Analysis of Signaling Pathways of Necroptotic and Pyroptotic Cell Death in the Hearts of Rats With Type 2 Diabetes Mellitus

. 2023 Jun 09 ; 72 (S1) : S23-S29.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37294115

Diabetes mellitus is known to produce various cell-damaging events and thereby underlie heart dysfunction and remodeling. However, very little is known about its inflammation-associated pathomechanisms due to necrosis-like cell death. For this purpose, we aimed to investigate signaling pathways of necroptosis and pyroptosis, known to produce plasma membrane rupture with the resultant promotion of inflammation. One-year old Zucker diabetic fatty (ZDF) rats did not exhibit significant heart dysfunction as revealed by echocardiographic measurement. On the other hand, there was a decrease in heart rate due to diabetes. Immunoblotting analysis showed that the left ventricles of ZDF rats overexpress neither the main necroptotic proteins including receptor-interacting protein kinase 3 (RIP3) and mixed lineage domain kinase-like pseudokinase (MLKL), nor the pyroptotic regulators including NLR family pyrin domain containing 3 protein (NLRP3), caspase-1, interleukin-1 beta (IL-1beta and the N-terminal gasdermin D (GSDMD-N). On the other hand, the increased activation of the RIP3 kinase due to phosphorylation was found in such hearts. In summary, we showed for the first time that the activation of cardiac RIP3 is upregulated due to disturbances in glucose metabolism which, however, did not proceed to necrosis-like cell death. These data can indicate that the activated RIP3 might also underlie other pleiotropic, non-necroptotic signaling pathways under basal conditions.

Zobrazit více v PubMed

Adameova A, Hrdlicka J, Szobi A, Farkasova V, Kopaskova K, Murarikova M, Neckar J, Kolar F, Ravingerova T, Dhalla NS. Evidence of necroptosis in hearts subjected to various forms of ischemic insults. Can J Physiol Pharmacol. 2017;95:1163–1169. doi: 10.1139/cjpp-2016-0609. PubMed DOI

Chai R, Xue W, Shi S, Zhou Y, Du Y, Li Y, Song Q, Wu H, Hu Y. Cardiac remodeling in heart failure: Role of pyroptosis and its therapeutic implications. Front Cardiovasc Med. 2022;9:870924. doi: 10.3389/fcvm.2022.870924. PubMed DOI PMC

Patel P, Karch J. Regulation of cell death in the cardiovascular system. Int Rev Cell Mol Biol. 2020;353:153–09. doi: 10.1016/bs.ircmb.2019.11.005. PubMed DOI

Morgan MJ, Liu Z-G. Programmed cell death with a necrotic-like phenotype. Biomol Concepts. 2013;4:259–75. doi: 10.1515/bmc-2012-0056. PubMed DOI

Zhe-Wei S, Li-Sha G, Yue-Chun L. The role of necroptosis in cardiovascular disease. Front Pharmacol. 2018;9:721. doi: 10.3389/fphar.2018.00721. PubMed DOI PMC

Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54:133–146. doi: 10.1016/j.molcel.2014.03.003. PubMed DOI

Wu XN, Yang ZH, Wang XK, Zhang Y, Wan H, Song Y, Chen X, Shao J, Han J. Distinct roles of RIP1–RIP3 hetero- and RIP3–RIP3 homo-interaction in mediating necroptosis. Cell Death Differ. 2014;21:1709–1720. doi: 10.1038/cdd.2014.77. PubMed DOI PMC

Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7:971–981. doi: 10.1016/j.celrep.2014.04.026. PubMed DOI

Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–158. doi: 10.1038/nature18629. PubMed DOI PMC

Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang S, Sun N, Chen H, Duan K, Zeng G. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease. Clin Chim Acta. 2020;510:62–2. doi: 10.1016/j.cca.2020.06.044. PubMed DOI

Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99:1765–1817. doi: 10.1152/physrev.00022.2018. PubMed DOI PMC

Lichý M, Szobi A, Hrdlička J, Horváth C, Kormanová V, Rajtík T, Neckář J, Kolář F, Adameová A. Different signalling in infarcted and non-infarcted areas of rat failing hearts: A role of necroptosis and inflammation. J Cell Mol Med. 2019;23:6429–6441. doi: 10.1111/jcmm.14536. PubMed DOI PMC

Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D'Cruz AA, Hall C, et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun. 2015;6:6282. doi: 10.1038/ncomms7282. PubMed DOI PMC

Belke DD, Dillmann WH. Altered cardiac calcium handling in diabetes. Curr Hypertens Rep. 2004;6:424–429. doi: 10.1007/s11906-004-0035-3. PubMed DOI

Ravingerová T, Stetka R, Pancza D, Ulicná O, Ziegelhöffer A, Styk J. Susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic rat heart. Physiol Res. 2000;49:607–616. PubMed

Giacco F, Brownlee M, Schmidt AM. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–1070. doi: 10.1161/CIRCRESAHA.110.223545. PubMed DOI PMC

Kancirová I, Jašová M, Muráriková M, Sumbalová Z, Uličná O, Ravingerová T, Waczulíková I, Ziegelhöffer A, Ferko M. Cardioprotection induced by remote ischemic preconditioning preserves the mitochondrial respiratory function in acute diabetic myocardium. Physiol Res. 2016;65(Suppl 5):S611–S619. doi: 10.33549/physiolres.933533. PubMed DOI

Ahmed N, Babaei-Jadidi R, Howell SK, Beisswenger PJ, Thornalley PJ. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia. 2005;48:1590–1603. doi: 10.1007/s00125-005-1810-7. PubMed DOI

Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol. 2019;14:50–59. doi: 10.15420/ecr.2018.33.1. PubMed DOI PMC

Horvath C, Young M, Jarabicova I, Kindernay L, Ferenczyova K, Ravingerova T, Lewis M, Suleiman MS, Adameova A. Inhibition of cardiac RIP3 mitigates early reperfusion injury and calcium-induced mitochondrial swelling without altering necroptotic signalling. Int J Mol Sci. 2021;22:7983. doi: 10.3390/ijms22157983. PubMed DOI PMC

Jarabicová I, Horváth C, Vel’asová E, Bies Piváčková L, Vetešková J, Klimas J, Křenek P, Adameová A. Analysis of necroptosis and its association with pyroptosis in organ damage in experimental pulmonary arterial hypertension. J Cell Mol Med. 2022;26:2633–645. doi: 10.1111/jcmm.17272. PubMed DOI PMC

Moritz CP. Tubulin or not tubulin: Heading toward total protein staining as loading control in Western blots. Proteomics. 2017;17:201600189. doi: 10.1002/pmic.201600189. PubMed DOI

Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R, Wang Y. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review) Int J Mol Med. 2019;44:771–786. doi: 10.3892/ijmm.2019.4244. PubMed DOI PMC

Jinawong K, Apaijai N, Wongsuchai S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Necrostatin-1 mitigates cognitive dysfunction in prediabetic rats with no alteration in insulin sensitivity. Diabetes. 2020;69:1411–1423. doi: 10.2337/db19-1128. PubMed DOI

Xu H, Du X, Liu G, Huang S, Du W, Zou S, Tang D, et al. The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation. Mol Metab. 2019;23:14–3. doi: 10.1016/j.molmet.2019.02.003. PubMed DOI PMC

Lau H, Corrales N, Alexander M, Mohammadi MR, Li S, Smink AM, de Vos P, Lakey JRT. Necrostatin-1 supplementation enhances young porcine islet maturation and in vitro function. Xenotransplantation. 2020;27:e12555. doi: 10.1111/xen.12555. PubMed DOI

Cao T, Ni R, Ding W, Ji X, Li L, Liao G, Lu Y, Fan G-C, Zhang Z, Peng T. MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes. Cardiovasc Diabetol. 2022;21:165. doi: 10.1186/s12933-022-01602-9. PubMed DOI PMC

Qiao S, Hong L, Zhu Y, Zha J, Wang A, Qiu J, Li W, Wang C, An J, Zhang H. RIPK1–RIPK3 mediates myocardial fibrosis in type 2 diabetes mellitus by impairing autophagic flux of cardiac fibroblasts. Cell Death Dis. 2022;13:147. doi: 10.1038/s41419-022-04587-1. PubMed DOI PMC

Giricz Z, Koncsos G, Rajtík T, Varga ZV, Baranyai T, Csonka C, Szobi A, Adameová A, Gottlieb RA, Ferdinandy P. Hypercholesterolemia downregulates autophagy in the rat heart. Lipids Health Dis. 2017;16:60. doi: 10.1186/s12944-017-0455-0. PubMed DOI PMC

Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y, An F. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One. 2014;19(9):e104771. doi: 10.1371/journal.pone.0104771. PubMed DOI PMC

Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, Lv J, et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci. 2019;15:1010–1019. doi: 10.7150/ijbs.29680. PubMed DOI PMC

Sun Y, Ding S. NLRP3 Inflammasome in diabetic cardiomyopathy and exercise intervention. Int J Mol Sci. 2021;22:1322. doi: 10.3390/ijms222413228. PubMed DOI PMC

Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325:332–36. doi: 10.1126/science.1172308. PubMed DOI

Yang Z, Wang Y, Zhang Y, He X, Zhong CQ, Ni H, Chen X, Liang Y, Wu J, Zhao S, Zhou D, Han J. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol. 2018;20:186–197. doi: 10.1038/s41556-017-0022-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace