HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia

. 2024 Sep ; 240 (9) : e14202. [epub] 20240717

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39016532

Grantová podpora
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases
NU20J-02- 00035 Ministry of Health of the Czech Republic
270623 Charles University
European Union-Next Generation EU
C93C22007550006 National Recovery and Resilience Plan (NRRP)
RVO: 86652036 Czech Academy of Sciences

AIM: The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS: Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a +/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS: We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a +/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION: These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.

Zobrazit více v PubMed

Anderson JD , Honigman B . The effect of altitude‐induced hypoxia on heart disease: do acute, intermittent, and chronic exposures provide cardioprotection? High Alt Med Biol. 2011;12(1):45‐55. doi:10.1089/ham.2010.1021

Hurtado A . Some clinical aspects of life at high altitudes. Ann Intern Med. 1960;53:247‐258. doi:10.7326/0003-4819-53-2-247

Ostadal B , Kolar F . Cardiac adaptation to chronic high‐altitude hypoxia: beneficial and adverse effects. Respir Physiol Neurobiol. 2007;158(2–3):224‐236. doi:10.1016/j.resp.2007.03.005

Ostádal B , Kolár F , Pelouch V , Widimský J . Ontogenetic differences in cardiopulmonary adaptation to chronic hypoxia. Physiol Res. 1995;44(1):45‐51. PubMed PMID: 8789299; eng.

Semenza GL . Targeting HIF‐1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721‐732. doi:10.1038/nrc1187

Semenza GL . HIF‐1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1‐3. doi:10.1016/s0092-8674(01)00518-9

Wang GL , Jiang BH , Rue EA , Semenza GL . Hypoxia‐inducible factor 1 is a basic‐helix‐loop‐helix‐PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510‐5514. doi:10.1073/pnas.92.12.5510

Cai Z , Zhong H , Bosch‐Marce M , et al. Complete loss of ischaemic preconditioning‐induced cardioprotection in mice with partial deficiency of HIF‐1 alpha. Cardiovasc Res. 2008;77(3):463‐470. doi:10.1093/cvr/cvm035

Cai Z , Luo W , Zhan H , Semenza GL . Hypoxia‐inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc Natl Acad Sci USA. 2013;110(43):17462‐17467. doi:10.1073/pnas.1317158110

Neckár J , Ostádal B , Kolár F . Myocardial infarct size‐limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res. 2004;53(6):621‐628.

Semenza GL . O2‐regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF‐1. J Appl Physiol. 2004;96(3):1173‐1177; discussion 1170–2. doi:10.1152/japplphysiol.00770.2003

Essop MF . Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol. 2007;584(Pt 3):715‐726. doi:10.1113/jphysiol.2007.143511

Schaper J , Meiser E , Stämmler G . Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res. 1985;56(3):377‐391. doi:10.1161/01.res.56.3.377

Murphy E , Steenbergen C . Regulation of mitochondrial Ca(2+) uptake. Annu Rev Physiol. 2021;83:107‐126. doi:10.1146/annurev-physiol-031920-092419

Janssen‐Heininger YM , Mossman BT , Heintz NH , et al. Redox‐based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008;45(1):1‐17. doi:10.1016/j.freeradbiomed.2008.03.011

Asemu G , Papousek F , Ostádal B , et al. Adaptation to high altitude hypoxia protects the rat heart against ischemia‐induced arrhythmias. Involvement of mitochondrial K(ATP) channel. J Mol Cell Cardiol. 1999;31(10):1821‐1831. doi:10.1006/jmcc.1999.1013

Borchert GH , Yang C , Kolár F . Mitochondrial BKCa channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats. Am J Physiol Heart Circ Physiol. 2011;300(2):H507‐H513. doi:10.1152/ajpheart.00594.2010

Mizushima N , Komatsu M . Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728‐741. doi:10.1016/j.cell.2011.10.026

Saito T , Sadoshima J . Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res. 2015;116(8):1477‐1490. doi:10.1161/circresaha.116.303790

Alánová P , Chytilová A , Neckář J , et al. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol. 2017;122(6):1452‐1461. doi:10.1152/japplphysiol.00671.2016

Gustafsson AB , Gottlieb RA . Bcl‐2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 2007;292(1):C45‐C51. doi:10.1152/ajpcell.00229.2006

Honkoop H , de Bakker DE , Aharonov A , et al. Single‐cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. elife. 2019;8:e50163. doi:10.7554/eLife.50163

Ahuja P , Zhao P , Angelis E , et al. Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest. 2010;120(5):1494‐1505. doi:10.1172/JCI38331

Khachigian LM . Early growth response‐1 in cardiovascular pathobiology. Circ Res. 2006;98(2):186‐191. doi:10.1161/01.RES.0000200177.53882.c3

Harhous Z , Booz GW , Ovize M , Bidaux G , Kurdi M . An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med. 2019;6:150. doi:10.3389/fcvm.2019.00150

Thu VT , Kim HK , Ha SH , et al. Glutathione peroxidase 1 protects mitochondria against hypoxia/reoxygenation damage in mouse hearts. Pflugers Arch. 2010;460(1):55‐68. doi:10.1007/s00424-010-0811-7

Wang H , Wang L , Hu F , et al. Neuregulin‐4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway. Cardiovasc Diabetol. 2022;21(1):205. doi:10.1186/s12933-022-01643-0

Gao S , Li G , Shao Y , et al. FABP5 deficiency impairs mitochondrial function and aggravates pathological cardiac remodeling and dysfunction. Cardiovasc Toxicol. 2021;21(8):619‐629. doi:10.1007/s12012-021-09653-2

Zhang J , Qiao C , Chang L , et al. Cardiomyocyte overexpression of FABP4 aggravates pressure overload‐induced heart hypertrophy. PLoS One. 2016;11(6):e0157372. doi:10.1371/journal.pone.0157372

Pankiv S , Clausen TH , Lamark T , et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131‐24145. doi:10.1074/jbc.M702824200

Okatsu K , Uno M , Koyano F , et al. A dimeric PINK1‐containing complex on depolarized mitochondria stimulates Parkin recruitment. J Biol Chem. 2013;288(51):36372‐36384. doi:10.1074/jbc.M113.509653

Lazarou M , Jin SM , Kane LA , Youle RJ . Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell. 2012;22(2):320‐333. doi:10.1016/j.devcel.2011.12.014

Yan Q , Bartz S , Mao M , Li L , Kaelin WG Jr . The hypoxia‐inducible factor 2alpha N‐terminal and C‐terminal transactivation domains cooperate to promote renal tumorigenesis in vivo. Mol Cell Biol. 2007;27(6):2092‐2102. doi:10.1128/mcb.01514-06

Firth JD , Ebert BL , Pugh CW , Ratcliffe PJ . Oxygen‐regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancer. Proc Natl Acad Sci USA. 1994;91(14):6496‐6500. doi:10.1073/pnas.91.14.6496

Collier JJ , Guissart C , Oláhová M , et al. Developmental consequences of defective ATG7‐mediated autophagy in humans. N Engl J Med. 2021;384(25):2406‐2417. doi:10.1056/NEJMoa1915722

Youle RJ , van der Bliek AM . Mitochondrial fission, fusion, and stress. Science (New York, NY). 2012;337(6098):1062‐1065. doi:10.1126/science.1219855

Kim H , Lee JY , Park KJ , Kim WH , Roh GS . A mitochondrial division inhibitor, Mdivi‐1, inhibits mitochondrial fragmentation and attenuates kainic acid‐induced hippocampal cell death. BMC Neurosci. 2016;17(1):33. doi:10.1186/s12868-016-0270-y

Béguin PC , Joyeux‐Faure M , Godin‐Ribuot D , et al. Acute intermittent hypoxia improves rat myocardium tolerance to ischemia. J Appl Physiol. 2005;99(3):1064‐1069. doi:10.1152/japplphysiol.00056.2005

Neckár J , Szárszoi O , Koten L , et al. Effects of mitochondrial K(ATP) modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res. 2002;55(3):567‐575. doi:10.1016/s0008-6363(02)00456-x

Asemu G , Neckár J , Szárszoi O , Papousek F , Ostádal B , Kolar F . Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res. 2000;49(5):597‐606.

Zhang R , Yang A , Zhang L , et al. MFN2 deficiency promotes cardiac response to hypobaric hypoxia by reprogramming cardiomyocyte metabolism. Acta Physiol (Oxf). 2023;239(1):e14018. doi:10.1111/apha.14018

Fähling M , Mathia S , Paliege A , et al. Tubular von Hippel‐Lindau knockout protects against rhabdomyolysis‐induced AKI. J Am Soc Nephrol. 2013;24(11):1806‐1819. doi:10.1681/asn.2013030281

Cai Z , Manalo DJ , Wei G , et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia‐reperfusion injury. Circulation. 2003;108(1):79‐85. doi:10.1161/01.Cir.0000078635.89229.8a

Yang L , Xie P , Wu J , et al. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia‐reperfusion injury by up‐regulating HIF‐1. Am J Transl Res. 2016;8(10):4415‐4424.

Zhao HX , Wang XL , Wang YH , et al. Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor‐1alpha. Basic Res Cardiol. 2010;105(1):109‐118. doi:10.1007/s00395-009-0044-0

Jezková J , Nováková O , Kolár F , et al. Chronic hypoxia alters fatty acid composition of phospholipids in right and left ventricular myocardium. Mol Cell Biochem. 2002;232(1–2):49‐56. doi:10.1023/a:1014889115509

Thompson LP , Song H , Polster BM . Fetal programming and sexual dimorphism of mitochondrial protein expression and activity of hearts of prenatally hypoxic Guinea pig offspring. Oxidative Med Cell Longev. 2019;2019:7210249.

Zhang H , Bosch‐Marce M , Shimoda LA , et al. Mitochondrial autophagy is an HIF‐1‐dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892‐10903. doi:10.1074/jbc.M800102200

Murphy MP . How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1‐13. doi:10.1042/bj20081386

Cadenas E , Davies KJ . Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3–4):222‐230. doi:10.1016/s0891-5849(00)00317-8

Bianchi P , Kunduzova O , Masini E , et al. Oxidative stress by monoamine oxidase mediates receptor‐independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation. 2005;112(21):3297‐3305. doi:10.1161/circulationaha.104.528133

Kaludercic N , Carpi A , Nagayama T , et al. Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal. 2014;20(2):267‐280. doi:10.1089/ars.2012.4616

Kaludercic N , Takimoto E , Nagayama T , et al. Monoamine oxidase A‐mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res. 2010;106(1):193‐202. doi:10.1161/circresaha.109.198366

Cagnin S , Brugnaro M , Millino C , et al. Monoamine oxidase‐dependent pro‐survival signaling in diabetic hearts is mediated by miRNAs. Cells. 2022;11(17):2697. doi:10.3390/cells11172697

Deshwal S , Forkink M , Hu CH , et al. Monoamine oxidase‐dependent endoplasmic reticulum‐mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death Differ. 2018;25(9):1671‐1685. doi:10.1038/s41418-018-0071-1

Antonucci S , Di Sante M , Tonolo F , et al. The determining role of mitochondrial reactive oxygen species generation and monoamine oxidase activity in doxorubicin‐induced cardiotoxicity. Antioxid Redox Signal. 2021;34(7):531‐550. doi:10.1089/ars.2019.7929

Míčová P , Klevstig M , Holzerová K , et al. Antioxidant tempol suppresses heart cytosolic phospholipase A(2)α stimulated by chronic intermittent hypoxia. Can J Physiol Pharmacol. 2017;95(8):920‐927. doi:10.1139/cjpp-2017-0022

Balková P , Hlaváčková M , Milerová M , et al. N‐acetylcysteine treatment prevents the up‐regulation of MnSOD in chronically hypoxic rat hearts. Physiol Res. 2011;60(3):467‐474. doi:10.33549/physiolres.932042

Twig G , Elorza A , Molina AJ , et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433‐446. doi:10.1038/sj.emboj.7601963

Gomes LC , Di Benedetto G , Scorrano L . During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13(5):589‐598. doi:10.1038/ncb2220

Giacomello M , Pyakurel A , Glytsou C , Scorrano L . The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204‐224. doi:10.1038/s41580-020-0210-7

Alan L , Scorrano L . Shaping fuel utilization by mitochondria. Curr Biol. 2022;32(12):R618‐R623. doi:10.1016/j.cub.2022.05.006

Prabu SK , Anandatheerthavarada HK , Raza H , Srinivasan S , Spear JF , Avadhani NG . Protein kinase A‐mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia‐related injury. J Biol Chem. 2006;281(4):2061‐2070. doi:10.1074/jbc.M507741200

Menzies RA , Gold PH . The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem. 1971;246(8):2425‐2429.

Sciarretta S , Maejima Y , Zablocki D , Sadoshima J . The role of autophagy in the heart. Annu Rev Physiol. 2018;80:1‐26. doi:10.1146/annurev-physiol-021317-121427

Titus AS , Sung EA , Zablocki D , Sadoshima J . Mitophagy for cardioprotection. Basic Res Cardiol. 2023;118(1):42. doi:10.1007/s00395-023-01009-x

Zhu H , Wang D , Liu Y , et al. Role of the Hypoxia‐inducible factor‐1 alpha induced autophagy in the conversion of non‐stem pancreatic cancer cells into CD133+ pancreatic cancer stem‐like cells. Cancer Cell Int. 2013;13(1):119. doi:10.1186/1475-2867-13-119

Guo H , Ding H , Yan Y , et al. Intermittent hypoxia‐induced autophagy via AMPK/mTOR signaling pathway attenuates endothelial apoptosis and dysfunction in vitro. Sleep Breath. 2021;25(4):1859‐1865. doi:10.1007/s11325-021-02297-0

Semenza GL . Mitochondrial autophagy: life and breath of the cell. Autophagy. 2008;4(4):534‐536. doi:10.4161/auto.5956

Ma X , Godar RJ , Liu H , Diwan A . Enhancing lysosome biogenesis attenuates BNIP3‐induced cardiomyocyte death. Autophagy. 2012;8(3):297‐309. doi:10.4161/auto.18658

Lee JW , Ko J , Ju C , Eltzschig HK . Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51(6):1‐13. doi:10.1038/s12276-019-0235-1

Iyer NV , Kotch LE , Agani F , et al. Cellular and developmental control of O2 homeostasis by hypoxia‐inducible factor 1 alpha. Genes Dev. 1998;12(2):149‐162. doi:10.1101/gad.12.2.149

Bosch‐Marce M , Okuyama H , Wesley JB , et al. Effects of aging and hypoxia‐inducible factor‐1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007;101(12):1310‐1318. doi:10.1161/circresaha.107.153346

Li J , Bosch‐Marce M , Nanayakkara A , et al. Altered metabolic responses to intermitternt hypoxia in mice with partial deficiency of hypoxia‐inducible factor 1 a. Physiol Genomics. 2006;25:450‐457.

Bohuslavova R , Skvorova L , Sedmera D , Semenza GL , Pavlinkova G . Increased susceptibility of HIF‐1α heterozygous‐null mice to cardiovascular malformations associated with maternal diabetes. J Mol Cell Cardiol. 2013;60:129‐141. doi:10.1016/j.yjmcc.2013.04.015

Bohuslavova R , Kolar F , Sedmera D , et al. Partial deficiency of HIF‐1α stimulates pathological cardiac changes in streptozotocin‐induced diabetic mice. BMC Endocr Disord. 2014;14:11. doi:10.1186/1472-6823-14-11

Slámová K , Papoušek F , Janovská P , Kopecký J , Kolář F . Adverse effects of AMP‐activated protein kinase alpha2‐subunit deletion and high‐fat diet on heart function and ischemic tolerance in aged female mice. Physiol Res. 2016;65(1):33‐42. doi:10.33549/physiolres.932979

Pecina P , Capková M , Chowdhury SK , et al. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim Biophys Acta. 2003;1639(1):53‐63. doi:10.1016/s0925-4439(03)00127-3

Chowdhury SK , Drahota Z , Floryk D , et al. Activities of mitochondrial oxidative phosphorylation enzymes in cultured amniocytes. Clin Chim Acta. 2000;298(1–2):157‐173. doi:10.1016/s0009-8981(00)00300-4

Rey S , Luo W , Shimoda LA , Semenza GL . Metabolic reprogramming by HIF‐1 promotes the survival of bone marrow‐derived angiogenic cells in ischemic tissue. Blood. 2011;117(18):4988‐4998. doi:10.1182/blood-2010-11-321190

Bean C , Audano M , Varanita T , et al. The mitochondrial protein Opa1 promotes adipocyte browning that is dependent on urea cycle metabolites. Nat Metab. 2021;3(12):1633‐1647. doi:10.1038/s42255-021-00497-2

Ran FA , Hsu PD , Wright J , Agarwala V , Scott DA , Zhang F . Genome engineering using the CRISPR‐Cas9 system. Nat Protoc. 2013;8(11):2281‐2308. doi:10.1038/nprot.2013.143

Haspel J , Shaik RS , Ifedigbo E , et al. Characterization of macroautophagic flux in vivo using a leupeptin‐based assay. Autophagy. 2011;7(6):629‐642. doi:10.4161/auto.7.6.15100

Dobin A , Davis CA , Schlesinger F , et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics (Oxford, England). 2013;29(1):15‐21. doi:10.1093/bioinformatics/bts635

Martin M . Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnetjournal. 2011;17(1):3. doi:10.14806/ej.17.1.200

Bolger AM , Lohse M , Usadel B . Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15):2114‐2120. doi:10.1093/bioinformatics/btu170

Kopylova E , Noé L , Touzet H . SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics (Oxford, England). 2012;28(24):3211‐3217. doi:10.1093/bioinformatics/bts611

Alanova P , Alan L , Opletalova B , et al. GEO repository at. 2024 https://www.ncbi.nlm.nih.gov/geo; GSE255797

Love MI , Huber W , Anders S . Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8

Raudvere U , Kolberg L , Kuzmin I , et al. g:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191‐W198. doi:10.1093/nar/gkz369

Bohuslavová R , Kolář F , Kuthanová L , et al. Gene expression profiling of sex differences in HIF1‐dependent adaptive cardiac responses to chronic hypoxia. J Appl Physiol. 2010;109(4):1195‐1202. doi:10.1152/japplphysiol.00366.2010

Benak D , Sotakova‐Kasparova D , Neckar J , Kolar F , Hlavackova M . Selection of optimal reference genes for gene expression studies in chronically hypoxic rat heart. Mol Cell Biochem. 2019;461(1–2):15‐22. doi:10.1007/s11010-019-03584-x

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace