INTRODUCTION: Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS: We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS: DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION: This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS: Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
- MeSH
- Alzheimerova nemoc * genetika metabolismus MeSH
- čichová sliznice metabolismus MeSH
- epigenomika MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- látky znečišťující vzduch škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * MeSH
- mikro RNA metabolismus genetika MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- výfukové emise vozidel * toxicita MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Solar radiation can cause damage to the skin, leading to various adverse effects such as sunburn, reactive oxygen species production, inflammation, DNA damage, and photoaging. To study the potential of photoprotective agents, full-thickness skin models are increasingly being used as in vitro tools. One promising approach to photoprotection involves targeting the redox-sensitive transcription factor Nrf2, which is responsible for regulating various cellular defense mechanisms, including the antioxidant response, inflammatory signaling, and DNA repair. Obacunone, a natural triterpenoid, has been identified as a potent Nrf2 agonist. The present study aims to evaluate the relevance of full-thickness (FT) skin models in photoprotection studies and to explore the potential photoprotective effects of obacunone on those models and in human keratinocytes. Phenion® full-thickness skin models and keratinocytes were incubated with increasing concentrations of obacunone and irradiated with solar-simulated radiation (SSR). Various photodamage markers were evaluated, including histological integrity, oxidative stress, apoptosis, inflammation, photoaging-related dermal markers, and photocarcinogenesis markers. Increasing doses of SSR were found to modulate various biomarkers related to sun damage in the FT skin models. However, obacunone attenuated cytotoxicity, inflammation, oxidative stress, sunburn reaction, photoaging, and photocarcinogenesis in both keratinocytes and full thickness skin models exposed to SSR. These results suggest that obacunone may have potential as a photoprotective agent for preventing the harmful effects of solar radiation on the skin.
- MeSH
- faktor 2 související s NF-E2 genetika MeSH
- keratinocyty MeSH
- kůže patologie MeSH
- lidé MeSH
- radioprotektivní látky * farmakologie MeSH
- sluneční spáleniny * MeSH
- ultrafialové záření škodlivé účinky MeSH
- zánět prevence a kontrola patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This research demonstrated the protective effect and possible mechanism of the Sophora viciifolia extract (SVE) against acetaminophen-induced liver injury in mice. The levels of ALT and AST in the serum and antioxidant enzyme activity in the liver were measured. We used immunohistochemistry to detect CYP2E1, Nrf2, and Keap1 protein expression in the liver. The mRNA expression in the liver of TNF-α, NF-κB, and IL-6, Nrf2 and its downstream genes HO-1 and GCLC were measured by qRT-PCR. We found that SVE could decrease the ALT and AST levels, promote the activities of SOD, CAT, GSH-Px, and GSH, and ameliorate pathological liver lesions. SVE could down-regulate the mRNA expression of inflammatory factors and up-regulate Nrf2, HO-1 and GCLC. SVE reduced the protein expression of the CYP2E1 and increased the Nrf2 and Keap1. SVE has been shown to have a protective effect against APAP-induced liver injury, possibly through activation of the Keap1-Nrf2 pathway.
- MeSH
- antioxidancia farmakologie MeSH
- chronické poškození jater způsobené chemickými látkami * MeSH
- cytochrom P-450 CYP2E1 genetika metabolismus MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- KEAP-1 genetika metabolismus MeSH
- messenger RNA MeSH
- myši MeSH
- ovoce metabolismus MeSH
- paracetamol * škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
NRF2 is a master regulator of the cellular protection against oxidative damage in mammals and of multiple pathways relevant in the mammalian aging process. In the epidermis of the skin NRF2 contributes additionally to the formation of an antioxidant barrier to protect from environmental insults and is involved in the differentiation process of keratinocytes. In chronological aging of skin, the capacity for antioxidant responses and the ability to restore homeostasis after damage are impaired. Surprisingly, in absence of extrinsic stressors, NRF2 deficient mice do not show any obvious skin phenotype, not even at old age. We investigated the differences in chronological epidermal aging of wild type and NRF2-deficient mice to identify the changes in aged epidermis that may compensate for absence of this important transcriptional regulator. While both genotypes showed elevated epidermal senescence markers (increased Lysophospholipids, decreased LaminB1 expression), the aged NRF2 deficient mice displayed disturbed epidermal differentiation manifested in irregular keratin 10 and loricrin expression. The tail skin displayed less age-related epidermal thinning and a less pronounced decline in proliferating basal epidermal cells compared to the wildtype controls. The stratum corneum lipid composition also differed, as we observed elevated production of barrier protective linoleic acid (C18:2) and reduced abundance of longer chain saturated lignoceric acid (C24:0) among the stratum corneum fatty acids in the aged NRF2-deficient mice. Thus, despite epidermal differentiation being disturbed in aged NRF2-deficient animals in homeostasis, adaptations in keratinocyte proliferation and barrier lipid synthesis could explain the lack of a more severe phenotype.
- MeSH
- antioxidancia * metabolismus MeSH
- buněčná diferenciace genetika MeSH
- epidermální buňky MeSH
- epidermis metabolismus MeSH
- faktor 2 související s NF-E2 * genetika metabolismus MeSH
- keratinocyty MeSH
- myši MeSH
- ocas MeSH
- savci MeSH
- stárnutí genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The mycotoxin zearalenone (ZEA) in food and feed seriously harms human and animal health. How to reduce its toxicity is an important direction of current research on food safety. This study aim to assess the effects of procyanidins (PC) on cell apoptosis caused by ZEA and to clarify the role of Nrf2 in the process. Swine testicle (ST) cells were treated with ZEA (57.5 μmol/L) and/or PC (10 mg/L) for 24 h. Cell viability was detected by CCK-8 assay. Cell apoptosis and the level of ROS were detected by flow cytometry. The expression levels of mRNA and protein was detected by qRT-PCR and western blotting. Our results showed that ZEA reduced the antioxidant capacity of the ST cells, induced the cell apoptosis and inhibited the gene and protein expression of Nrf2 and its downstream genes (ho-1,nqo1), while PC improved the cell antioxidant capacity, reduced the degree of ZEA-induced cell apoptosis and promoted the gene and protein expression of Nrf2 and its downstream genes. However, when the Nrf2 small molecule inhibitor ML385 was added, the ability of PC to inhibit ZEA-induced cell apoptosis and promote the expression of Nrf2 and its downstream genes were decreased. Our results demonstrated that ZEA induced oxidative stress and apoptosis of ST cells, which were alleviated by PC intervention via activating Nrf2 signaling pathway. This finding of this study provided a molecular basis for the clinical application of PC to prevent ZEN-caused reproductive toxicity.
- MeSH
- antioxidancia metabolismus farmakologie MeSH
- apoptóza MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- oxidační stres MeSH
- prasata MeSH
- proantokyanidiny * farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce MeSH
- testis metabolismus MeSH
- zearalenon * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to evaluate therapeutic potential of edaravone in the murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) and to expand the knowledge of its mechanism of action. Edaravone (6 mg/kg/day) was administered intraperitoneally from the onset of clinical symptoms until the end of the experiment (28 days). Disease progression was assessed daily using severity scores. At the peak of the disease, histological analyses, markers of oxidative stress (OS) and parameters of mitochondrial function in the brains and spinal cords (SC) of mice were determined. Gene expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha was determined at the end of the experiment. Edaravone treatment ameliorated EAE severity and attenuated inflammation in the SC of the EAE mice, as verified by histological analysis. Moreover, edaravone treatment decreased OS, increased the gene expression of the Nrf2 and HO-1, increased the activity of the mitochondrial complex II/III, reduced the activity of the mitochondrial complex IV and preserved ATP production in the SC of the EAE mice. In conclusion, findings in this study provide additional evidence of edaravone potential for the treatment of multiple sclerosis and expand our knowledge of the mechanism of action of edaravone in the EAE model.
- MeSH
- edaravon farmakologie MeSH
- encefalomyelitida autoimunitní experimentální * patologie MeSH
- encefalomyelitida * MeSH
- exprese genu MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- hemoxygenasa-1 genetika metabolismus MeSH
- myši MeSH
- stupeň závažnosti nemoci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Background: Oxidative stress is a key factor in the pathophysiology of many diseases. This study aimed to verify the antioxidant activity of selected plant phenolics in cell-based assays and determine their direct or indirect effects. Methods: The cellular antioxidant assay (CAA) assay was employed for direct scavenging assays. In the indirect approach, the influence of each test substance on the gene and protein expression and activity of selected antioxidant enzymes was observed. One assay also dealt with activation of the Nrf2-ARE pathway. The overall effect of each compound was measured using a glucose oxidative stress protection assay. Results: Among the test compounds, acteoside showed the highest direct scavenging activity and no effect on the expression of antioxidant enzymes. It increased only the activity of catalase. Diplacone was less active in direct antioxidant assays but positively affected enzyme expression and catalase activity. Morusin showed no antioxidant activity in the CAA assay. Similarly, pomiferin had only mild antioxidant activity and proved rather cytotoxic. Conclusions: Of the four selected phenolics, only acteoside and diplacone demonstrated antioxidant effects in cell-based assays.
- MeSH
- antioxidační responzivní elementy MeSH
- antioxidancia chemie farmakologie MeSH
- antitumorózní látky chemie farmakologie MeSH
- biologické markery MeSH
- exprese genu MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- fenoly chemie farmakologie MeSH
- glukosa MeSH
- lidé MeSH
- molekulární struktura MeSH
- oxidační stres MeSH
- rostlinné extrakty chemie farmakologie MeSH
- superoxid dismutáza 1 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
NF-E2-related factor 2 (NRF2) is a basic leucine zipper transcription factor, a master regulator of redox homeostasis regulating a variety of genes for antioxidant and detoxification enzymes. NRF2 was, therefore, initially thought to protect the liver from oxidative stress. Recent studies, however, have revealed that mutations in NRF2 cause aberrant accumulation of NRF2 in the nucleus and exert the upregulation of NRF2 target genes. Moreover, among all molecular changes in hepatocellular carcinoma (HCC), NRF2 activation has been revealed as a more prominent pathway contributing to the progression of precancerous lesions to malignancy. Nevertheless, how its activation leads to poor prognosis in HCC patients remains unclear. In this review, we provide an overview of how aberrant activation of NRF2 triggers HCC development. We also summarize the emerging roles of other NRF family members in liver cancer development.
- MeSH
- aktivace transkripce * MeSH
- analýza přežití MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- genové regulační sítě MeSH
- hepatocelulární karcinom diagnóza genetika mortalita patologie MeSH
- karcinogeneze genetika metabolismus patologie MeSH
- KEAP-1 genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- nádory jater diagnóza genetika mortalita patologie MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- prognóza MeSH
- regulace genové exprese u nádorů * MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
- MeSH
- antioxidancia metabolismus MeSH
- energetický metabolismus * MeSH
- epigeneze genetická MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- hormony metabolismus MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- mikro RNA genetika MeSH
- mutace MeSH
- nádorové biomarkery MeSH
- nádorové kmenové buňky metabolismus MeSH
- nádory etiologie metabolismus patologie MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- signální dráha UPR MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Oxidative stress and inflammation are predominant features of several chronic diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a major arbiter in counteracting these insults via up-regulation of several defensive proteins, including heme oxygenase-1 (HO-1). HO-1-derived carbon monoxide (CO) exhibits anti-inflammatory actions and can be delivered to tissues by CO-releasing agents. In this study we assessed the pharmacological and anti-inflammatory properties of HYCO-3, a dual activity compound obtained by conjugating analogues of the CO-releasing molecule CORM-401 and dimethyl fumarate (DMF), an immunomodulatory drug known to activate Nrf2. HYCO-3 induced Nrf2-dependent genes and delivered CO to cells in vitro and tissues in vivo, confirming that the two expected pharmacological properties of this agent are achieved. In mice challenged with lipopolysaccharide, orally administered HYCO-3 reduced the mRNA levels of pro-inflammatory markers (TNF-α, IL-1β and IL-6) while increasing the expression of the anti-inflammatory genes ARG1 and IL-10 in brain, liver, lung and heart. In contrast, DMF or CORM-401 alone or their combination decreased the expression of pro-inflammatory genes but had limited influence on anti-inflammatory markers. Furthermore, HYCO-3 diminished TNF-α and IL-1β in brain and liver but not in lung and heart of Nrf2-/- mice, indicating that the CO-releasing part of this hybrid contributes to reduction of pro-inflammation and that this effect is organ-specific. These data demonstrate that the dual activity of HYCO-3 results in enhanced efficacy compared to the parent compounds indicating the potential exploitation of hybrid compounds in the development of effective anti-inflammatory therapies.
- MeSH
- antiflogistika farmakologie MeSH
- antioxidancia metabolismus MeSH
- cytokiny genetika metabolismus MeSH
- exprese genu MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- hemoxygenasa-1 genetika metabolismus MeSH
- kultivované buňky MeSH
- lipopolysacharidy škodlivé účinky MeSH
- makrofágy účinky léků imunologie metabolismus MeSH
- mediátory zánětu metabolismus MeSH
- mikroglie účinky léků metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši knockoutované MeSH
- myši MeSH
- oxid uhelnatý metabolismus MeSH
- oxidační stres účinky léků MeSH
- zánět farmakoterapie etiologie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH