INTRODUCTION: Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS: We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS: DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION: This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS: Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
- MeSH
- Alzheimerova nemoc * genetika metabolismus MeSH
- čichová sliznice metabolismus MeSH
- epigenomika MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- látky znečišťující vzduch škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * MeSH
- mikro RNA metabolismus genetika MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- výfukové emise vozidel * toxicita MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This study hypothesized that SCFA, acetate impacts positively on hypothalamic pyroptosis and its related abnormalities in experimentally induced PCOS rat model, possibly through NrF2/HIF1-α modulation. Eight-week-old female Wister rats were divided into groups (n = 5), namely control, PCOS, acetate and PCOS + acetate groups. Induction of PCOS was performed by administering 1 mg/kg body weight of letrozole for 21 days. After PCOS confirmation, the animals were treated with 200 mg/kg of acetate for 6 weeks. Rats with PCOS were characterized with insulin resistance, leptin resistance, increased plasma testosterone as well as degenerated ovarian follicles. There was also a significant increase in hypothalamic triglyceride level, triglyceride-glucose index, inflammatory biomarkers (SDF-1 and NF-kB) and caspase-6 as well as plasma LH and triglyceride. A decrease was observed in plasma adiponectin, GnRH, FSH, and hypothalamic GABA with severe inflammasome expression in PCOS rats. These were accompanied by decreased level of NrF2/HIF1-α, and the alterations were reversed when treated with acetate. Collectively, the present results suggest the therapeutic impact of acetate on hypothalamic pyroptosis and its related comorbidity in PCOS, a beneficial effect that is accompanied by modulation of NrF2/HIF1-α.
- MeSH
- adiponektin metabolismus krev MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa * metabolismus MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- folikuly stimulující hormon krev MeSH
- GABA metabolismus MeSH
- hormon uvolňující gonadotropiny metabolismus MeSH
- hypothalamus * metabolismus účinky léků patologie MeSH
- inzulinová rezistence MeSH
- krysa rodu rattus MeSH
- leptin krev metabolismus MeSH
- letrozol farmakologie MeSH
- luteinizační hormon krev MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar * MeSH
- pyroptóza * účinky léků MeSH
- syndrom polycystických ovarií * chemicky indukované metabolismus farmakoterapie patologie MeSH
- testosteron krev MeSH
- triglyceridy krev metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Oxidative stress and autophagy are potential mechanisms associated with cerebral ischemia/reperfusion injury (IRI) and is usually linked to inflammatory responses and apoptosis. Curcumin has recently been demonstrated to exhibit anti-inflammatory, anti-oxidant, anti-apoptotic and autophagy regulation properties. However, mechanism of curcumin on IRI-induced oxidative stress and autophagy remains not well understood. We evaluated the protective effects and potential mechanisms of curcumin on cerebral microvascular endothelial cells (bEnd.3) and neuronal cells (HT22) against oxygen glucose deprivation/reoxygenation (OGD/R) in vitro models that mimic in vivo cerebral IRI. The cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) activity assays revealed that curcumin attenuated the OGD/R-induced injury in a dose-specific manner. OGD/R induced elevated levels of inflammatory cytokines TNF-alpha, IL-6 as well as IL-1beta, and these effects were notably reduced by curcumin. OGD/R-mediated apoptosis was suppressed by curcumin via upregulating B-cell lymphoma-2 (Bcl-2) and downregulating Bcl-associated X (Bax), cleaved-caspase3 and TUNEL apoptosis marker. Additionally, curcumin increased superoxide dismutase (SOD) and glutathione (GSH), but suppressed malondialdehyde (MDA) and reactive oxygen species (ROS) content. Curcumin inhibited the levels of autophagic biomarkers such as LC3 II/LC3 I and Beclin1. Particularly, curcumin induced p62 accumulation and its interactions with keap1 and promoted NF-E2-related factor 2 (Nrf2) translocation to nucleus, accompanied by increased NADPH quinone dehydrogenase (Nqo1) and heme oxygenase 1 (HO-1). Treatment of curcumin increased phosphorylation-phosphatidylinositol 3 kinase (p-PI3K) and p-protein kinase B (p-AKT). The autophagy inhibitor 3-methyladenine (3-MA) activated the keap-1/Nrf2 and PI3K/AKT pathways. This study highlights the neuroprotective effects of curcumin on cerebral IRI.
- MeSH
- antioxidancia farmakologie metabolismus MeSH
- autofagie fyziologie MeSH
- endoteliální buňky metabolismus MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- KEAP-1 metabolismus MeSH
- kurkumin * farmakologie MeSH
- kyslík metabolismus MeSH
- neuroprotektivní látky * farmakologie MeSH
- oxidační stres MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
This research demonstrated the protective effect and possible mechanism of the Sophora viciifolia extract (SVE) against acetaminophen-induced liver injury in mice. The levels of ALT and AST in the serum and antioxidant enzyme activity in the liver were measured. We used immunohistochemistry to detect CYP2E1, Nrf2, and Keap1 protein expression in the liver. The mRNA expression in the liver of TNF-α, NF-κB, and IL-6, Nrf2 and its downstream genes HO-1 and GCLC were measured by qRT-PCR. We found that SVE could decrease the ALT and AST levels, promote the activities of SOD, CAT, GSH-Px, and GSH, and ameliorate pathological liver lesions. SVE could down-regulate the mRNA expression of inflammatory factors and up-regulate Nrf2, HO-1 and GCLC. SVE reduced the protein expression of the CYP2E1 and increased the Nrf2 and Keap1. SVE has been shown to have a protective effect against APAP-induced liver injury, possibly through activation of the Keap1-Nrf2 pathway.
- MeSH
- antioxidancia farmakologie MeSH
- chronické poškození jater způsobené chemickými látkami * MeSH
- cytochrom P-450 CYP2E1 genetika metabolismus MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- KEAP-1 genetika metabolismus MeSH
- messenger RNA MeSH
- myši MeSH
- ovoce metabolismus MeSH
- paracetamol * škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
- MeSH
- aminokyseliny * MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- flavonoidy farmakologie MeSH
- ketolátky metabolismus MeSH
- lidé MeSH
- metabolismus lipidů MeSH
- nádorová transformace buněk metabolismus MeSH
- nádory * farmakoterapie metabolismus MeSH
- oxidace-redukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
NRF2 is a master regulator of the cellular protection against oxidative damage in mammals and of multiple pathways relevant in the mammalian aging process. In the epidermis of the skin NRF2 contributes additionally to the formation of an antioxidant barrier to protect from environmental insults and is involved in the differentiation process of keratinocytes. In chronological aging of skin, the capacity for antioxidant responses and the ability to restore homeostasis after damage are impaired. Surprisingly, in absence of extrinsic stressors, NRF2 deficient mice do not show any obvious skin phenotype, not even at old age. We investigated the differences in chronological epidermal aging of wild type and NRF2-deficient mice to identify the changes in aged epidermis that may compensate for absence of this important transcriptional regulator. While both genotypes showed elevated epidermal senescence markers (increased Lysophospholipids, decreased LaminB1 expression), the aged NRF2 deficient mice displayed disturbed epidermal differentiation manifested in irregular keratin 10 and loricrin expression. The tail skin displayed less age-related epidermal thinning and a less pronounced decline in proliferating basal epidermal cells compared to the wildtype controls. The stratum corneum lipid composition also differed, as we observed elevated production of barrier protective linoleic acid (C18:2) and reduced abundance of longer chain saturated lignoceric acid (C24:0) among the stratum corneum fatty acids in the aged NRF2-deficient mice. Thus, despite epidermal differentiation being disturbed in aged NRF2-deficient animals in homeostasis, adaptations in keratinocyte proliferation and barrier lipid synthesis could explain the lack of a more severe phenotype.
- MeSH
- antioxidancia * metabolismus MeSH
- buněčná diferenciace genetika MeSH
- epidermální buňky MeSH
- epidermis metabolismus MeSH
- faktor 2 související s NF-E2 * genetika metabolismus MeSH
- keratinocyty MeSH
- myši MeSH
- ocas MeSH
- savci MeSH
- stárnutí genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The present study aimed to elucidate the effect of sulforaphane (a natural isothiocyanate) on oxidative stress and mitochondrial dysfunction during and at selected periods following status epilepticus (SE) induced in immature 12-day-old rats by Li-pilocarpine. Dihydroethidium was employed for the detection of superoxide anions, immunoblot analyses for 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) levels and respiratory chain complex I activity for evaluation of mitochondrial function. Sulforaphane was given i.p. in two doses (5 mg/kg each), at PD 10 and PD 11, respectively. The findings of the present study indicate that both the acute phase of SE and the early period of epileptogenesis (1 week and 3 weeks following SE induction) are associated with oxidative stress (documented by the enhanced superoxide anion production and the increased levels of 3-NT and 4-HNE) and the persisting deficiency of complex I activity. Pretreatment with sulforaphane either completely prevented or significantly reduced markers of both oxidative stress and mitochondrial dysfunction. Since sulforaphane had no direct anti-seizure effect, the findings suggest that the ability of sulforaphane to activate Nrf2 is most likely responsible for the observed protective effect. Nrf2-ARE signaling pathway can be considered a promising target for novel therapies of epilepsy, particularly when new compounds, possessing inhibitory activity against protein-protein interaction between Nrf2 and its repressor protein Keap1, with less "off-target" effects and, importantly, with an optimal permeability and bioavailability properties, become available commercially.
- MeSH
- faktor 2 související s NF-E2 * metabolismus MeSH
- isothiokyanatany farmakologie MeSH
- KEAP-1 metabolismus MeSH
- krysa rodu rattus MeSH
- mitochondrie metabolismus MeSH
- oxidační stres MeSH
- status epilepticus * metabolismus MeSH
- sulfoxidy metabolismus farmakologie MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The mycotoxin zearalenone (ZEA) in food and feed seriously harms human and animal health. How to reduce its toxicity is an important direction of current research on food safety. This study aim to assess the effects of procyanidins (PC) on cell apoptosis caused by ZEA and to clarify the role of Nrf2 in the process. Swine testicle (ST) cells were treated with ZEA (57.5 μmol/L) and/or PC (10 mg/L) for 24 h. Cell viability was detected by CCK-8 assay. Cell apoptosis and the level of ROS were detected by flow cytometry. The expression levels of mRNA and protein was detected by qRT-PCR and western blotting. Our results showed that ZEA reduced the antioxidant capacity of the ST cells, induced the cell apoptosis and inhibited the gene and protein expression of Nrf2 and its downstream genes (ho-1,nqo1), while PC improved the cell antioxidant capacity, reduced the degree of ZEA-induced cell apoptosis and promoted the gene and protein expression of Nrf2 and its downstream genes. However, when the Nrf2 small molecule inhibitor ML385 was added, the ability of PC to inhibit ZEA-induced cell apoptosis and promote the expression of Nrf2 and its downstream genes were decreased. Our results demonstrated that ZEA induced oxidative stress and apoptosis of ST cells, which were alleviated by PC intervention via activating Nrf2 signaling pathway. This finding of this study provided a molecular basis for the clinical application of PC to prevent ZEN-caused reproductive toxicity.
- MeSH
- antioxidancia metabolismus farmakologie MeSH
- apoptóza MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- oxidační stres MeSH
- prasata MeSH
- proantokyanidiny * farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce MeSH
- testis metabolismus MeSH
- zearalenon * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to evaluate therapeutic potential of edaravone in the murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) and to expand the knowledge of its mechanism of action. Edaravone (6 mg/kg/day) was administered intraperitoneally from the onset of clinical symptoms until the end of the experiment (28 days). Disease progression was assessed daily using severity scores. At the peak of the disease, histological analyses, markers of oxidative stress (OS) and parameters of mitochondrial function in the brains and spinal cords (SC) of mice were determined. Gene expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha was determined at the end of the experiment. Edaravone treatment ameliorated EAE severity and attenuated inflammation in the SC of the EAE mice, as verified by histological analysis. Moreover, edaravone treatment decreased OS, increased the gene expression of the Nrf2 and HO-1, increased the activity of the mitochondrial complex II/III, reduced the activity of the mitochondrial complex IV and preserved ATP production in the SC of the EAE mice. In conclusion, findings in this study provide additional evidence of edaravone potential for the treatment of multiple sclerosis and expand our knowledge of the mechanism of action of edaravone in the EAE model.
- MeSH
- edaravon farmakologie MeSH
- encefalomyelitida autoimunitní experimentální * patologie MeSH
- encefalomyelitida * MeSH
- exprese genu MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- hemoxygenasa-1 genetika metabolismus MeSH
- myši MeSH
- stupeň závažnosti nemoci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Drug resistance is a serious problem in cancer therapy. Growing evidence has shown that docosahexaenoic acid has anti-inflammatory and chemopreventive abilities. Studies have shown that autophagy inhibition and ferroptosis are promising therapeutic strategies for overcoming multidrug resistance. This study was aimed to examine whether docosahexaenoic acid (DHA) could reverse docetaxel resistance in prostate cancer cells. Cell survival was examined by MTT and colony formation. Protein expression was determined by Western blot. Reactive oxygen species (ROS) production was measured by flow cytometry. DHA displayed anti-cancer effects on proliferation, colony formation, migration, apoptosis, autophagy and epithelial mesenchymal transition. Glutathione-S-transferase π is an enzyme that plays an important role in drug resistance. DHA inhibited GSTπ protein expression and induced cytoprotective autophagy by regulating the PI3K/AKT signalling pathway in PC3R cells. DHA combined with PI3K inhibitor (LY294002) enhanced apoptosis by alleviating the expression of LC3B, (pro-) caspase- 3 and (uncleaved) PARP. DHA induced ferroptosis by attenuating the expression of glutathione peroxidase 4 (GPX4) and nuclear erythroid 2-related factor 2 (Nrf2). DHA-treated PC3R cells produced ROS. The ROS and cytotoxicity were reversed by treatment with ferrostatin-1. DHA combined with docetaxel inhibited EMT by regulating the expression of E-cadhein and N-cadherin. In summary, DHA reversed drug resistance and induced cytoprotective autophagy and ferroptosis by regulating the PI3K/AKT/Nrf2/GPX4 signalling pathway in PC3R cells. We propose that DHA could be developed as a chemosensitizer and that the PI3K/AKT /Nrf2/GPX4 signalling pathway might be a promising therapeutic target for overcoming cancer drug resistance.
- MeSH
- chemorezistence MeSH
- docetaxel farmakologie MeSH
- epitelo-mezenchymální tranzice MeSH
- faktor 2 související s NF-E2 * metabolismus farmakologie MeSH
- fosfatidylinositol-3-kinasy metabolismus farmakologie MeSH
- kyseliny dokosahexaenové farmakologie MeSH
- lidé MeSH
- nádory prostaty * farmakoterapie MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH