Mitochondrial Peroxiredoxins and Monoamine Oxidase-A: Dynamic Regulators of ROS Signaling in Cardioprotection

. 2024 Dec 31 ; 73 (6) : 887-900.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39903882

An excessive increase in reactive oxygen species (ROS) levels is one of the main causes of mitochondrial dysfunction. However, when ROS levels are maintained in balance with antioxidant mechanisms, ROS fulfill the role of signaling molecules and modulate various physiological processes. Recent advances in mitochondrial bioenergetics research have revealed a significant interplay between mitochondrial peroxiredoxins (PRDXs) and monoamine oxidase-A (MAO-A) in regulating ROS levels. Both proteins are associated with hydrogen peroxide (H2O2), MAO-A as a producer and PRDXs as the primary antioxidant scavengers of H2O2. This review focuses on the currently available knowledge on the function of these proteins and their interaction, highlighting their importance in regulating oxidative damage, apoptosis, and metabolic adaptation in the heart. PRDXs not only scavenge excess H2O2, but also act as regulatory proteins, play an active role in redox signaling, and maintain mitochondrial membrane integrity. Overexpression of MAO-A is associated with increased oxidative damage, leading to mitochondrial dysfunction and subsequent progression of cardiovascular diseases (CVD), including ischemia/reperfusion injury and heart failure. Considering the central role of oxidative damage in the pathogenesis of many CVD, targeting PRDXs activation and MAO-A inhibition may offer new therapeutic strategies aimed at improving cardiac function under conditions of pathological load related to oxidative damage. Keywords: Mitochondria, Peroxiredoxin, Monoamine oxidase-A, Reactive oxygen species, Cardioprotective signaling.

Zobrazit více v PubMed

Trujillo M, Piacenza L, Radi R. Reactivity of mitochondrial peroxiredoxins with biological hydroperoxides. Redox Biochem Chem. 2023;5–6:100017. doi: 10.1016/j.rbc.2023.100017. DOI

Cardozo G, Mastrogiovanni M, Zeida A, Viera N, Radi R, Reyes AM, Trujillo M. Mitochondrial Peroxiredoxin 3 Is Rapidly Oxidized and Hyperoxidized by Fatty Acid Hydroperoxides. Antioxidants (Basel) 2023;12:408. doi: 10.3390/antiox12020408. PubMed DOI PMC

D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, Laviola L, Giorgino F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxid Med Cell Longev. 2020;2020:5732956. doi: 10.1155/2020/5732956. PubMed DOI PMC

Sag CM, Santos CXC, Shah AM. Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol. 2014;73:103–111. doi: 10.1016/j.yjmcc.2014.02.002. PubMed DOI

Santos CXC, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med. 2011;50:777–793. doi: 10.1016/j.freeradbiomed.2011.01.003. PubMed DOI PMC

Aldosari S, Awad M, Harrington E, Sellke F, Abid M. Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology. Antioxidants. 2018;7:14. doi: 10.3390/antiox7010014. PubMed DOI PMC

Muráriková M, Ferko M, Waczulíková I, Jašová M, Kancirová I, Murínová J, Ravingerová T. Changes in mitochondrial properties may contribute to enhanced resistance to ischemia-reperfusion injury in the diabetic rat heart. Can J Physiol Pharmacol. 2017;95:969–976. doi: 10.1139/cjpp-2017-0211. PubMed DOI

Ferko M, Habodászová D, Waczulíková I, Mujkošová J, Kucharská J, Šikurová L’, Ziegelhoffer B, Styk J, Ziegelhoffer A. Endogenous Protective Mechanisms in Remodeling of Rat Heart Mitochondrial Membranes in the Acute Phase of Streptozotocin-Induced Diabetes. Physiol Res. 2008;57(Suppl 2):S67–S73. doi: 10.33549/physiolres.931554. PubMed DOI

Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. 2021;22:4642. doi: 10.3390/ijms22094642. PubMed DOI PMC

Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198. doi: 10.3389/fchem.2023.1158198. PubMed DOI PMC

Brown DI, Griendling KK. Regulation of Signal Transduction by Reactive Oxygen Species in the Cardiovascular System. Circ Res. 2015;116:531–549. doi: 10.1161/CIRCRESAHA.116.303584. PubMed DOI PMC

Zweier J, Talukder M. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70:181–190. doi: 10.1016/j.cardiores.2006.02.025. PubMed DOI

Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M. Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66Shc and monoamine oxidase. Basic Res Cardiol. 2009;104:131–139. doi: 10.1007/s00395-009-0008-4. PubMed DOI

Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011;1813:1323–1332. doi: 10.1016/j.bbamcr.2010.09.010. PubMed DOI PMC

Mialet-Perez J, Parini A. Cardiac monoamine oxidases: at the heart of mitochondrial dysfunction. Cell Death Dis. 2020;11:54. doi: 10.1038/s41419-020-2251-4. PubMed DOI PMC

Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F. Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol. 2014;73:34–42. doi: 10.1016/j.yjmcc.2013.12.032. PubMed DOI PMC

Van der Eecken V, Clippe A, Dekoninck S, Goemaere J, Walbrecq G, Van Veldhoven PP, Knoops B. Abolition of Peroxiredoxin-5 Mitochondrial Targeting during Canid Evolution. PLoS One. 2013;8:e72844. doi: 10.1371/journal.pone.0072844. PubMed DOI PMC

Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 2019;51:1–13. doi: 10.1038/s12276-019-0355-7. PubMed DOI PMC

Jeong SJ, Park JG, Oh GT. Peroxiredoxins as Potential Targets for Cardiovascular Disease. Antioxidants. 2021;10:1244. doi: 10.3390/antiox10081244. PubMed DOI PMC

Maharjan S, Oku M, Tsuda M, Hoseki J, Sakai Y. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep. 2014;4:5896. doi: 10.1038/srep05896. PubMed DOI PMC

Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J. 2010;425:313–325. doi: 10.1042/BJ20091541. PubMed DOI

Valaei K, Taherkhani S, Arazi H, Suzuki K. Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients. 2021;13:3483. doi: 10.3390/nu13103483. PubMed DOI PMC

Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, et al. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med. 2023;21:519. doi: 10.1186/s12967-023-04361-7. PubMed DOI PMC

Schröder E, Brennan JP, Eaton P. Cardiac peroxiredoxins undergo complex modifications during cardiac oxidant stress. Am J Physiol Heart Circ Physiol. 2008;295:H425–H433. doi: 10.1152/ajpheart.00017.2008. PubMed DOI PMC

Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011;1813:1323–1332. doi: 10.1016/j.bbamcr.2010.09.010. PubMed DOI PMC

Ezeriņa D, Nghia Vo T, Luo T, Elkrim Y, Suarez AE, Herinckx G, Vertommen D, Laoui D, Van Ginderachter JA, Messens J. Peroxiredoxin-1 is an H2O2 safe-guard antioxidant and signalling enzyme in M1 macrophages. Adv Redox Res. 2023;9:100083. doi: 10.1016/j.arres.2023.100083. DOI

Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother. 2023;162:114606. doi: 10.1016/j.biopha.2023.114606. PubMed DOI

Mailloux RJ. Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels. Oxid Med Cell Longev. 2018;2018:7857251. doi: 10.1155/2018/7857251. PubMed DOI PMC

Qausain S, Basheeruddin M. Unraveling the Peroxidase Activity in Peroxiredoxins: A Comprehensive Review of Mechanisms, Functions, and Biological Significance. Cureus. 2024;16:e66117. doi: 10.7759/cureus.66117. PubMed DOI PMC

Wang Z, Sun R, Wang G, Chen Z, Li Y, Zhao Y, Liu D, Zhao H, Zhang F, Yao J, Tian X. SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. Redox Biol. 2020;28:101343. doi: 10.1016/j.redox.2019.101343. PubMed DOI PMC

Cao Z, Lindsay JG. The Peroxiredoxin Family: An Unfolding Story. In: Harris J, Marles-Wright J, editors. Macromolecular Protein Complexes. Vol. 83. Springer; Cham: 2017. pp. 127–147. PubMed DOI

Gomes F, Turano H, Ramos A, de Barros MH, Haddad LA, Netto LES. Dissecting the molecular mechanisms of mitochondrial import and maturation of peroxiredoxins from yeast and mammalian cells. Biophys Rev. 2021;13:983–994. doi: 10.1007/s12551-021-00899-2. PubMed DOI PMC

Perkins A, Poole LB, Karplus PA. Tuning of peroxiredoxin catalysis for various physiological roles. Biochemistry. 2014;53:7693–7705. doi: 10.1021/bi5013222. PubMed DOI PMC

Lee KP, Shin YJ, Cho SC, Lee SM, Bahn YJ, Kim JY, Kwon ES, Jeong DY, Park SC, Rhee SG, Woo HA, Kwon KS. Peroxiredoxin 3 has a crucial role in the contractile function of skeletal muscle by regulating mitochondrial homeostasis. Free Radic Biol Med. 2014;77:298–306. doi: 10.1016/j.freeradbiomed.2014.09.010. PubMed DOI

Arkat S, Umbarkar P, Singh S, Sitasawad SL. Mitochondrial Peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in Diabetic cardiomyopathy. Free Radic Biol Med. 2016;97:489–500. doi: 10.1016/j.freeradbiomed.2016.06.019. PubMed DOI

Hu W, Dang XB, Wang G, Li S, Zhang YL. Peroxiredoxin-3 attenuates traumatic neuronal injury through preservation of mitochondrial function. Neurochem Int. 2018;114:120–126. doi: 10.1016/j.neuint.2018.02.004. PubMed DOI

Huh JY, Kim Y, Jeong J, Park J, Kim I, Huh KH, Kim YS, et al. Peroxiredoxin 3 Is a Key Molecule Regulating Adipocyte Oxidative Stress, Mitochondrial Biogenesis, and Adipokine Expression. Antioxid Redox Signal. 2012;16:229–243. doi: 10.1089/ars.2010.3766. PubMed DOI PMC

Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol. 2023;11:1290046. doi: 10.3389/fcell.2023.1290046. PubMed DOI PMC

Sonn SK, Song EJ, Seo S, Kim YY, Um JH, Yeo FJ, Lee DS, et al. Peroxiredoxin 3 deficiency induces cardiac hypertrophy and dysfunction by impaired mitochondrial quality control. Redox Biol. 2022;51:102275. doi: 10.1016/j.redox.2022.102275. PubMed DOI PMC

Matsushima S, Ide T, Yamato M, Matsusaka H, Hattori F, Ikeuchi M, Kubota T, Sunagawa K, Hasegawa Y, Kurihara T, Oikawa S, Kinugawa S, Tsutsui H. Overexpression of Mitochondrial Peroxiredoxin-3 Prevents Left Ventricular Remodeling and Failure After Myocardial Infarction in Mice. Circulation. 2006;113:1779–1786. doi: 10.1161/CIRCULATIONAHA.105.582239. PubMed DOI

Knoops B, Goemaere J, Van der Eecken V, Declercq JP. Peroxiredoxin 5: Structure, Mechanism, and Function of the Mammalian Atypical 2-Cys Peroxiredoxin. Antioxid Redox Signal. 2011;15:817–829. doi: 10.1089/ars.2010.3584. PubMed DOI

Sun H, Kim S, Huang SM, Kim J, Park Y, Kim S, Yang H, et al. Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J Neurochem. 2010;114:39–50. doi: 10.1111/j.1471-4159.2010.06691.x. PubMed DOI

Andelova N, Waczulikova I, Kunstek L, Talian I, Ravingerova T, Jasova M, Suty S, Ferko M. Dichloroacetate as a metabolic modulator of heart mitochondrial proteome under conditions of reduced oxygen utilization. Sci Rep. 2022;12:16348. doi: 10.1038/s41598-022-20696-5. PubMed DOI PMC

Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, Krga I, Glibetić M, Pinton P, Giorgi C, Matter ML. Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Front Cell Dev Biol. 2021;8:624216. doi: 10.3389/fcell.2020.624216. PubMed DOI PMC

Enomoto H, Mittal N, Inomata T, Arimura T, Izumi T, Kimura A, Fukuda K, Makino S. Dilated cardiomyopathy-linked heat shock protein family D member 1 mutations cause up-regulation of reactive oxygen species and autophagy through mitochondrial dysfunction. Cardiovasc Res. 2021;117:1118–1131. doi: 10.1093/cvr/cvaa158. PubMed DOI

Ameling S, Bischof J, Dörr M, Könemann S, Empen K, Weitmann K, Klingel K, Beug D, Dhople VM, Völker U, Hammer E, Felix SB. Analysis of DCM associated protein alterations of human right and left ventricles. J Proteomics. 2021;231:104018. doi: 10.1016/j.jprot.2020.104018. PubMed DOI

Roselló-Lletí E, Alonso J, Cortés R, Almenar L, Martínez-Dolz L, Sánchez-Lázaro I, Lago F, et al. Cardiac protein changes in ischaemic and dilated cardiomyopathy: a proteomic study of human left ventricular tissue. J Cell Mol Med. 2012;16:2471–2486. doi: 10.1111/j.1582-4934.2012.01565.x. PubMed DOI PMC

Roselló-Lletí E, Tarazón E, Barderas MG, Ortega A, Otero M, Molina-Navarro MM, Lago F, et al. Heart Mitochondrial Proteome Study Elucidates Changes in Cardiac Energy Metabolism and Antioxidant PRDX3 in Human Dilated Cardiomyopathy. PLoS One. 2014;9:e112971. doi: 10.1371/journal.pone.0112971. PubMed DOI PMC

Sharapov MG, Goncharov RG, Filkov GI, Trofimenko AV, Boyarintsev VV, Novoselov VI. Comparative Study of Protective Action of Exogenous 2-Cys Peroxiredoxins (Prx1 and Prx2) Under Renal Ischemia-Reperfusion Injury. Antioxidants. 2020;9:680. doi: 10.3390/antiox9080680. PubMed DOI PMC

Chen L, Na R, Gu M, Salmon AB, Liu Y, Liang H, Qi W, Van Remmen H, Richardson A, Ran Q. Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell. 2008;7:866–878. doi: 10.1111/j.1474-9726.2008.00432.x. PubMed DOI PMC

Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 2022;13:157. doi: 10.14336/AD.2021.0729. PubMed DOI PMC

MacAulay K, Woodgett JR. Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opin Ther Targets. 2008;12:1265–1274. doi: 10.1517/14728222.12.10.1265. PubMed DOI PMC

Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483–1496. doi: 10.7150/ijbs.27173. PubMed DOI PMC

Han JW. Impaired PI3K/Akt signal pathway and hepatocellular injury in high-fat fed rats. World J Gastroenterol. 2010;16:6111. doi: 10.3748/wjg.v16.i48.6111. PubMed DOI PMC

Yan J, Jiang J, He L, Chen L. Mitochondrial superoxide/hydrogen peroxide: An emerging therapeutic target for metabolic diseases. Free Radic Biol Med. 2020;152:33–42. doi: 10.1016/j.freeradbiomed.2020.02.029. PubMed DOI

Lopes RA, Neves KB, Tostes RC, Montezano AC, Touyz RM. Downregulation of nuclear factor erythroid 2-related factor and associated antioxidant genes contributes to redox-sensitive vascular dysfunction in hypertension. Hypertension. 2015;66:1240–1250. doi: 10.1161/HYPERTENSIONAHA.115.06163. PubMed DOI

Tchouagué M, Grondin M, Glory A, Averill-Bates D. Heat shock induces the cellular antioxidant defenses peroxiredoxin, glutathione and glucose 6-phosphate dehydrogenase through Nrf2. Chem Biol Interact. 2019;310:108717. doi: 10.1016/j.cbi.2019.06.030. PubMed DOI

Ngo V, Duennwald ML. Nrf2 and Oxidative Stress: A general overview of mechanisms and implications in human disease. Antioxidants. 2022;11:2345. doi: 10.3390/antiox11122345. PubMed DOI PMC

Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The role of NRF2 in Obesity-associated cardiovascular risk factors. Antioxidants. 2022;11:235. doi: 10.3390/antiox11020235. PubMed DOI PMC

Miyamoto N, Izumi H, Miyamoto R, Kondo H, Tawara A, Sasaguri Y, Kohno K. Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway. Invest Opthalmol Vis Sci. 2011;52:1055. doi: 10.1167/iovs.10-5777. PubMed DOI

Alanova P, Alan L, Opletalova B, Bohuslavova R, Abaffy P, Matejkova K, Holzerova K, et al. HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia. Acta Physiol (Oxf) 2024;240:e14202. doi: 10.1111/apha.14202. PubMed DOI

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. doi: 10.1161/01.CIR.74.5.1124. PubMed DOI

Alánová P, Chytilová A, Neckář J, Hrdlička J, Míčová P, Holzerová K, Hlaváčková M, Macháčková K, Papoušek F, Vašinová J, Benák D, Nováková O, Kolář F. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol (1985) 2017;122:1452–1461. doi: 10.1152/japplphysiol.00671.2016. PubMed DOI

Kolár F, Jezková J, Balková P, Breh J, Neckár J, Novák F, Nováková O, Tomásová H, Srbová M, Ost’ádal B, Wilhelm J, Herget J. Role of oxidative stress in PKC-delta upregulation and cardioprotection induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol. 2007;292:H224–H230. doi: 10.1152/ajpheart.00689.2006. PubMed DOI

Balková P, Hlaváčková M, Milerová M, Neckář J, Kolář F, Novák F, Nováková O. N-acetylcysteine treatment prevents the up-regulation of MnSOD in chronically hypoxic rat hearts. Physiol Res. 2011;60:467–474. doi: 10.33549/physiolres.932042. PubMed DOI

Zhu WZ, Wu XF, Zhang Y, Zhou ZN. Proteomic analysis of mitochondrial proteins in cardiomyocytes from rats subjected to intermittent hypoxia. Eur J Appl Physiol. 2012;112:1037–1046. doi: 10.1007/s00421-011-2050-9. PubMed DOI

Kasparova D, Neckar J, Dabrowska L, Novotny J, Mraz J, Kolar F, Zurmanova J. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol Genomics. 2015;47:612–620. doi: 10.1152/physiolgenomics.00058.2015. PubMed DOI

Sabharwal SS, Waypa GB, Marks JD, Schumacker PT. Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. Biochem J. 2013;456:337–346. doi: 10.1042/BJ20130740. PubMed DOI PMC

McCommis KS, McGee AM, Laughlin MH, Bowles DK, Baines CP. Hypercholesterolemia increases mitochondrial oxidative stress and enhances the MPT response in the porcine myocardium: beneficial effects of chronic exercise. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1250–R1258. doi: 10.1152/ajpregu.00841.2010. PubMed DOI PMC

Richters L, Lange N, Renner R, Treiber N, Ghanem A, Tiemann K, Scharffetter-Kochanek K, et al. Exercise-induced adaptations of cardiac redox homeostasis and remodeling in heterozygous SOD2-knockout mice. J Appl Physiol. 2011;111:1431–1440. doi: 10.1152/japplphysiol.01392.2010. PubMed DOI

Li X, Jin X, Xu L, Hu B, Xu G, Chen D. Antioxidative effect of peroxiredoxin-3 in the rat myocardium exposed to renal ischemia-reperfusion injury. TMR Integ Med. 2020;4:e20010. doi: 10.53388/TMRIM202004010. DOI

Dekkers DHW, Bezstarosti K, Gurusamy N, Luijk K, Verhoeven AJM, Rijkers EJ, Demmers JA, et al. Identification by a differential proteomic approach of the induced stress and redox proteins by resveratrol in the normal and diabetic rat heart. J Cell Mol Med. 2008;12:1677–1689. doi: 10.1111/j.1582-4934.2008.00227.x. PubMed DOI PMC

Xi L, Zhu SG, Hobbs DC, Kukreja RC. Identification of protein targets underlying dietary nitrate-induced protection against doxorubicin cardiotoxicity. J Cell Mol Med. 2011;15:2512–2524. doi: 10.1111/j.1582-4934.2011.01257.x. PubMed DOI PMC

Duicu OM, Lighezan R, Sturza A, Balica R, Vaduva A, Feier H, Gaspar M, et al. Assessment of mitochondrial dysfunction and monoamine oxidase contribution to oxidative stress in human diabetic hearts. Oxid Med Cell Longev. 2016;2016:8470394. doi: 10.1155/2016/8470394. PubMed DOI PMC

Manni ME, Rigacci S, Borchi E, Bargelli V, Miceli C, Giordano C, Raimondi L, Nediani C. Monoamine oxidase is overactivated in left and right ventricles from ischemic hearts: an intriguing therapeutic target. Oxid Med Cell Longev. 2016;2016:4375418. doi: 10.1155/2016/4375418. PubMed DOI PMC

Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine oxidase (MAO) as a potential target for anticancer drug design and development. Molecules. 2021;26:6019. doi: 10.3390/molecules26196019. PubMed DOI PMC

Kaludercic N, Arusei RJ, Di Lisa F. Recent advances on the role of monoamine oxidases in cardiac pathophysiology. Basic Res Cardiol. 2023;118:41. doi: 10.1007/s00395-023-01012-2. PubMed DOI PMC

Deshwal S, Forkink M, Hu CH, Buonincontri G, Antonucci S, Di Sante M, Murphy MP, Paolocci N, Mochly-Rosen D, Krieg T, Di Lisa F, Kaludercic N. Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death Differ. 2018;25:1671–1685. doi: 10.1038/s41418-018-0071-1. PubMed DOI PMC

Sorato E, Menazza S, Zulian A, Sabatelli P, Gualandi F, Merlini L, Bonaldo P, Canton M, Bernardi P, Di Lisa F. Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathies. Free Radic Biol Med. 2014;75:40–47. doi: 10.1016/j.freeradbiomed.2014.07.006. PubMed DOI PMC

Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, Giordano G, Cucci MA, Graf M, Gentile F. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants. 2018;7:102. doi: 10.3390/antiox7080102. PubMed DOI PMC

Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116–141. doi: 10.1016/j.freeradbiomed.2020.02.025. PubMed DOI

Sharma S, Sharma P, Bailey T, Bhattarai S, Subedi U, Miller C, Ara H, Kidambi S, Sun H, Panchatcharam M, Miriyala S. Electrophilic aldehyde 4-hydroxy-2-nonenal mediated signaling and mitochondrial dysfunction. Biomolecules. 2022;12:1555. doi: 10.3390/biom12111555. PubMed DOI PMC

Dodson M, Wani WY, Redmann M, Benavides GA, Johnson MS, Ouyang X, Cofield SS, Mitra K, Darley-Usmar V, Zhang J. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy. 2017;13:1828–1840. doi: 10.1080/15548627.2017.1356948. PubMed DOI PMC

Santin Y, Fazal L, Sainte-Marie Y, Sicard P, Maggiorani D, Tortosa F, Yücel YY, et al. Mitochondrial 4-HNE derived from MAO-A promotes mitoCa2+ overload in chronic postischemic cardiac remodeling. Cell Death Differ. 2020;27:1907–1923. doi: 10.1038/s41418-019-0470-y. PubMed DOI PMC

Bekyarova G, Tzaneva M, Bratoeva K, Ivanova I, Kotzev A, Hristova M, Krastev D, Kindekov I, Mileva M. 4-Hydroxynonenal (HNE) and hepatic injury related to chronic oxidative stress. Biotechnol Biotechnol Equip. 2019;33:1544–1552. doi: 10.1080/13102818.2019.1674690. DOI

Le Chen Knowlton AA. Mitochondrial Dynamics in Heart Failure. Congest Heart Fail. 2011;17:257–261. doi: 10.1111/j.1751-7133.2011.00255.x. PubMed DOI PMC

Deshwal S, Di Sante M, Di Lisa F, Kaludercic N. Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol. 2017;33:64–69. doi: 10.1016/j.coph.2017.04.003. PubMed DOI

Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123:92–100. doi: 10.1172/JCI62874. PubMed DOI PMC

Gasic S, Korn A, Eichler HG, Oberhummer I, Zapotoczky HG. Cardiocirculatory effects of moclobemide (Ro 11-1163), a new reversible, a short-acting MAO-inhibitor with preferential Type A inhibition, in healthy volunteers and depressive patients. Eur J Clin Pharmacol. 1983;25:173–177. doi: 10.1007/BF00543787. PubMed DOI

Korn A, Eichler HG, Fischbach R, Gasic S. Moclobemide, a new reversible MAO inhibitor - interaction with tyramine and tricyclic antidepressants in healthy volunteers and depressive patients. Psychopharmacology (Berl) 1986;88:153–157. doi: 10.1007/BF00652232. PubMed DOI

Corbineau S, Breton M, Mialet-Perez J, Costemale-Lacoste JF. Major depression and heart failure: Interest of monoamine oxidase inhibitors. Int J Cardiol. 2017;247:1–6. doi: 10.1016/j.ijcard.2017.07.005. PubMed DOI

Green A, Hossain T, Eckmann DM. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front Cell Dev Biol. 2022;10:1010232. doi: 10.3389/fcell.2022.1010232. PubMed DOI PMC

Vigneron F, Guilbeau-Frugier C, Parini A, Mialet-Perez J. Involvement of monoamine oxidase a (MAO-A) in mitochondrial fission and autophagy during aging. Eur Heart J. 2013;34(Suppl 1):P1856–P1856. doi: 10.1093/eurheartj/eht308.P1856. DOI

Ugun-Klusek A, Theodosi TS, Fitzgerald JC, Burté F, Ufer C, Boocock DJ, Yu-Wai-Man P, Bedford L, Billett EE. Monoamine oxidase-A promotes protective autophagy in human SH-SY5Y neuroblastoma cells through Bcl-2 phosphorylation. Redox Biol. 2019;20:167–181. doi: 10.1016/j.redox.2018.10.003. PubMed DOI PMC

Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther. 2023;8:333. doi: 10.1038/s41392-023-01547-9. PubMed DOI PMC

Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med. 2020;7:12. doi: 10.3389/fcvm.2020.00012. PubMed DOI PMC

Sebastiani J, Sabatelli A, McDonald MD.Mild hypoxia exposure impacts peripheral serotonin uptake and degradation in Gulf toadfish (Opsanus beta) J Exp Biol 2022225jeb24406410.1242/jeb.244064 PubMed DOI

Maher JT, Deniiston JC, Wolfe DL, Cymerman A. Mechanism of the attenuated cardiac response to beta-adrenergic stimulation in chronic hypoxia. J Appl Physiol. 1978;44:647–651. doi: 10.1152/jappl.1978.44.5.647. PubMed DOI

Hahnova K, Brabcova I, Neckar J, Weissova R, Svatonova A, Novakova O, Zurmanova J, et al. β-Adrenergic signaling, monoamine oxidase A and antioxidant defence in the myocardium of SHR and SHR-mtBN conplastic rat strains: the effect of chronic hypoxia. J Physiol Sci. 2018;68:441–454. doi: 10.1007/s12576-017-0546-8. PubMed DOI PMC

Dănilă MD, Privistirescu AI, Mirica SN, Sturza A, Ordodi V, Noveanu L, Duicu OM, Muntean DM. Acute inhibition of monoamine oxidase and ischemic preconditioning in isolated rat hearts: interference with postischemic functional recovery but no effect on infarct size reduction. Can J Physiol Pharmacol. 2015;93:819–825. doi: 10.1139/cjpp-2015-0103. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...