopteroid insect. Arch Insect Biochem Physiol. 2001;48:100–110. doi: 10.1002/arch.1062. PubMed DOI
BLUM L, TAFFERNER N, SPRING I, KURZ J, GEISSLINGER G, PARNHAM MJ, SCHIFFMANN S. Dietary phytol reduces clinical symptoms in experimental autoimmune encephalomyelitis (EAE) at least partially by modulating NOX2 expression. J Mol Med. 2018;96:1131–1144. doi: 10.1007/s00109-018-1689-7. PubMed DOI
BRECKWOLDT MO, ARMOUNDAS AA, AON MA, BENDSZUS M, O’ROURKE B, SCHWARZLÄNDER M, DICK TP, KURZ FT. Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters. Sci Rep. 2016;6:23251. doi: 10.1038/srep23251. PubMed DOI PMC
BRECKWOLDT MO, PFISTER FM, BRADLEY PM, MARINKOVIĆ P, WILLIAMS PR, BRILL MS, PLOMER B, SCHMALZ A, St CLAIR DK, NAUMANN R, GRIESBECK O, SCHWARZLÄNDER M, GODINHO L, BAREYRE FM, DICK TP, KERSCHENSTEINER M, MISGELD T. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat Med. 2014;20:555–560. doi: 10.1038/nm.3520. PubMed DOI
BRIEGER K, SCHIAVONE S, MILLER FJ, JR, KRAUSE K-H. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659. doi: 10.4414/smw.2012.13659. PubMed DOI
BULUA AC, SIMON A, MADDIPATI R, PELLETIER M, PARK H, KIM K-Y, SACK MN, KASTNER DL, SIEGEL RM. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS) J Exp Med. 2011;208:519–533. doi: 10.1084/jem.20102049. PubMed DOI PMC
CADENAS E, BOVERIS A, RAGAN CI, STOPPANI AO. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977;180:248–257. doi: 10.1016/0003-9861(77)90035-2. PubMed DOI
CAMPBELL GR, WORRALL JT, MAHAD DJ. The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult Scler J. 2014;20:1806–1813. doi: 10.1177/1352458514544537. PubMed DOI
CAMPBELL GR, ZIABREVA I, REEVE AK, KRISHNAN KJ, REYNOLDS R, HOWELL O, LASSMANN H, TURNBULL DM, MAHAD DJ. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol. 2011;69:481–492. doi: 10.1002/ana.22109. PubMed DOI PMC
CARVALHO AN, LIM JL, NIJLAND PG, WITTE ME, Van HORSSEN J. Glutathione in multiple sclerosis: more than just an antioxidant? Mult Scler J. 2014;20:1425–1431. doi: 10.1177/1352458514533400. PubMed DOI
CHECHNEVA OV, MAYRHOFER F, DAUGHERTY DJ, PLEASURE DE, HONG J-S, DENG W. Low dose dextromethorphan attenuates moderate experimental autoimmune encephalomyelitis by inhibiting NOX2 and reducing peripheral immune cells infiltration in the spinal cord. Neurobiol Dis. 2011;44:63–72. doi: 10.1016/j.nbd.2011.06.004. PubMed DOI PMC
CHOI BY, KIM JH, KHO AR, KIM IY, LEE SH, LEE BE, CHOI E, SOHN M, STEVENSON M, CHUNG TN. Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. J Neuroinflammation. 2015;12:104. doi: 10.1186/s12974-015-0325-5. PubMed DOI PMC
Di MEO S, REED TT, VENDITTI P, VICTOR VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049. doi: 10.1155/2016/1245049. PubMed DOI PMC
DIEBOLD SS. Determination of T-cell fate by dendritic cells. Immunol Cell Biol. 2008;86:389–397. doi: 10.1038/icb.2008.26. PubMed DOI
DINKOVA-KOSTOVA AT, ABRAMOV AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88:179–188. doi: 10.1016/j.freeradbiomed.2015.04.036. PubMed DOI PMC
DINKOVA-KOSTOVA AT, KOSTOV RV, KAZANTSEV AG. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J. 2018;285:3576–3590. doi: 10.1111/febs.14379. PubMed DOI PMC
DURAFOURT BA, MOORE CS, ZAMMIT DA, JOHNSON TA, ZAGUIA F, GUIOT MC, BAR-OR A, ANTEL JP. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia. 2012;60:717–727. doi: 10.1002/glia.22298. PubMed DOI
DUSEK P, SCHNEIDER SA, AASETH J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol. 2016;38:81–92. doi: 10.1016/j.jtemb.2016.03.010. PubMed DOI
FETISOVA E, CHERNYAK B, KORSHUNOVA G, MUNTYAN M, SKULACHEV V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr Med Chem. 2017;24:2086–2114. doi: 10.2174/0929867324666170316114452. PubMed DOI
FILIPPI M, BRÜCK W, CHARD D, FAZEKAS F, GEURTS JJ, ENZINGER C, HAMETNER S, KUHLMANN T, PREZIOSA P, ROVIRA À. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2019;18:198–210. doi: 10.1016/S1474-4422(18)30451-4. PubMed DOI
FISCHER MT, SHARMA R, LIM JL, HAIDER L, FRISCHER JM, DREXHAGE J, MAHAD D, BRADL M, Van HORSSEN J, LASSMANN H. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain. 2012;135:886–899. doi: 10.1093/brain/aws012. PubMed DOI PMC
FONSECA-KELLY Z, NASSRALLAH M, URIBE J, KHAN RS, DINE K, DUTT M, SHINDLER KS. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol. 2012;3:84. doi: 10.3389/fneur.2012.00084. PubMed DOI PMC
FORGHANI R, WOJTKIEWICZ GR, ZHANG Y, SEEBURG D, BAUTZ BR, PULLI B, MILEWSKI AR, ATKINSON WL, IWAMOTO Y, ZHANG ER. Demyelinating diseases: myeloperoxidase as an imaging biomarker and therapeutic target. Radiology. 2012;263:451–460. doi: 10.1148/radiol.12111593. PubMed DOI PMC
FRISCHER JM, BRAMOW S, DAL-BIANCO A, LUCCHINETTI CF, RAUSCHKA H, SCHMIDBAUER M, LAURSEN H, SORENSEN PS, LASSMANN H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132:1175–1189. doi: 10.1093/brain/awp070. PubMed DOI PMC
GENC K, GENC S, BASKIN H, SEMIN I. Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes. Physiol Res. 2006;55:33–38. PubMed
GRAY E, THOMAS TL, BETMOUNI S, SCOLDING N, LOVE S. Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathol. 2008a;18:86–95. doi: 10.1111/j.1750-3639.2007.00110.x. PubMed DOI PMC
GRAY E, THOMAS TL, BETMOUNI S, SCOLDING N, LOVE S. Elevated myeloperoxidase activity in white matter in multiple sclerosis. Neurosci Lett. 2008b;444:195–198. doi: 10.1016/j.neulet.2008.08.035. PubMed DOI
GRIGORIADIS N, PESCH V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22:3–13. doi: 10.1111/ene.12798. PubMed DOI
HAIDER L. Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxid Med Cell Longev. 2015;2015:725370. doi: 10.1155/2015/725370. PubMed DOI PMC
HALLGREN B, SOURANDER P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958;3:41–51. doi: 10.1111/j.1471-4159.1958.tb12607.x. PubMed DOI
HALLIWELL B, GUTTERIDGE J. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1. doi: 10.1042/bj2190001. PubMed DOI PMC
HAMETNER S, WIMMER I, HAIDER L, PFEIFENBRING S, BRÜCK W, LASSMANN H. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol. 2013;74:848–861. doi: 10.1002/ana.23974. PubMed DOI PMC
HØIVIK HO, LAURIJSSENS BE, HARNISCH LO, TWOMEY CK, DIXON RM, KIRKHAM AJ, WILLIAMS PM, WENTZ AL, LUNNON MW. Lack of efficacy of the selective iNOS inhibitor GW274150 in prophylaxis of migraine headache. Cephalalgia. 2010;30:1458–1467. doi: 10.1177/0333102410370875. PubMed DOI
HONDARES E, MORA O, YUBERO P, De la CONCEPCIÓN MR, IGLESIAS R, GIRALT M, VILLARROYA F. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ coactivation. Endocrinology. 2006;147:2829–2838. doi: 10.1210/en.2006-0070. PubMed DOI
HONORAT JA, KINOSHITA M, OKUNO T, TAKATA K, KODA T, TADA S, SHIRAKURA T, FUJIMURA H, MOCHIZUKI H, SAKODA S. Xanthine oxidase mediates axonal and myelin loss in a murine model of multiple sclerosis. PLoS One. 2013;8:e71329. doi: 10.1371/journal.pone.0071329. PubMed DOI PMC
HONORAT JA, NAKATSUJI Y, SHIMIZU M, KINOSHITA M, SUMI-AKAMARU H, SASAKI T, TAKATA K, KODA T, NAMBA A, YAMASHITA K, SANDA E, SAKAGUCHI M, KUMANOGOH A, SHIRAKURA T, TAMURA M, SAKODA S, MOCHIZUKI H, OKUNO T. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner. PLoS One. 2017;12:e0187215. doi: 10.1371/journal.pone.0187215. PubMed DOI PMC
HUBERT MT, THAYER TC, STEELE C, CUDA CM, MOREL L, PIGANELLI JD, MATHEWS CE. NADPH oxidase deficiency regulates Th lineage commitment and modulates autoimmunity. J Immunol. 2010;185:5247–5258. doi: 10.4049/jimmunol.1001472. PubMed DOI PMC
HULET S, POWERS S, CONNOR J. Distribution of transferrin and ferritin binding in normal and multiple sclerotic human brains. J Neurol Sci. 1999;165:48–55. doi: 10.1016/S0022-510X(99)00077-5. PubMed DOI
JACK C, ANTEL J, BRÜCK W, KUHLMANN T. Contrasting potential of nitric oxide and peroxynitrite to mediate oligodendrocyte injury in multiple sclerosis. Glia. 2007;55:926–934. doi: 10.1002/glia.20514. PubMed DOI
JIANG X-M, HU J-H, WANG L-L, MA C, WANG X, LIU X-L. Ulinastatin alleviates neurological deficiencies evoked by transient cerebral ischemia via improving autophagy, Nrf-2-ARE and apoptosis signals in hippocampus. Physiol Res. 2018;67:637–646. doi: 10.33549/physiolres.933780. PubMed DOI
JOHNSON DA, AMIRAHMADI S, WARD C, FABRY Z, JOHNSON JA. The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis. Toxicol Sci. 2009;114:237–246. doi: 10.1093/toxsci/kfp274. PubMed DOI PMC
KATSUOKA F, YAMAMOTO M. Small Maf proteins (MafF, MafG, MafK): history, structure and function. Gene. 2016;586:197–205. doi: 10.1016/j.gene.2016.03.058. PubMed DOI PMC
KIM GH, KIM JE, RHIE SJ, YOON S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24:325–340. doi: 10.5607/en.2015.24.4.325. PubMed DOI PMC
KWAK M-K, WAKABAYASHI N, ITOH K, MOTOHASHI H, YAMAMOTO M, KENSLER TW. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway identification of novel gene clusters for cell survival. J Biol Chem. 2003;278:8135–8145. doi: 10.1074/jbc.M211898200. PubMed DOI
LAN M, TANG X, ZHANG J, YAO Z. Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes. Rev Neuroscience. 2017;29:39–53. doi: 10.1515/revneuro-2017-0033. PubMed DOI
LANG Y, CHU F, SHEN D, ZHANG W, ZHENG C, ZHU J, CUI L. Role of inflammasomes in neuroimmune and neurodegenerative diseases: a systematic review. Mediators Inflamm. 2018;2018:1549549. doi: 10.1155/2018/1549549. PubMed DOI PMC
LASSMANN H, Van HORSSEN J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta. 2016;1862:506–510. doi: 10.1016/j.bbadis.2015.09.018. PubMed DOI
LEE J-M, CALKINS MJ, CHAN K, KAN YW, JOHNSON JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem. 2003;278:12029–12038. doi: 10.1074/jbc.M211558200. PubMed DOI
LEPKA K, BERNDT C, HARTUNG H-P, AKTAS O. Redox events as modulators of pathology and therapy of neuroinflammatory diseases. Front Cell Dev Biol. 2016;4:63. doi: 10.3389/fcell.2016.00063. PubMed DOI PMC
LEPKA K, VOLBRACHT K, BILL E, SCHNEIDER R, RIOS N, HILDEBRANDT T, INGWERSEN J, PROZOROVSKI T, LILLIG CH, Van HORSSEN J. Iron-sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia. 2017;65:1521–1534. doi: 10.1002/glia.23178. PubMed DOI
LEPPERT D, WAUBANT E, GALARDY R, BUNNETT NW, HAUSER SL. T cell gelatinases mediate basement membrane transmigration in vitro. J Immunol. 1995;154:4379–4389. PubMed
LI B, CUI W, LIU J, LI R, LIU Q, XIE X-H, GE X-L, ZHANG J, SONG X-J, WANG Y. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol. 2013;250:239–249. doi: 10.1016/j.expneurol.2013.10.002. PubMed DOI
LI S, VANA A, RIBEIRO R, ZHANG Y. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience. 2011;184:107–119. doi: 10.1016/j.neuroscience.2011.04.007. PubMed DOI
LIDDELL J. Are astrocytes the predominant cell type for activation of Nrf2 in aging and neurodegeneration? Antioxidants. 2017;6:65. doi: 10.3390/antiox6030065. PubMed DOI PMC
LICHT-MAYER S, WIMMER I, TRAFFEHN S, METZ I, BRÜCK W, BAUER J, BRADL M, LASSMANN H. Cell type-specific Nrf2 expression in multiple sclerosis lesions. Acta Neuropathol. 2015;130:263–277. doi: 10.1007/s00401-015-1452-x. PubMed DOI PMC
LONG T, YANG Y, PENG L, LI Z. Neuroprotective effects of melatonin on experimental allergic encephalomyelitis mice via anti-oxidative stress activity. J Mol Neurosci. 2018;64:233–241. doi: 10.1007/s12031-017-1022-x. PubMed DOI
LORENZ M, PAUL F, MOOBED M, BAUMANN G, ZIMMERMANN BF, STANGL K, STANGL V. The activity of catechol-O-methyltransferase (COMT) is not impaired by high doses of epigallocatechin-3-gallate (EGCG) in vivo. Eur J Pharmacol. 2014;740:645–651. doi: 10.1016/j.ejphar.2014.06.014. PubMed DOI
LOVERA J, RAMOS A, DEVIER D, GARRISON V, KOVNER B, REZA T, KOOP D, ROONEY W, FOUNDAS A, BOURDETTE D. Polyphenon E, non-futile at neuroprotection in multiple sclerosis but unpredictably hepatotoxic: phase I single group and phase II randomized placebo-controlled studies. J Neurol Sci. 2015;358:46–52. doi: 10.1016/j.jns.2015.08.006. PubMed DOI PMC
MA MW, WANG J, ZHANG Q, WANG R, DHANDAPANI KM, VADLAMUDI RK, BRANN DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener. 2017;12:7. doi: 10.1186/s13024-017-0150-7. PubMed DOI PMC
MAHAD D, ZIABREVA I, LASSMANN H, TURNBULL D. Mitochondrial defects in acute multiple sclerosis lesions. Brain. 2008;131:1722–1735. doi: 10.1093/brain/awn105. PubMed DOI PMC
MAHAD DH, TRAPP BD, LASSMANN H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14:183–193. doi: 10.1016/S1474-4422(14)70256-X. PubMed DOI
MÄHLER A, STEINIGER J, BOCK M, KLUG L, PARREIDT N, LORENZ M, ZIMMERMANN BF, KRANNICH A, PAUL F, BOSCHMANN M. Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: a randomized clinical trial. Am J Clin Nutr. 2015;101:487–495. doi: 10.3945/ajcn.113.075309. PubMed DOI
MAJ T, WANG W, CRESPO J, ZHANG H, WANG W, WEI S, ZHAO L, VATAN L, SHAO I, SZELIGA W. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 2017;18:1332. doi: 10.1038/ni.3868. PubMed DOI PMC
MANDER P, BORUTAITE V, MONCADA S, BROWN GC. Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J Neurosci Res. 2005;79:208–215. doi: 10.1002/jnr.20285. PubMed DOI
MENESHIAN A, BULKLEY GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation. 2002;9:161–175. doi: 10.1038/sj.mn.7800136. PubMed DOI
MENG D, SHI X, JIANG B-H, FANG J. Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species. Free Radic Biol Med. 2007;42:1651–1660. doi: 10.1016/j.freeradbiomed.2007.01.037. PubMed DOI
MIAO H, XU J, XU D, MA X, ZHAO X, LIU L. Nociceptive behavior induced by chemotherapeutic paclitaxel and beneficial role of antioxidative pathways. Physiol Res. 2019;68:491–500. doi: 10.33549/physiolres.933939. PubMed DOI
MICHALICKOVA D, KOTUR-STEVULJEVIC J, MILJKOVIC M, DIKIC N, KOSTIC-VUCICEVIC M, ANDJELKOVIC M, KORICANAC V, DJORDJEVIC B. Effects of probiotic supplementation on selected parameters of blood prooxidant-antioxidant balance in elite athletes: a double-blind randomized placebo-controlled study. J Hum Kinet. 2018;64:111–122. doi: 10.1515/hukin-2017-0203. PubMed DOI PMC
MICHALIČKOVÁ D, BELOVIĆ M, ILIĆ N, KOTUR-STEVULJEVIĆ J, SLANAŘ O, ŠOBAJIĆ S. Comparison of polyphenol-enriched tomato juice and standard tomato juice for cardiovascular benefits in subjects with stage 1 hypertension: a randomized controlled study. Plant Food Hum Nutr. 2019;74:122–127. doi: 10.1007/s11130-019-0714-5. PubMed DOI
MILLER ED, DZIEDZIC A, SALUK-BIJAK J, BIJAK M. A review of various antioxidant compounds and their potential utility as complementary therapy in multiple sclerosis. Nutrients. 2019;11:1528. doi: 10.3390/nu11071528. PubMed DOI PMC
MIN W, CHEN Y, ZHOU Z. Mitochondria, oxidative stress and innate immunity. Front Physiol. 2018;9:1487. doi: 10.3389/fphys.2018.01487. PubMed DOI PMC
MIRSHAFIEY A, MOHSENZADEGAN M. Antioxidant therapy in multiple sclerosis. Immunopharm Immunot. 2009;31:13–29. doi: 10.1080/08923970802331943. PubMed DOI
MOHAJERI M, SADEGHIZADEH M, NAJAFI F, JAVAN M. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology. 2015;99:156–167. doi: 10.1016/j.neuropharm.2015.07.013. PubMed DOI
MORIYA M, NAKATSUJI Y, MIYAMOTO K, OKUNO T, KINOSHITA M, KUMANOGOH A, KUSUNOKI S, SAKODA S. Edaravone, a free radical scavenger, ameliorates experimental autoimmune encephalomyelitis. Neurosci Lett. 2008;440:323–326. doi: 10.1016/j.neulet.2008.05.110. PubMed DOI
MUTHIAN G, BRIGHT JJ. Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol. 2004;24:542–552. doi: 10.1023/B:JOCI.0000040925.55682.a5. PubMed DOI
NEHER JJ, NENISKYTE U, ZHAO J-W, BAL-PRICE A, TOLKOVSKY AM, BROWN GC. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol. 2011;186:4973–4983. doi: 10.4049/jimmunol.1003600. PubMed DOI
NEVES CARVALHO A, FIRUZI O, JOAO GAMA M, Van HORSSEN J, SASO L. Oxidative stress and antioxidants in neurological diseases: is there still hope? Curr Drug Targets. 2017;18:705–718. doi: 10.2174/1389450117666160401120514. PubMed DOI
NIJLAND PG, WITTE ME, Van het hof B, Van der POL S, BAUER J, LASSMANN H, Van der VALK P, De VRIES HE, Van HORSSEN J. Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol Commun. 2014;2:170. doi: 10.1186/s40478-014-0170-2. PubMed DOI PMC
NOUBADE R, WONG K, OTA N, RUTZ S, EIDENSCHENK C, VALDEZ PA, DING J, PENG I, SEBRELL A, CAPLAZI P. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature. 2014;509:235. doi: 10.1038/nature13152. PubMed DOI
OCKELFORD F, SAADA L, GAZIT E, De MEL A. Is nitric oxide assuming a Janus-face in the central nervous system? Curr Med Chem. 2016;23:1625–1637. doi: 10.2174/0929867323666160316124137. PubMed DOI
OHL K, TENBROCK K, KIPP M. Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol. 2016;277:58–67. doi: 10.1016/j.expneurol.2015.11.010. PubMed DOI PMC
ONTANEDA D, THOMPSON AJ, FOX RJ, COHEN JA. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet. 2017;389:1357–1366. doi: 10.1016/S0140-6736(16)31320-4. PubMed DOI
OW Y-LP, GREEN DR, HAO Z, MAK TW. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol. 2008;9:532–542. doi: 10.1038/nrm2434. PubMed DOI
PAJARES M, JIMÉNEZ-MORENO N, GARCÍA-YAGÜE ÁJ, ESCOLL M, De CEBALLOS ML, Van LEUVEN F, RÁBANO A, YAMAMOTO M, ROJO AI, CUADRADO A. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902–1916. doi: 10.1080/15548627.2016.1208889. PubMed DOI PMC
PANDIT A, VADNAL J, HOUSTON S, FREEMAN E, McDONOUGH J. Impaired regulation of electron transport chain subunit genes by nuclear respiratory factor 2 in multiple sclerosis. J Neurol Sci. 2009;279:14–20. doi: 10.1016/j.jns.2009.01.009. PubMed DOI
PANG Y, CAMPBELL L, ZHENG B, FAN L, CAI Z, RHODES P. Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience. 2010;166:464–475. doi: 10.1016/j.neuroscience.2009.12.040. PubMed DOI
PAUL BD, SNYDER SH. Impaired redox signaling in Huntington’s disease: therapeutic implications. Front Mol Neurosci. 2019;12:68. doi: 10.3389/fnmol.2019.00068. PubMed DOI PMC
PENESOVÁ A, DEAN Z, KOLLÁR B, HAVRANOVÁ A, IMRICH R, VLČEK M, RÁDIKOVÁ Ž. Nutritional intervention as an essential part of multiple sclerosis treatment? Physiol Res. 2018;67:521–533. doi: 10.33549/physiolres.933694. PubMed DOI
PERL A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol. 2016;12:169. doi: 10.1038/nrrheum.2015.172. PubMed DOI PMC
QI W, LI J, CHAIN C, PASQUEVICH G, PASQUEVICH A, COWAN J. Glutathione complexed Fe-S centers. J Am Chem Soc. 2012;134:10745–10748. doi: 10.1021/ja302186j. PubMed DOI PMC
ROJO AI, McBEAN G, CINDRIC M, EGEA J, LÓPEZ MG, RADA P, ZARKOVIC N, CUADRADO A. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal. 2014;21:1766–1801. doi: 10.1089/ars.2013.5745. PubMed DOI PMC
SAJAD M, ZARGAN J, CHAWLA R, UMAR S, SADAQAT M, KHAN HA. Hippocampal neurodegeneration in experimental autoimmune encephalomyelitis (EAE): potential role of inflammation activated myeloperoxidase. Mol Cell Biochem. 2009;328:183–188. doi: 10.1007/s11010-009-0088-3. PubMed DOI
SALIM S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360:201–205. doi: 10.1124/jpet.116.237503. PubMed DOI PMC
SASO L, FIRUZI O. Pharmacological applications of antioxidants: lights and shadows. Curr Drug Targets. 2014;15:1177–1199. doi: 10.2174/1389450115666141024113925. PubMed DOI
SEMNANI M, MASHAYEKHI F, AZARNIA M, SALEHI Z. Effects of green tea epigallocatechin-3-gallate on the proteolipid protein and oligodendrocyte transcription factor 1 messenger RNA gene expression in a mouse model of multiple sclerosis. Folia Neuropathol. 2017;55:199–205. doi: 10.5114/fn.2017.70484. PubMed DOI
SHADEL GS, HORVATH TL. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163:560–569. doi: 10.1016/j.cell.2015.10.001. PubMed DOI PMC
SHEYKHANSARI S, KOZIELSKI K, BILL J, SITTI M, GEMMATI D, ZAMBONI P, SINGH AV. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis. 2018;9:348. doi: 10.1038/s41419-018-0379-2. PubMed DOI PMC
SHINDLER KS, VENTURA E, DUTT M, ELLIOTT P, FITZGERALD DC, ROSTAMI A. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol. 2010;30:328–339. doi: 10.1097/WNO.0b013e3181f7f833. PubMed DOI PMC
SHOKEIR AA, BARAKAT N, HUSSEIN AM, AWADALLA A, HARRAZ A, KHATER S, HEMMAID K, KAMAL AI. Activation of Nrf2 by ischemic preconditioning and sulforaphane in renal ischemia/reperfusion injury: a comparative experimental study. Physiol Res. 2015;64:313–323. PubMed
SCHMALBROCK P, PRAKASH R, SCHIRDA B, JANSSEN A, YANG G, RUSSELL M, KNOPP M, BOSTER A, NICHOLAS J, RACKE M. Basal ganglia iron in patients with multiple sclerosis measured with 7T quantitative susceptibility mapping correlates with inhibitory control. Am J Neuroradiol. 2016;37:439–446. doi: 10.3174/ajnr.A4599. PubMed DOI PMC
SIES H, BERNDT C, JONES DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI
SINGHAL G, JAEHNE EJ, CORRIGAN F, TOBEN C, BAUNE BT. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci. 2014;8:315. doi: 10.3389/fnins.2014.00315. PubMed DOI PMC
SOLLEIRO-VILLAVICENCIO H, RIVAS-ARANCIBIA S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front Cell Neurosci. 2018;12 doi: 10.3389/fncel.2018.00114. PubMed DOI PMC
STEPHENSON E, NATHOO N, MAHJOUB Y, DUNN JF, YONG VW. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol. 2014;10:459–468. doi: 10.1038/nrneurol.2014.118. PubMed DOI
STOVER JF, BELLI A, BORET H, BULTERS D, SAHUQUILLO J, SCHMUTZHARD E, ZAVALA E, UNGERSTEDT U, SCHINZEL R, TEGTMEIER F. Nitric oxide synthase inhibition with the antipterin VAS203 improves outcome in moderate and severe traumatic brain injury: a placebo-controlled randomized Phase IIa trial (NOSTRA) J Neurotrauma. 2014;31:1599–1606. doi: 10.1089/neu.2014.3344. PubMed DOI
STYS PK. General mechanisms of axonal damage and its prevention. J Neurol Sci. 2005;233:3–13. doi: 10.1016/j.jns.2005.03.031. PubMed DOI
TEJERO J, SHIVA S, GLADWIN MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev. 2018;99:311–379. doi: 10.1152/physrev.00036.2017. PubMed DOI PMC
VALACCHI G, VIRGILI F, CERVELLATI C, PECORELLI A. OxInflammation: From subclinical condition to pathological biomarker. Front Physiol. 2018;9:858. doi: 10.3389/fphys.2018.00858. PubMed DOI PMC
Van den HOOGEN WJ, LAMAN JD, ‘T HART BA. Modulation of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis by food and gut microbiota. Front Immunol. 2017;8:1081. doi: 10.3389/fimmu.2017.01081. PubMed DOI PMC
Van der SCHUEREN B, LUNNON M, LAURIJSSENS B, GUILLARD F, PALMER J, Van HECKEN A, DEPRÉ M, VANMOLKOT F, De HOON J. Does the unfavorable pharmacokinetic and pharmacodynamic profile of the iNOS inhibitor GW273629 lead to inefficacy in acute migraine? J Clin Pharmacol. 2009;49:281–290. doi: 10.1177/0091270008329548. PubMed DOI
Van der VEEN BS, De WINTHER MP, HEERINGA P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal. 2009;11:2899–2937. doi: 10.1089/ars.2009.2538. PubMed DOI
Van HORSSEN J, DREXHAGE JA, FLOR T, GERRITSEN W, Van der VALK P, De VRIES HE. Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions. Free Radic Biol Med. 2010;49:1283–1289. doi: 10.1016/j.freeradbiomed.2010.07.013. PubMed DOI
Van HORSSEN J, SCHREIBELT G, DREXHAGE J, HAZES T, DIJKSTRA C, Van der VALK P, De VRIES H. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med. 2008;45:1729–1737. doi: 10.1016/j.freeradbiomed.2008.09.023. PubMed DOI
WINYARD PG, BLAKE DR. Antioxidants, redox-regulated transcription factors, and inflammation. Adv Pharmacol. 1997;38:403–421. doi: 10.1016/S1054-3589(08)60993-X. PubMed DOI
WITTE ME, MAHAD DJ, LASSMANN H, Van HORSSEN J. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol Med. 2014;20:179–187. doi: 10.1016/j.molmed.2013.11.007. PubMed DOI
WITTE ME, NIJLAND PG, DREXHAGE JA, GERRITSEN W, GEERTS D, Van het HOF B, REIJERKERK A, De VRIES HE, Van der VALK P, Van HORSSEN J. Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol. 2013;125:231–243. doi: 10.1007/s00401-012-1052-y. PubMed DOI
YANG H, LIU C, JIANG J, WANG Y, ZHANG X. Celastrol attenuates multiple sclerosis and optic neuritis in an experimental autoimmune encephalomyelitis model. Front Pharmacol. 2017;8:44. doi: 10.3389/fphar.2017.00044. PubMed DOI PMC
YANG P, MANAENKO A, XU F, MIAO L, WANG G, HU X, GUO Z-N, HU Q, HARTMAN RE, PEARCE WJ. Role of PDGF-D and PDGFR-β in neuroinflammation in experimental ICH mice model. Exp Neurol. 2016;283:157–164. doi: 10.1016/j.expneurol.2016.06.010. PubMed DOI PMC
ZARRUK JG, BERARD JL, Dos SANTOS RP, KRONER A, LEE J, AROSIO P, DAVID S. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Neurobiol Dis. 2015;81:93–107. doi: 10.1016/j.nbd.2015.02.001. PubMed DOI
ZHANG DD, LO S-C, CROSS JV, TEMPLETON DJ, HANNINK M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24:10941–10953. doi: 10.1128/MCB.24.24.10941-10953.2004. PubMed DOI PMC
ZHANG H, RAY A, MILLER NM, HARTWIG D, PRITCHARD KA, DITTEL BN. Inhibition of myeloperoxidase at the peak of experimental autoimmune encephalomyelitis restores blood-brain barrier integrity and ameliorates disease severity. J Neurochem. 2016;136:826–836. doi: 10.1111/jnc.13426. PubMed DOI PMC
ZHI L, USTYUGOVA IV, CHEN X, ZHANG Q, WU MX. Enhanced Th17 differentiation and aggravated arthritis in IEX-1-deficient mice by mitochondrial reactive oxygen species-mediated signaling. J Immunol. 2012;189:1639–1647. doi: 10.4049/jimmunol.1200528. PubMed DOI PMC
ZHOU R, YAZDI AS, MENU P, TSCHOPP J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221. doi: 10.1038/nature09663. PubMed DOI
Heat Stroke Induces Pyroptosis in Spermatogonia via the cGAS-STING Signaling Pathway