Edaravone attenuates disease severity of experimental auto-immune encephalomyelitis and increases gene expression of Nrf2 and HO-1
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
35043649
PubMed Central
PMC8997675
DOI
10.33549/physiolres.934800
PII: 934800
Knihovny.cz E-resources
- MeSH
- Edaravone pharmacology MeSH
- Encephalomyelitis, Autoimmune, Experimental * pathology MeSH
- Encephalomyelitis * MeSH
- Gene Expression MeSH
- NF-E2-Related Factor 2 genetics metabolism MeSH
- Heme Oxygenase-1 genetics metabolism MeSH
- Mice MeSH
- Severity of Illness Index MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Edaravone MeSH
- NF-E2-Related Factor 2 MeSH
- Heme Oxygenase-1 MeSH
The aim of this study was to evaluate therapeutic potential of edaravone in the murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) and to expand the knowledge of its mechanism of action. Edaravone (6 mg/kg/day) was administered intraperitoneally from the onset of clinical symptoms until the end of the experiment (28 days). Disease progression was assessed daily using severity scores. At the peak of the disease, histological analyses, markers of oxidative stress (OS) and parameters of mitochondrial function in the brains and spinal cords (SC) of mice were determined. Gene expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha was determined at the end of the experiment. Edaravone treatment ameliorated EAE severity and attenuated inflammation in the SC of the EAE mice, as verified by histological analysis. Moreover, edaravone treatment decreased OS, increased the gene expression of the Nrf2 and HO-1, increased the activity of the mitochondrial complex II/III, reduced the activity of the mitochondrial complex IV and preserved ATP production in the SC of the EAE mice. In conclusion, findings in this study provide additional evidence of edaravone potential for the treatment of multiple sclerosis and expand our knowledge of the mechanism of action of edaravone in the EAE model.
See more in PubMed
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15:545–558. doi: 10.1038/nri3871. PubMed DOI
Diebold SS. Determination of T-cell fate by dendritic cells. Immunol Cell Biol. 2008;86:389–397. doi: 10.1038/icb.2008.26. PubMed DOI
Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22:3–13. doi: 10.1111/ene.12798. PubMed DOI
Michaličková D, Šíma M, Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol Res. 2020;69:1–19. doi: 10.33549/physiolres.934276. PubMed DOI PMC
Valacchi G, Virgili F, Cervellati C, Pecorelli A. OxInflammation: From subclinical condition to pathological biomarker. Front Physiol. 2018;9:858. doi: 10.3389/fphys.2018.00858. PubMed DOI PMC
Witte ME, Mahad DJ, Lassmann H, van Horssen J. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol Med. 2014;20:179–187. doi: 10.1016/j.molmed.2013.11.007. PubMed DOI
Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet. 2019;10:435. doi: 10.3389/fgene.2019.00435. PubMed DOI PMC
Michaličková D, Hrnčíř T, Canová NK, Slanař O. Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol. 2020;873:172973. doi: 10.1016/j.ejphar.2020.172973. PubMed DOI
Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr. 2018:17–62. doi: 10.3164/jcbn.17-62. PubMed DOI PMC
Liu J, Jiang Y, Zhang G, Lin Z, Du S. Protective effect of edaravone on blood-brain barrier by affecting NRF-2/HO-1 signaling pathway. Exp Ther Med. 2019;18:2437–2442. doi: 10.3892/etm.2019.7859. PubMed DOI PMC
Zhang D, Xiao Y, Lv P, Dong Y, Qi Q, Liu Z. Edaravone attenuates oxidative stress induced by chronic cerebral hypoperfusion injury: role of ERK/Nrf2/HO-1 signaling pathway. Neurol Res. 2018;40:1–10. doi: 10.1080/01616412.2017.1376457. PubMed DOI
Zhang M, Teng CH, Wu FF, Ge L-Y, Xiao J, Zhang H-J, Chen D-Q. Edaravone attenuates traumatic brain injury through anti-inflammatory and anti-oxidative modulation. Exp Ther Med. 2019;18:467–474. doi: 10.3892/etm.2019.7632. PubMed DOI PMC
Moriya M, Nakatsuji Y, Miyamoto K, Okuno T, Kinoshita M, Kumanogoh A, Kusunoki S, Sakoda S. Edaravone, a free radical scavenger, ameliorates experimental autoimmune encephalomyelitis. Neurosci Lett. 2008;440:323–326. doi: 10.1016/j.neulet.2008.05.110. PubMed DOI
Contarini G, Giusti P, Skaper SD. Active induction of experimental autoimmune encephalomyelitis in C57BL/6 mice. Methods Mol Biol. 2018;1727:353–360. doi: 10.1007/978-1-4939-7571-6_26. PubMed DOI
Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1:1810–819. doi: 10.1038/nprot.2006.285. PubMed DOI
Salehipour Z, Haghmorad D, Sankian M, Rastin M, Nosratabadi R, Soltan Dallal MM, Tabasi N, Khazaee M, Roozbeh Nasiraii L, Mahmoudi M. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed Pharmacother. 2017;95:1535–1548. doi: 10.1016/j.biopha.2017.08.117. PubMed DOI
Sloka S, Metz LM, Hader W, Starreveld Y, Yong VW. Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. J Neuroinflamm. 2013;10:1–11. doi: 10.1186/1742-2094-10-89. PubMed DOI PMC
Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB, Joachim SC. Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. J Neuroinflamm. 2013;10:1–12. doi: 10.1186/1742-2094-10-120. PubMed DOI PMC
Farghali H, Černý D, Kameníková L, Martínek J, Horínek A, Kmonícková E, Zídek Z. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: role of nitric oxide synthase 2 and heme oxygenase-1. Nitric Oxide. 2009;21:216–225. doi: 10.1016/j.niox.2009.09.004. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Fisar Z, Hroudova J. Pig brain mitochondria as a biological model for study of mitochondrial respiration. Folia Biol (Praha) 2016;62:15–25. PubMed
Folbergrová J, Ješina P, Haugvicová R, Lisý V, Houštěk J. Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int. 2010;56:394–403. doi: 10.1016/j.neuint.2009.11.011. PubMed DOI
Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994;228:35–51. doi: 10.1016/0009-8981(94)90055-8. PubMed DOI
Trounce IA, Kim YL, Jun AS, Wallace DC. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 1996;264:484–509. doi: 10.1016/S0076-6879(96)64044-0. PubMed DOI
Morciano G, Sarti AC, Marchi S, Missiroli S, Falzoni S, Raffaghello L, Pistoia V, Giorgi C, Di Virgilio F, Pinton P. Use of luciferase probes to measure ATP in living cells and animals. Nat Protoc. 2017;12:1542. doi: 10.1038/nprot.2017.052. PubMed DOI
Ismail H, Shakkour Z, Tabet M, Abdelhady S, Kobaisi A, Abedi R, Nasrallah L, Pintus G, Al-Dhaheri Y, Mondello S, El-Khoury R, Eid AH, Kobeissy F, Salameh J. Traumatic brain injury: oxidative stress and novel anti-oxidants such as mitoquinone and edaravone. Antioxidants. 2020;9:943. doi: 10.3390/antiox9100943. PubMed DOI PMC
Nijland PG, Witte ME, van het Hof B, van der Pol S, Bauer J, Lassmann H, van der Valk P, de Vries HE, van Horssen J. Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: Implications for multiple sclerosis. Acta Neuropathol Commun. 2014;2:170. doi: 10.1186/s40478-014-0170-2. PubMed DOI PMC
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127:397–408. doi: 10.1016/j.cell.2006.09.024. PubMed DOI
Li Y, Liu H, Zeng W, Wei J. Edaravone protects against hyperosmolarity-induced oxidative stress and apoptosis in primary human corneal epithelial cells. PLoS One. 2017;12:e0174437. doi: 10.1371/journal.pone.0174437. PubMed DOI PMC
Zhao X, Zhang E, Ren X, Bai X, Wang D, Bai L, Luo D, Guo Z, Wang Q, Yang J. Edaravone alleviates cell apoptosis and mitochondrial injury in ischemia-reperfusion-induced kidney injury via the JAK/STAT pathway. Biol Res. 2020;53:1–12. doi: 10.1186/s40659-019-0267-y. PubMed DOI PMC
Sánchez-González C, Nuevo-Tapioles C, Herrero Martín JC, Pereira MP, Serrano Sanz S, Ramírez de Molina A, Cuezva JM, Formentini L. Dysfunctional oxidative phosphorylation shunts branched-chain amino acid catabolism onto lipogenesis in skeletal muscle. EMBO J. 2020;39:e103812. doi: 10.15252/embj.2019103812. PubMed DOI PMC
Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017;133:223–244. doi: 10.1007/s00401-016-1631-4. PubMed DOI PMC
Hamilton AM, Forkert ND, Yang R, Wu Y, Rogers JA, Yong VW, Dunn JF. Central nervous system targeted autoimmunity causes regional atrophy: a 9.4 T MRI study of the EAE mouse model of Multiple Sclerosis. Sci Rep. 2019;9:1–13. doi: 10.1038/s41598-019-44682-6. PubMed DOI PMC