HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases
NU20J-02- 00035
Ministry of Health of the Czech Republic
270623
Charles University
European Union-Next Generation EU
C93C22007550006
National Recovery and Resilience Plan (NRRP)
RVO: 86652036
Czech Academy of Sciences
PubMed
39016532
DOI
10.1111/apha.14202
Knihovny.cz E-zdroje
- Klíčová slova
- cardioprotection, chronic hypoxia, hypoxia‐inducible factor 1 alpha, mitochondria, mitophagy, myocardial infarction,
- MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa * metabolismus genetika MeSH
- fyziologická adaptace fyziologie MeSH
- hypoxie * metabolismus MeSH
- infarkt myokardu * metabolismus patologie genetika MeSH
- kardiomyocyty metabolismus patologie MeSH
- mitofagie * fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa * MeSH
- Hif1a protein, mouse MeSH Prohlížeč
AIM: The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS: Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a +/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS: We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a +/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION: These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.
Department of Biology University of Padova Padova Italy
Department of Biomedical Sciences University of Padova Padova Italy
Faculty of Science Charles University Prague Czech Republic
Fondazione Istituto di Ricerca Pediatrica Città della Speranza Padova Italy
Laboratory of Gene Expression Institute of Biotechnology Czech Academy of Sciences Vestec Czechia
Neuroscience Institute National Research Council of Italy Padova Italy
Zobrazit více v PubMed
Anderson JD , Honigman B . The effect of altitude‐induced hypoxia on heart disease: do acute, intermittent, and chronic exposures provide cardioprotection? High Alt Med Biol. 2011;12(1):45‐55. doi:10.1089/ham.2010.1021
Hurtado A . Some clinical aspects of life at high altitudes. Ann Intern Med. 1960;53:247‐258. doi:10.7326/0003-4819-53-2-247
Ostadal B , Kolar F . Cardiac adaptation to chronic high‐altitude hypoxia: beneficial and adverse effects. Respir Physiol Neurobiol. 2007;158(2–3):224‐236. doi:10.1016/j.resp.2007.03.005
Ostádal B , Kolár F , Pelouch V , Widimský J . Ontogenetic differences in cardiopulmonary adaptation to chronic hypoxia. Physiol Res. 1995;44(1):45‐51. PubMed PMID: 8789299; eng.
Semenza GL . Targeting HIF‐1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721‐732. doi:10.1038/nrc1187
Semenza GL . HIF‐1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107(1):1‐3. doi:10.1016/s0092-8674(01)00518-9
Wang GL , Jiang BH , Rue EA , Semenza GL . Hypoxia‐inducible factor 1 is a basic‐helix‐loop‐helix‐PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510‐5514. doi:10.1073/pnas.92.12.5510
Cai Z , Zhong H , Bosch‐Marce M , et al. Complete loss of ischaemic preconditioning‐induced cardioprotection in mice with partial deficiency of HIF‐1 alpha. Cardiovasc Res. 2008;77(3):463‐470. doi:10.1093/cvr/cvm035
Cai Z , Luo W , Zhan H , Semenza GL . Hypoxia‐inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc Natl Acad Sci USA. 2013;110(43):17462‐17467. doi:10.1073/pnas.1317158110
Neckár J , Ostádal B , Kolár F . Myocardial infarct size‐limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res. 2004;53(6):621‐628.
Semenza GL . O2‐regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF‐1. J Appl Physiol. 2004;96(3):1173‐1177; discussion 1170–2. doi:10.1152/japplphysiol.00770.2003
Essop MF . Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol. 2007;584(Pt 3):715‐726. doi:10.1113/jphysiol.2007.143511
Schaper J , Meiser E , Stämmler G . Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res. 1985;56(3):377‐391. doi:10.1161/01.res.56.3.377
Murphy E , Steenbergen C . Regulation of mitochondrial Ca(2+) uptake. Annu Rev Physiol. 2021;83:107‐126. doi:10.1146/annurev-physiol-031920-092419
Janssen‐Heininger YM , Mossman BT , Heintz NH , et al. Redox‐based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008;45(1):1‐17. doi:10.1016/j.freeradbiomed.2008.03.011
Asemu G , Papousek F , Ostádal B , et al. Adaptation to high altitude hypoxia protects the rat heart against ischemia‐induced arrhythmias. Involvement of mitochondrial K(ATP) channel. J Mol Cell Cardiol. 1999;31(10):1821‐1831. doi:10.1006/jmcc.1999.1013
Borchert GH , Yang C , Kolár F . Mitochondrial BKCa channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats. Am J Physiol Heart Circ Physiol. 2011;300(2):H507‐H513. doi:10.1152/ajpheart.00594.2010
Mizushima N , Komatsu M . Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728‐741. doi:10.1016/j.cell.2011.10.026
Saito T , Sadoshima J . Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res. 2015;116(8):1477‐1490. doi:10.1161/circresaha.116.303790
Alánová P , Chytilová A , Neckář J , et al. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol. 2017;122(6):1452‐1461. doi:10.1152/japplphysiol.00671.2016
Gustafsson AB , Gottlieb RA . Bcl‐2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 2007;292(1):C45‐C51. doi:10.1152/ajpcell.00229.2006
Honkoop H , de Bakker DE , Aharonov A , et al. Single‐cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. elife. 2019;8:e50163. doi:10.7554/eLife.50163
Ahuja P , Zhao P , Angelis E , et al. Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest. 2010;120(5):1494‐1505. doi:10.1172/JCI38331
Khachigian LM . Early growth response‐1 in cardiovascular pathobiology. Circ Res. 2006;98(2):186‐191. doi:10.1161/01.RES.0000200177.53882.c3
Harhous Z , Booz GW , Ovize M , Bidaux G , Kurdi M . An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med. 2019;6:150. doi:10.3389/fcvm.2019.00150
Thu VT , Kim HK , Ha SH , et al. Glutathione peroxidase 1 protects mitochondria against hypoxia/reoxygenation damage in mouse hearts. Pflugers Arch. 2010;460(1):55‐68. doi:10.1007/s00424-010-0811-7
Wang H , Wang L , Hu F , et al. Neuregulin‐4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway. Cardiovasc Diabetol. 2022;21(1):205. doi:10.1186/s12933-022-01643-0
Gao S , Li G , Shao Y , et al. FABP5 deficiency impairs mitochondrial function and aggravates pathological cardiac remodeling and dysfunction. Cardiovasc Toxicol. 2021;21(8):619‐629. doi:10.1007/s12012-021-09653-2
Zhang J , Qiao C , Chang L , et al. Cardiomyocyte overexpression of FABP4 aggravates pressure overload‐induced heart hypertrophy. PLoS One. 2016;11(6):e0157372. doi:10.1371/journal.pone.0157372
Pankiv S , Clausen TH , Lamark T , et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131‐24145. doi:10.1074/jbc.M702824200
Okatsu K , Uno M , Koyano F , et al. A dimeric PINK1‐containing complex on depolarized mitochondria stimulates Parkin recruitment. J Biol Chem. 2013;288(51):36372‐36384. doi:10.1074/jbc.M113.509653
Lazarou M , Jin SM , Kane LA , Youle RJ . Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell. 2012;22(2):320‐333. doi:10.1016/j.devcel.2011.12.014
Yan Q , Bartz S , Mao M , Li L , Kaelin WG Jr . The hypoxia‐inducible factor 2alpha N‐terminal and C‐terminal transactivation domains cooperate to promote renal tumorigenesis in vivo. Mol Cell Biol. 2007;27(6):2092‐2102. doi:10.1128/mcb.01514-06
Firth JD , Ebert BL , Pugh CW , Ratcliffe PJ . Oxygen‐regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancer. Proc Natl Acad Sci USA. 1994;91(14):6496‐6500. doi:10.1073/pnas.91.14.6496
Collier JJ , Guissart C , Oláhová M , et al. Developmental consequences of defective ATG7‐mediated autophagy in humans. N Engl J Med. 2021;384(25):2406‐2417. doi:10.1056/NEJMoa1915722
Youle RJ , van der Bliek AM . Mitochondrial fission, fusion, and stress. Science (New York, NY). 2012;337(6098):1062‐1065. doi:10.1126/science.1219855
Kim H , Lee JY , Park KJ , Kim WH , Roh GS . A mitochondrial division inhibitor, Mdivi‐1, inhibits mitochondrial fragmentation and attenuates kainic acid‐induced hippocampal cell death. BMC Neurosci. 2016;17(1):33. doi:10.1186/s12868-016-0270-y
Béguin PC , Joyeux‐Faure M , Godin‐Ribuot D , et al. Acute intermittent hypoxia improves rat myocardium tolerance to ischemia. J Appl Physiol. 2005;99(3):1064‐1069. doi:10.1152/japplphysiol.00056.2005
Neckár J , Szárszoi O , Koten L , et al. Effects of mitochondrial K(ATP) modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res. 2002;55(3):567‐575. doi:10.1016/s0008-6363(02)00456-x
Asemu G , Neckár J , Szárszoi O , Papousek F , Ostádal B , Kolar F . Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res. 2000;49(5):597‐606.
Zhang R , Yang A , Zhang L , et al. MFN2 deficiency promotes cardiac response to hypobaric hypoxia by reprogramming cardiomyocyte metabolism. Acta Physiol (Oxf). 2023;239(1):e14018. doi:10.1111/apha.14018
Fähling M , Mathia S , Paliege A , et al. Tubular von Hippel‐Lindau knockout protects against rhabdomyolysis‐induced AKI. J Am Soc Nephrol. 2013;24(11):1806‐1819. doi:10.1681/asn.2013030281
Cai Z , Manalo DJ , Wei G , et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia‐reperfusion injury. Circulation. 2003;108(1):79‐85. doi:10.1161/01.Cir.0000078635.89229.8a
Yang L , Xie P , Wu J , et al. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia‐reperfusion injury by up‐regulating HIF‐1. Am J Transl Res. 2016;8(10):4415‐4424.
Zhao HX , Wang XL , Wang YH , et al. Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor‐1alpha. Basic Res Cardiol. 2010;105(1):109‐118. doi:10.1007/s00395-009-0044-0
Jezková J , Nováková O , Kolár F , et al. Chronic hypoxia alters fatty acid composition of phospholipids in right and left ventricular myocardium. Mol Cell Biochem. 2002;232(1–2):49‐56. doi:10.1023/a:1014889115509
Thompson LP , Song H , Polster BM . Fetal programming and sexual dimorphism of mitochondrial protein expression and activity of hearts of prenatally hypoxic Guinea pig offspring. Oxidative Med Cell Longev. 2019;2019:7210249.
Zhang H , Bosch‐Marce M , Shimoda LA , et al. Mitochondrial autophagy is an HIF‐1‐dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892‐10903. doi:10.1074/jbc.M800102200
Murphy MP . How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1‐13. doi:10.1042/bj20081386
Cadenas E , Davies KJ . Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3–4):222‐230. doi:10.1016/s0891-5849(00)00317-8
Bianchi P , Kunduzova O , Masini E , et al. Oxidative stress by monoamine oxidase mediates receptor‐independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation. 2005;112(21):3297‐3305. doi:10.1161/circulationaha.104.528133
Kaludercic N , Carpi A , Nagayama T , et al. Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal. 2014;20(2):267‐280. doi:10.1089/ars.2012.4616
Kaludercic N , Takimoto E , Nagayama T , et al. Monoamine oxidase A‐mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res. 2010;106(1):193‐202. doi:10.1161/circresaha.109.198366
Cagnin S , Brugnaro M , Millino C , et al. Monoamine oxidase‐dependent pro‐survival signaling in diabetic hearts is mediated by miRNAs. Cells. 2022;11(17):2697. doi:10.3390/cells11172697
Deshwal S , Forkink M , Hu CH , et al. Monoamine oxidase‐dependent endoplasmic reticulum‐mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. Cell Death Differ. 2018;25(9):1671‐1685. doi:10.1038/s41418-018-0071-1
Antonucci S , Di Sante M , Tonolo F , et al. The determining role of mitochondrial reactive oxygen species generation and monoamine oxidase activity in doxorubicin‐induced cardiotoxicity. Antioxid Redox Signal. 2021;34(7):531‐550. doi:10.1089/ars.2019.7929
Míčová P , Klevstig M , Holzerová K , et al. Antioxidant tempol suppresses heart cytosolic phospholipase A(2)α stimulated by chronic intermittent hypoxia. Can J Physiol Pharmacol. 2017;95(8):920‐927. doi:10.1139/cjpp-2017-0022
Balková P , Hlaváčková M , Milerová M , et al. N‐acetylcysteine treatment prevents the up‐regulation of MnSOD in chronically hypoxic rat hearts. Physiol Res. 2011;60(3):467‐474. doi:10.33549/physiolres.932042
Twig G , Elorza A , Molina AJ , et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433‐446. doi:10.1038/sj.emboj.7601963
Gomes LC , Di Benedetto G , Scorrano L . During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13(5):589‐598. doi:10.1038/ncb2220
Giacomello M , Pyakurel A , Glytsou C , Scorrano L . The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204‐224. doi:10.1038/s41580-020-0210-7
Alan L , Scorrano L . Shaping fuel utilization by mitochondria. Curr Biol. 2022;32(12):R618‐R623. doi:10.1016/j.cub.2022.05.006
Prabu SK , Anandatheerthavarada HK , Raza H , Srinivasan S , Spear JF , Avadhani NG . Protein kinase A‐mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia‐related injury. J Biol Chem. 2006;281(4):2061‐2070. doi:10.1074/jbc.M507741200
Menzies RA , Gold PH . The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem. 1971;246(8):2425‐2429.
Sciarretta S , Maejima Y , Zablocki D , Sadoshima J . The role of autophagy in the heart. Annu Rev Physiol. 2018;80:1‐26. doi:10.1146/annurev-physiol-021317-121427
Titus AS , Sung EA , Zablocki D , Sadoshima J . Mitophagy for cardioprotection. Basic Res Cardiol. 2023;118(1):42. doi:10.1007/s00395-023-01009-x
Zhu H , Wang D , Liu Y , et al. Role of the Hypoxia‐inducible factor‐1 alpha induced autophagy in the conversion of non‐stem pancreatic cancer cells into CD133+ pancreatic cancer stem‐like cells. Cancer Cell Int. 2013;13(1):119. doi:10.1186/1475-2867-13-119
Guo H , Ding H , Yan Y , et al. Intermittent hypoxia‐induced autophagy via AMPK/mTOR signaling pathway attenuates endothelial apoptosis and dysfunction in vitro. Sleep Breath. 2021;25(4):1859‐1865. doi:10.1007/s11325-021-02297-0
Semenza GL . Mitochondrial autophagy: life and breath of the cell. Autophagy. 2008;4(4):534‐536. doi:10.4161/auto.5956
Ma X , Godar RJ , Liu H , Diwan A . Enhancing lysosome biogenesis attenuates BNIP3‐induced cardiomyocyte death. Autophagy. 2012;8(3):297‐309. doi:10.4161/auto.18658
Lee JW , Ko J , Ju C , Eltzschig HK . Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51(6):1‐13. doi:10.1038/s12276-019-0235-1
Iyer NV , Kotch LE , Agani F , et al. Cellular and developmental control of O2 homeostasis by hypoxia‐inducible factor 1 alpha. Genes Dev. 1998;12(2):149‐162. doi:10.1101/gad.12.2.149
Bosch‐Marce M , Okuyama H , Wesley JB , et al. Effects of aging and hypoxia‐inducible factor‐1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007;101(12):1310‐1318. doi:10.1161/circresaha.107.153346
Li J , Bosch‐Marce M , Nanayakkara A , et al. Altered metabolic responses to intermitternt hypoxia in mice with partial deficiency of hypoxia‐inducible factor 1 a. Physiol Genomics. 2006;25:450‐457.
Bohuslavova R , Skvorova L , Sedmera D , Semenza GL , Pavlinkova G . Increased susceptibility of HIF‐1α heterozygous‐null mice to cardiovascular malformations associated with maternal diabetes. J Mol Cell Cardiol. 2013;60:129‐141. doi:10.1016/j.yjmcc.2013.04.015
Bohuslavova R , Kolar F , Sedmera D , et al. Partial deficiency of HIF‐1α stimulates pathological cardiac changes in streptozotocin‐induced diabetic mice. BMC Endocr Disord. 2014;14:11. doi:10.1186/1472-6823-14-11
Slámová K , Papoušek F , Janovská P , Kopecký J , Kolář F . Adverse effects of AMP‐activated protein kinase alpha2‐subunit deletion and high‐fat diet on heart function and ischemic tolerance in aged female mice. Physiol Res. 2016;65(1):33‐42. doi:10.33549/physiolres.932979
Pecina P , Capková M , Chowdhury SK , et al. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim Biophys Acta. 2003;1639(1):53‐63. doi:10.1016/s0925-4439(03)00127-3
Chowdhury SK , Drahota Z , Floryk D , et al. Activities of mitochondrial oxidative phosphorylation enzymes in cultured amniocytes. Clin Chim Acta. 2000;298(1–2):157‐173. doi:10.1016/s0009-8981(00)00300-4
Rey S , Luo W , Shimoda LA , Semenza GL . Metabolic reprogramming by HIF‐1 promotes the survival of bone marrow‐derived angiogenic cells in ischemic tissue. Blood. 2011;117(18):4988‐4998. doi:10.1182/blood-2010-11-321190
Bean C , Audano M , Varanita T , et al. The mitochondrial protein Opa1 promotes adipocyte browning that is dependent on urea cycle metabolites. Nat Metab. 2021;3(12):1633‐1647. doi:10.1038/s42255-021-00497-2
Ran FA , Hsu PD , Wright J , Agarwala V , Scott DA , Zhang F . Genome engineering using the CRISPR‐Cas9 system. Nat Protoc. 2013;8(11):2281‐2308. doi:10.1038/nprot.2013.143
Haspel J , Shaik RS , Ifedigbo E , et al. Characterization of macroautophagic flux in vivo using a leupeptin‐based assay. Autophagy. 2011;7(6):629‐642. doi:10.4161/auto.7.6.15100
Dobin A , Davis CA , Schlesinger F , et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics (Oxford, England). 2013;29(1):15‐21. doi:10.1093/bioinformatics/bts635
Martin M . Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnetjournal. 2011;17(1):3. doi:10.14806/ej.17.1.200
Bolger AM , Lohse M , Usadel B . Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15):2114‐2120. doi:10.1093/bioinformatics/btu170
Kopylova E , Noé L , Touzet H . SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics (Oxford, England). 2012;28(24):3211‐3217. doi:10.1093/bioinformatics/bts611
Alanova P , Alan L , Opletalova B , et al. GEO repository at. 2024 https://www.ncbi.nlm.nih.gov/geo; GSE255797
Love MI , Huber W , Anders S . Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8
Raudvere U , Kolberg L , Kuzmin I , et al. g:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191‐W198. doi:10.1093/nar/gkz369
Bohuslavová R , Kolář F , Kuthanová L , et al. Gene expression profiling of sex differences in HIF1‐dependent adaptive cardiac responses to chronic hypoxia. J Appl Physiol. 2010;109(4):1195‐1202. doi:10.1152/japplphysiol.00366.2010
Benak D , Sotakova‐Kasparova D , Neckar J , Kolar F , Hlavackova M . Selection of optimal reference genes for gene expression studies in chronically hypoxic rat heart. Mol Cell Biochem. 2019;461(1–2):15‐22. doi:10.1007/s11010-019-03584-x
Unveiling the proteome of the fasting heart: Insights into HIF-1 pathway regulation