β-Adrenergic signaling, monoamine oxidase A and antioxidant defence in the myocardium of SHR and SHR-mtBN conplastic rat strains: the effect of chronic hypoxia

. 2018 Jul ; 68 (4) : 441-454. [epub] 20170531

Jazyk angličtina Země Japonsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28567570

Grantová podpora
13-10267 Grantová Agentura České Republiky
1214214 Grantová agentura Univerzity Karlovy
LL1204 European Research Council (CZ)
P301/12/0696 Ministerstvo Školství, Mládeže a Tělovýchovy
67985823 Fyziologický ústav AV ČR
SVV-260434/2017 Přírodovědecká Fakulta, Univerzita Karlova

Odkazy

PubMed 28567570
PubMed Central PMC10717553
DOI 10.1007/s12576-017-0546-8
PII: S1880-6546(24)00428-1
Knihovny.cz E-zdroje

The β-adrenergic signaling pathways and antioxidant defence mechanisms play important roles in maintaining proper heart function. Here, we examined the effect of chronic normobaric hypoxia (CNH, 10% O2, 3 weeks) on myocardial β-adrenergic signaling and selected components of the antioxidant system in spontaneously hypertensive rats (SHR) and in a conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischemia-resistant Brown Norway strain. Our investigations revealed some intriguing differences between the two strains at the level of β-adrenergic receptors (β-ARs), activity of adenylyl cyclase (AC) and monoamine oxidase A (MAO-A), as well as distinct changes after CNH exposure. The β2-AR/β1-AR ratio was significantly higher in SHR-mtBN than in SHR, apparently due to increased expression of β2-ARs. Adaptation to hypoxia elevated β2-ARs in SHR and decreased the total number of β-ARs in SHR-mtBN. In parallel, the ability of isoprenaline to stimulate AC activity was found to be higher in SHR-mtBN than that in SHR. Interestingly, the activity of MAO-A was notably lower in SHR-mtBN than in SHR, and it was markedly elevated in both strains after exposure to hypoxia. In addition to that, CNH markedly enhanced the expression of catalase and aldehyde dehydrogenase-2 in both strains, and decreased the expression of Cu/Zn superoxide dismutase in SHR. Adaptation to CNH intensified oxidative stress to a similar extent in both strains and elevated the IL-10/TNF-α ratio in SHR-mtBN only. These data indicate that alterations in the mitochondrial genome can result in peculiar changes in myocardial β-adrenergic signaling, MAO-A activity and antioxidant defence and may, thus, affect the adaptive responses to hypoxia.

Zobrazit více v PubMed

Hajri T, Ibrahimi A, Coburn CT, Knapp FF, Kurtz T, Pravenec M, Abumrad NA. Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem. 2001;276:23661–23666. doi: 10.1074/jbc.M100942200. PubMed DOI

Itter G, Jung W, Juretschke P, Schoelkens BA, Linz W. A model of chronic heart failure in spontaneous hypertensive rats (SHR) Lab Anim. 2004;38:138–148. doi: 10.1258/002367704322968812. PubMed DOI

Penna C, Pasqua T, Amelio D, Perrelli MG, Angotti C, Tullio F, Mahata SK, Tota B, Pagliaro P, Cerra MC, Angelone T. Catestatin increases the expression of anti-apoptotic and pro-angiogenetic factors in the post-ischemic hypertrophied heart of SHR. PLoS One. 2014;9:e102536. doi: 10.1371/journal.pone.0102536. PubMed DOI PMC

Ravingerová T, Bernátová I, Matejíková J, Ledvényiová V, Nemčeková M, Pecháňová O, Tribulová N, Slezák J. Impaired cardiac ischemic tolerance in spontaneously hypertensive rats is attenuated by adaptation to chronic and acute stress. Exp Clin Cardiol. 2011;16:e23–e29. PubMed PMC

Kolar F, Parratt JR. Antiarrhythmic effect of ischemic preconditioning in hearts of spontaneously hypertensive rats. Exp Clin Cardiol. 1997;2:124–128.

Neckář J, Šilhavy J, Zídek V, Landa V, Mlejnek P, Šimáková M, Seidman JG, Seidman C, Kazdová L, Klevstig M, Novák F, Vecka M, Papoušek F, Houštěk J, Drahota Z, Kurtz TW, Kolář F, Pravenec M. CD36 overexpression predisposes to arrhythmias but reduces infarct size in spontaneously hypertensive rats: gene expression profile analysis. Physiol Genom. 2012;44:173–182. doi: 10.1152/physiolgenomics.00083.2011. PubMed DOI PMC

Klevstig M, Manakov D, Kasparova D, Brabcova I, Papousek F, Zurmanova J, Zidek V, Silhavy J, Neckar J, Pravenec M, Kolar F, Novakova O, Novotny J. Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats. Pflugers Arch. 2013;465:1477–1486. doi: 10.1007/s00424-013-1281-5. PubMed DOI

Florea SM, Blatter LA. Regulation of cardiac alternans by β-adrenergic signaling pathways. Am J Physiol Heart Circ Physiol. 2012;303:H1047–H1056. doi: 10.1152/ajpheart.00384.2012. PubMed DOI PMC

Frances C, Nazeyrollas P, Prevost A, Moreau F, Pisani J, Davani S, Kantelip JP, Millart H. Role of beta 1- and beta 2-adrenoceptor subtypes in preconditioning against myocardial dysfunction after ischemia and reperfusion. J Cardiovasc Pharmacol. 2003;41:396–405. doi: 10.1097/00005344-200303000-00008. PubMed DOI

Tong H, Bernstein D, Murphy E, Steenbergen C. The role of beta-adrenergic receptor signaling in cardioprotection. FASEB J. 2005;19:983–985. doi: 10.1096/fj.04-3067fje. PubMed DOI

Salie R, Moolman JA, Lochner A. The role of β-adrenergic receptors in the cardioprotective effects of beta-preconditioning (βPC) Cardiovasc Drugs Ther. 2011;25:31–46. doi: 10.1007/s10557-010-6275-3. PubMed DOI

Mader SL, Downing CL, Van Lunteren E. Effect of age and hypoxia on beta-adrenergic receptors in rat heart. J Appl Physiol. 1991;71:2094–2098. doi: 10.1152/jappl.1991.71.6.2094. PubMed DOI

Kacimi R, Richalet JP, Corsin A, Abousahl I, Crozatier B. Hypoxia-induced downregulation of beta-adrenergic receptors in rat heart. J Appl Physiol. 1992;73:1377–1382. doi: 10.1152/jappl.1992.73.4.1377. PubMed DOI

Mardon K, Merlet P, Syrota A, Mazière B. Effects of 5-day hypoxia on cardiac adrenergic neurotransmission in rats. J Appl Physiol. 1998;85:890–897. doi: 10.1152/jappl.1998.85.3.890. PubMed DOI

León-Velarde F, Bourin MC, Germack R, Mohammadi K, Crozatier B, Richalet JP. Differential alterations in cardiac adrenergic signaling in chronic hypoxia or norepinephrine infusion. Am J Physiol Regul Integr Comp Physiol. 2001;280:R274–R281. doi: 10.1152/ajpregu.2001.280.1.R274. PubMed DOI

Hrbasová M, Novotny J, Hejnová L, Kolár F, Neckár J, Svoboda P. Altered myocardial Gs protein and adenylyl cyclase signaling in rats exposed to chronic hypoxia and normoxic recovery. J Appl Physiol. 2003;94:2423–2432. doi: 10.1152/japplphysiol.00958.2002. PubMed DOI

Johnson TS, Young JB, Landsberg L. Sympathoadrenal responses to acute and chronic hypoxia in the rat. J Clin Invest. 1983;71:1263–1272. doi: 10.1172/JCI110876. PubMed DOI PMC

Andersson DC, Fauconnier J, Yamada T, Lacampagne A, Zhang SJ, Katz A, Westerblad H. Mitochondrial production of reactive oxygen species contributes to the β-adrenergic stimulation of mouse cardiomycytes. J Physiol. 2011;589:1791–1801. doi: 10.1113/jphysiol.2010.202838. PubMed DOI PMC

Mallet RT, Ryou MG, Williams AG, Howard L, Downey HF. β1-Adrenergic receptor antagonism abrogates cardioprotective effects of intermittent hypoxia. Basic Res Cardiol. 2006;101:436–446. doi: 10.1007/s00395-006-0599-y. PubMed DOI

Zuo L, Roberts WJ, Tolomello RC, Goins AR. Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling. Front Biol. 2013;8:305–311. doi: 10.1007/s11515-012-1225-z. DOI

Kolár F, Jezková J, Balková P, Breh J, Neckár J, Novák F, Nováková O, Tomásová H, Srbová M, Ost’ádal B, Wilhelm J, Herget J. Role of oxidative stress in PKC-delta upregulation and cardioprotection induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol. 2007;292:H224–H230. doi: 10.1152/ajpheart.00689.2006. PubMed DOI

Kasparova D, Neckar J, Dabrowska L, Novotny J, Mraz J, Kolar F, Zurmanova J. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol Genom. 2015;47:612–620. doi: 10.1152/physiolgenomics.00058.2015. PubMed DOI

Cadenas S, Aragonés J, Landázuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res. 2010;88:219–228. doi: 10.1093/cvr/cvq256. PubMed DOI

Mueller IA, Grim JM, Beers JM, Crockett EL, O’Brien KM. Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes. J Exp Biol. 2011;214:3732–3741. doi: 10.1242/jeb.062042. PubMed DOI

Cortie CH, Hulbert AJ, Hancock SE, Mitchell TW, McAndrew D, Else PL. Of mice, pigs and humans: an analysis of mitochondrial phospholipids from mammals with very different maximal lifespans. Exp Gerontol. 2015;70:135–143. doi: 10.1016/j.exger.2015.08.011. PubMed DOI

Kelly RD, Rodda AE, Dickinson A, Mahmud A, Nefzger CM, Lee W, Forsythe JS, Polo JM, Trounce IA, McKenzie M, Nisbet DR, St John JC. Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells. 2013;31:703–716. doi: 10.1002/stem.1313. PubMed DOI

Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407. doi: 10.1146/annurev.genet.39.110304.095751. PubMed DOI PMC

Neckář J, Svatoňová A, Weissová R, Drahota Z, Zajíčková P, Brabcová I, Kolář D, Alánová P, Vašinová J, Šilhavý J, Hlaváčková M, Tauchmannová K, Milerová M, Ošťádal B, Červenka L, Žurmanová J, Kalous M, Nováková O, Novotný J, Pravenec M, Kolář F. Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clin Sci. 2017;131:865–881. doi: 10.1042/CS20170083. PubMed DOI

Anderson EJ, Efird JT, Davies SW, O’Neal WT, Darden TM, Thayne KA, Katunga LA, Kindell LC, Ferguson TB, Anderson CA, Chitwood WR, Koutlas TC, Williams JM, Rodriguez E, Kypson AP. Monoamine oxidase is a major determinant of redox balance in human atrial myocardium and is associated with postoperative atrial fibrillation. J Am Heart Assoc. 2014;3:e000713. doi: 10.1161/JAHA.113.000713. PubMed DOI PMC

Waskova-Arnostova P, Elsnicova B, Kasparova D, Sebesta O, Novotny J, Neckar J, Kolar F, Zurmanova J. Right-to-left ventricular differences in the expression of mitochondrial hexokinase and phosphorylation of Akt. Cell Physiol Biochem. 2013;31:66–79. doi: 10.1159/000343350. PubMed DOI

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Hahnova K, Kasparova D, Zurmanova J, Neckar J, Kolar F, Novotny J. β-Adrenergic signaling in rat heart is similarly affected by continuous and intermittent normobaric hypoxia. Gen Physiol Biophys. 2016;35:165–167. doi: 10.4149/gpb_2015053. PubMed DOI

Ihnatovych I, Hejnová L, Kostrnová A, Mares P, Svoboda P, Novotný J. Maturation of rat brain is accompanied by differential expression of the long and short splice variants of G(s)alpha protein: identification of cytosolic forms of G(s)alpha. J Neurochem. 2001;79:88–97. doi: 10.1046/j.1471-4159.2001.00544.x. PubMed DOI

Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ. The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol. 2005;518:40–46. doi: 10.1016/j.ejphar.2005.06.002. PubMed DOI

Novotny J, Bourová L, Kolár F, Svoboda P. Membrane-Bound and cytosolic forms of heterotrimeric G proteins in young and adult rat myocardium: influence of neonatal hypo- and hyperthyroidism. J Cell Biochem. 2001;82:215–224. doi: 10.1002/jcb.1157. PubMed DOI

Pilz J, Meineke I, Gleiter CH. Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr B Biomed Sci Appl. 2000;742:315–325. doi: 10.1016/S0378-4347(00)00174-2. PubMed DOI

Chytilová A, Borchert GH, Mandíková-Alánová P, Hlaváčková M, Kopkan L, Khan MA, Imig JD, Kolář F, Neckář J. Tumour necrosis factor-α contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia. Acta Physiol. 2015;214:97–108. doi: 10.1111/apha.12489. PubMed DOI

Giannuzzi CE, Seidler FJ, Slotkin TA. Beta-adrenoceptor control of cardiac adenylyl cyclase during development: agonist pretreatment in the neonate uniquely causes heterologous sensitization, not desensitization. Brain Res. 1995;694:271–278. doi: 10.1016/0006-8993(95)00781-K. PubMed DOI

Mieno S, Horimoto H, Sawa Y, Watanabe F, Furuya E, Horimoto S, Kishida K, Sasaki S. Activation of beta2-adrenergic receptor plays a pivotal role in generating the protective effect of ischemic preconditioning in rat hearts. Scand Cardiovasc J. 2005;39:313–319. doi: 10.1080/14017430510009104. PubMed DOI

Fajardo G, Zhao M, Berry G, Wong LJ, Mochly-Rosen D, Bernstein D. β2-adrenergic receptors mediate cardioprotection through crosstalk with mitochondrial cell death pathways. J Mol Cell Cardiol. 2011;51:781–789. doi: 10.1016/j.yjmcc.2011.06.019. PubMed DOI PMC

Schömig A, Fischer S, Kurz T, Richardt G, Schömig E. Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: mechanism and metabolic requirements. Circ Res. 1987;60:194–205. doi: 10.1161/01.RES.60.2.194. PubMed DOI

Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011;1813:1323–1332. doi: 10.1016/j.bbamcr.2010.09.010. PubMed DOI PMC

Dănilă MD, Privistirescu AI, Mirica SN, Sturza A, Ordodi V, Noveanu L, Duicu OM, Muntean DM. Acute inhibition of monoamine oxidase and ischemic preconditioning in isolated rat hearts: interference with postischemic functional recovery but no effect on infarct size reduction. Can J Physiol Pharmacol. 2015;93:819–825. doi: 10.1139/cjpp-2015-0103. PubMed DOI

Maher JT, Deniiston JC, Wolfe DL, Cymerman A. Mechanism of the attenuated cardiac response to beta-adrenergic stimulation in chronic hypoxia. J Appl Physiol Respir Environ Exerc Physiol. 1978;44:647–651. PubMed

Shatemirova KK, Zelenshchikova VA, Min’ko IV. Catalytic properties of monoamine oxidases during adaptation to altitude chamber hypoxia. Kosm Biol Aviakosm Med. 1990;24:54–56. PubMed

Yan F, Mu Y, Yan G, Liu J, Shen J, Luo G. Antioxidant enzyme mimics with synergism. Mini Rev Med Chem. 2010;10:342–356. doi: 10.2174/138955710791330972. PubMed DOI

Nakanishi K, Tajima F, Nakamura A, Yagura S, Ookawara T, Yamashita H, Suzuki K, Taniguchi N, Ohno H. Effects of hypobaric hypoxia on antioxidant enzymes in rats. J Physiol. 1995;489(Pt 3):869–876. doi: 10.1113/jphysiol.1995.sp021099. PubMed DOI PMC

Neckár J, Borchert GH, Hlousková P, Mícová P, Nováková O, Novák F, Hroch M, Papousek F, Ost’ádal B, Kolár F. Brief daily episode of normoxia inhibits cardioprotection conferred by chronic continuous hypoxia. Role of oxidative stress and BKCa channels. Curr Pharm Des. 2013;19:6880–6889. doi: 10.2174/138161281939131127115154. PubMed DOI

Bu HM, Yang CY, Wang ML, Ma HJ, Sun H, Zhang Y. K(ATP) channels and MPTP are involved in the cardioprotection bestowed by chronic intermittent hypobaric hypoxia in the developing rat. J Physiol Sci. 2015;65:367–376. doi: 10.1007/s12576-015-0376-5. PubMed DOI PMC

Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 2008;321:1493–1495. doi: 10.1126/science.1158554. PubMed DOI PMC

Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, Hayes JD, Yamamoto M. Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J Biol Chem. 2008;283:33554–33562. doi: 10.1074/jbc.M804597200. PubMed DOI PMC

Chau CM, Evans MJ, Scarpulla RC. Nuclear respiratory factor 1 activation sites in genes encoding the gamma-subunit of ATP synthase, eukaryotic initiation factor 2 alpha, and tyrosine aminotransferase. Specific interaction of purified NRF-1 with multiple target genes. J Biol Chem. 1992;267:6999–7006. PubMed

Evans MJ, Scarpulla RC. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev. 1990;4:1023–1034. doi: 10.1101/gad.4.6.1023. PubMed DOI

Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88:611–638. doi: 10.1152/physrev.00025.2007. PubMed DOI

Földes-Papp Z, Domej W, Demel U, Tilz GP. Oxidative stress caused by acute and chronic exposition to altitude. Wien Med Wochenschr. 2005;155:136–142. doi: 10.1007/s10354-005-019-3. PubMed DOI

Singh M, Thomas P, Shukla D, Tulsawani R, Saxena S, Bansal A. Effect of subchronic hypobaric hypoxia on oxidative stress in rat heart. Appl Biochem Biotechnol. 2013;169:2405–2419. doi: 10.1007/s12010-013-0141-2. PubMed DOI

Liu JN, Zhang JX, Lu G, Qiu Y, Yang D, Yin GY, Zhang XL. The effect of oxidative stress in myocardial cell injury in mice exposed to chronic intermittent hypoxia. Chin Med J. 2010;123:74–78. PubMed

Zhou W, Li S, Wan N, Zhang Z, Guo R, Chen B. Effects of various degrees of oxidative stress induced by intermittent hypoxia in rat myocardial tissues. Respirology. 2012;17:821–829. doi: 10.1111/j.1440-1843.2012.02157.x. PubMed DOI

Wang WY, Wan WY, Zeng YM, Chen XY, Zhang YX. Effect of Telmisartan on local cardiovascular oxidative stress in mouse under chronic intermittent hypoxia condition. Sleep Breath. 2013;17:181–187. doi: 10.1007/s11325-012-0669-3. PubMed DOI

Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol. 2009;47:32–40. doi: 10.1016/j.yjmcc.2009.03.019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...