Involvement of Oxidative Stress in Mitochondrial Abnormalities During the Development of Heart Disease
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
40564057
PubMed Central
PMC12189734
DOI
10.3390/biomedicines13061338
PII: biomedicines13061338
Knihovny.cz E-resources
- Keywords
- Ca2+-handling defects, cardiac dysfunction, cell death, heart disease, mitochondria, oxidative stress,
- Publication type
- Journal Article MeSH
- Review MeSH
Background: Several mitochondrial abnormalities such as defective energy production, depletion of energy stores, Ca2+ accumulation, generation of reactive oxygen species, and impaired intracellular signaling are associated with cardiac dysfunction during the development of different heart diseases. Methods: A narrative review was compiled by a search for applicable literature in MEDLINE via PubMed. Results: Mitochondria generate ATP through the processes of electron transport and oxidative phosphorylation, which is used as energy for cardiac contractile function. Mitochondria, in fact, are the key subcellular organelle for the regulation of intracellular Ca2+ concentration and are considered to serve as a buffer to maintain Ca2+ homeostasis in cardiomyocytes. However, during the development of heart disease, the excessive accumulation of intracellular Ca2+ results in mitochondria Ca2+-overload, which, in turn, impairs mitochondrial energy production and induces cardiac dysfunction. Mitochondria also generate reactive oxygen species (ROS), including superoxide anion radicals and hydroxyl radicals as well as non-radical oxidants such as hydrogen peroxide, which promote lipid peroxidation and the subsequent disturbance of Ca2+ homeostasis, cellular damage, and death. Conclusion: These observations support the view that both oxidative stress and intracellular Ca2+-overload play a critical role in mitochondrial disruption during the pathogenesis of different cardiac pathologies.
See more in PubMed
Slezák J., Ravingerová T., Kura B. New possibilities of the prevention and treatment of cardiovascular pathologies. The potential of molecular hydrogen in the reduction of oxidative stress and its consequences. Physiol. Res. 2024;73:S671–S684. doi: 10.33549/physiolres.935491. PubMed DOI PMC
Dhalla N.S., Ostadal P., Tappia P.S. Involvement of oxidative stress and antioxidants in modification of cardiac dysfunction due to ischemia-reperfusion injury. Antioxidants. 2025;14:340. doi: 10.3390/antiox14030340. PubMed DOI PMC
Georgiopoulos G., Chrysohoou C., Vogiatzi G., Magkas N., Bournelis I., Bampali S., Gruson D., Tousoulis D. Vitamins in heart failure: Friend or enemy? Curr. Pharm. Des. 2017;23:3731–3742. doi: 10.2174/1381612823666170321094711. PubMed DOI
Robinson I., de Serna D.G., Gutierrez A., Schade D.S. Vitamin E in humans: An explanation of clinical trial failure. Endocr. Pract. 2006;12:576–582. doi: 10.4158/EP.12.5.576. PubMed DOI
Schmidt H.H., Stocker R., Vollbracht C., Paulsen G., Riley D., Daiber A., Cuadrado A. Antioxidants in translational medicine. Antioxid. Redox Signal. 2015;23:1130–1143. doi: 10.1089/ars.2015.6393. PubMed DOI PMC
Barteková M., Adameová A., Görbe A., Ferenczyová K., Pecháňová O., Lazou A., Dhalla N.S., Ferdinandy P., Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic. Biol. Med. 2021;169:446–477. doi: 10.1016/j.freeradbiomed.2021.03.045. PubMed DOI
Johnson E., Albakri J.S., Allemailem K.S., Sultan A., Alwanian W.M., Alrumaihi F., Almansour N.M., Aldakheelm F.M., Khalil F.M.A., Alduwish M.A., et al. Mitochondrial dysfunction and calcium homeostasis in heart failure: Exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations. Curr. Probl. Cardiol. 2025;50:102968. doi: 10.1016/j.cpcardiol.2024.102968. PubMed DOI
Chen A.F., Chen D.D., Daiber A., Faraci F.M., Li H., Rembold C.M., Laher I. Free radical biology of the cardiovascular system. Clin. Sci. 2012;123:73–91. doi: 10.1042/CS20110562. PubMed DOI
Bolli R., Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol. Rev. 1999;79:609–634. doi: 10.1152/physrev.1999.79.2.609. PubMed DOI
Bolli R., Jeroudi M.O., Patel B.S., Aruoma O.I., Halliwell B., Lai E.K., McCay P.B. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ. Res. 1989;65:607–622. doi: 10.1161/01.RES.65.3.607. PubMed DOI
Dhalla N.S., Elmoselhi A.B., Hata T., Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc. Res. 2000;47:446–456. doi: 10.1016/S0008-6363(00)00078-X. PubMed DOI
Jennings R.B., Reimer K.A. The cell biology of acute myocardial ischemia. Annu. Rev. Med. 1991;42:225–246. doi: 10.1146/annurev.me.42.020191.001301. PubMed DOI
Piper H.M., Meuter K., Schafer C. Cellular mechanisms of ischemia reperfusion injury. Ann. Thorac. Surg. 2003;75:S644–S648. doi: 10.1016/S0003-4975(02)04686-6. PubMed DOI
Dridi H., Santulli G., Bahlouli L., Miotto M.C., Weninger G., Marks A.R. Mitochondrial calcium overload plays a causal role in oxidative stress in the failing heart. Biomolecules. 2023;13:1409. doi: 10.3390/biom13091409. PubMed DOI PMC
Dhalla N.S., Shah A.K., Tappia P.S. Role of oxidative stress in metabolic and subcellular abnormalities in diabetic cardiomyopathy. Int. J. Mol. Sci. 2020;21:2413. doi: 10.3390/ijms21072413. PubMed DOI PMC
Dhalla N.S., Elimban V., Bartekova M., Adameova A. Involvement of oxidative stress in the development of subcellular defects and heart disease. Biomedicines. 2022;10:393. doi: 10.3390/biomedicines10020393. PubMed DOI PMC
Kukreja R.C., Weaver A.B., Hess M.L. Sarcolemmal Na-K-ATPase: Inactivation by neutrophil-derived free radicals and oxidants. Am. J. Physiol. Heart Circ. Physiol. 1990;259:H1330–H1336. doi: 10.1152/ajpheart.1990.259.5.H1330. PubMed DOI
Ostadal P., Elmoselhi A.B., Zdobnicka I., Lukas A., Elimban V., Dhalla N.S. Role of oxidative stress in ischemia-reperfusion-induced changes in Na-K ATPase isoform expression in rat heart. Antioxid. Redox Signal. 2004;6:914–923. doi: 10.1089/ars.2004.6.914. PubMed DOI
Saini H.K., Dhalla N.S. Defective calcium handling in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2005;288:H2260–H2270. doi: 10.1152/ajpheart.01153.2004. PubMed DOI
Saini H.K., Elimban V., Dhalla N.S. Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2005;289:H614–H623. doi: 10.1152/ajpheart.00101.2005. PubMed DOI
Temsah R.M., Netticadan T., Chapman D., Takeda S., Mochizuki S., Dhalla N.S. Alterations in sarcoplasmic reticulum function and gene expression in ischemic reperfused rat heart. Am. J. Physiol. Heart Circ. Physiol. 1999;277:H584–H594. doi: 10.1152/ajpheart.1999.277.2.H584. PubMed DOI
Zucchi R., Ronca-Testoni S., Yu G., Galbani P., Ronca G., Mariani M. Effect of ischemia and reperfusion on cardiac ryanodine receptors sarcoplasmic reticulum Ca2+ channels. Circ. Res. 1994;74:271–280. doi: 10.1161/01.RES.74.2.271. PubMed DOI
Ferrari R. The role of mitochondria in ischemic heart disease. J. Cardiovasc. Pharmacol. 1996;28((Suppl. S1)):S1–S10. PubMed
Lesnefsky E.J., Moghaddas S., Tandler B., Kerner J., Hoppel C.L. Mitochondrial dysfunction in cardiac disease: Ischemia-reperfusion, aging, and heart failure. J. Mol. Cell Cardiol. 2001;33:1065–1089. doi: 10.1006/jmcc.2001.1378. PubMed DOI
Williamson J.R. Mitochondrial function in the heart. Annu. Rev. Physiol. 1979;41:485–506. doi: 10.1146/annurev.ph.41.030179.002413. PubMed DOI
Bhullar S.K., Dhalla N.S. Status of mitochondrial oxidative phosphorylation during the development of heart failure. Antioxidants. 2023;12:1941. doi: 10.3390/antiox12111941. PubMed DOI PMC
Giorgi C., Marchi S., Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018;19:713–730. doi: 10.1038/s41580-018-0052-8. PubMed DOI
Lopez-Crisosto C., Pennanen C., Vasquez-Trincado C., Morales P.E., Bravo-Sagua R., Quest A.F.G., Chiong M., Lavandero S. Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nat. Rev. Cardiol. 2017;14:342–360. doi: 10.1038/nrcardio.2017.23. PubMed DOI
Bravo-San Pedro J.M., Kroemer G., Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ. Res. 2017;120:1812–1824. doi: 10.1161/CIRCRESAHA.117.311082. PubMed DOI
Budde H., Hassoun R., Tangos M., Zhazykbayeva S., Herwig M., Varatnitskaya M., Sieme M., Delalat S., Sultana I., Kolijn D., et al. The interplay between S-glutathionylation and phosphorylation of cardiac troponin I and myosin binding protein C in end-stage human failing hearts. Antioxidants. 2021;10:1134. doi: 10.3390/antiox10071134. PubMed DOI PMC
Leichert L.I., Gehrke F., Gudiseva H.V., Blackwell T., Ilbert M., Walker A.K., Strahler J.R., Andrews P.C., Jakob U. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA. 2008;105:8197–8202. doi: 10.1073/pnas.0707723105. PubMed DOI PMC
Delbridge L.M.D., Mellor K.M., Taylor D.J., Gottlieb R.A. Myocardial stress and autophagy: Mechanisms and potential therapies. Nat. Rev. Cardiol. 2017;14:412–425. doi: 10.1038/nrcardio.2017.35. PubMed DOI PMC
Ballinger S.W. Mitochondrial dysfunction in cardiovascular disease. Free Radic. Biol. Med. 2005;38:1278–1295. doi: 10.1016/j.freeradbiomed.2005.02.014. PubMed DOI
Tani M. Effects of anti-free radical agents on Na, Ca2+, and function in reperfused rat hearts. Am. J. Physiol. Heart Circ. Physiol. 1990;259:H137–H143. doi: 10.1152/ajpheart.1990.259.1.H137. PubMed DOI
Mialet-Perez J., Parini A. Cardiac monoamine oxidases: At the heart of mitochondrial dysfunction. Cell Death Dis. 2020;11:54. doi: 10.1038/s41419-020-2251-4. PubMed DOI PMC
Ferrari R., Pedersini P., Bongrazio M., Gaia G., Bernocchi P., Di Lisa F., Visioli O. Mitochondrial energy production and cation control in myocardial ischaemia and reperfusion. Basic Res. Cardiol. 1993;88:495–512. doi: 10.1007/BF00795415. PubMed DOI
Long X., Goldenthal M.J., Wu G.M., Marin-Garcia J. Mitochondrial Ca2+-flux and respiratory enzyme activity decline are early events in cardiomyocyte response to H2O2. J. Mol. Cell Cardiol. 2004;37:63–70. doi: 10.1016/j.yjmcc.2004.04.001. PubMed DOI
Stevenson M.D., Canugovi C., Vendrov A.E., Hayami T., Bowles D.E., Krause K.H., Madamanchi N.R., Runge M.S. NADPH oxidase 4 regulates inflammation in ischemic heart failure: Role of soluble epoxide hydrolase. Antioxid. Redox Signal. 2019;31:39–58. doi: 10.1089/ars.2018.7548. PubMed DOI PMC
Landmesser U., Spiekermann S., Preuss C., Sorrentino S., Fischer D., Manes C., Mueller M., Drexler H. Angiotensin II induces endothelial xanthine oxidase activation: Role for endothelial dysfunction in patients with coronary disease. Arterioscler. Thromb. Vasc. Biol. 2007;27:943–948. doi: 10.1161/01.ATV.0000258415.32883.bf. PubMed DOI
Dia M., Gomez L., Thibault H., Tessier N., Leon C., Chouabe C., Ducreux S., Gallo-Bona N., Tubbs E., Bendridi N., et al. Reduced reticulum-mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy. Basic Res. Cardiol. 2020;115:74. doi: 10.1007/s00395-020-00835-7. PubMed DOI PMC
Stowe D.F., Camara A.K.S. Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxid. Redox Signal. 2009;11:1373–1414. doi: 10.1089/ars.2008.2331. PubMed DOI PMC
Marí M., Morales A., Colell A., García-Ruiz C., Fernández-Checa J.C. Mitochondrial glutathione, a key survival anti-oxidant. Antioxid. Redox Signal. 2009;11:2685–2700. doi: 10.1089/ars.2009.2695. PubMed DOI PMC
Collin F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 2019;20:2407. doi: 10.3390/ijms20102407. PubMed DOI PMC
Scialò F., Sriram A., Stefanatos R., Spriggs R.V., Loh S.H.Y., Martins L.M., Sanz A. Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster. Redox Biol. 2020;32:101450. doi: 10.1016/j.redox.2020.101450. PubMed DOI PMC
Zhang H., Dhalla N.S. The Role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease. Int. J. Mol. Sci. 2024;25:1082. doi: 10.3390/ijms25021082. PubMed DOI PMC
Hori M., Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc. Res. 2009;81:457–464. doi: 10.1093/cvr/cvn335. PubMed DOI
Wang H., Han J., Dmitrii G., Zhang X.A. Potential targets of natural products for improving cardiac ischemic injury: The role of Nrf2 signaling transduction. Molecules. 2024;29:2005. doi: 10.3390/molecules29092005. PubMed DOI PMC
Qin F., Yan C., Patel R., Liu W., Dong E. Vitamins C and E attenuates apoptosis, β-adrenergic receptor desensitization, and sarcoplasmic reticular Ca2+ ATPase downregulation after myocardial infarction. Free Radic. Biol. Med. 2006;40:1827–1842. doi: 10.1016/j.freeradbiomed.2006.01.019. PubMed DOI
Shao Q., Ren B., Elimban V., Tappia P.S., Takeda N., Dhalla N.S. Modification of sarcolemmal Na+-K+-ATPase and Na+/Ca2+ exchanger in heart failure by blockade of renin-angiotensin system. Am. J. Heart Physiol. Circ. Physiol. 2005;288:H2637–H2646. doi: 10.1152/ajpheart.01304.2004. PubMed DOI
Li Q., Pogwizd S.M., Prabhu S.D., Zhou L. Inhibiting Na+-K+ ATPase can impair mitochondrial energetics and induce abnormal Ca2+ cycling and automaticity in guinea pig cardiomyocytes. PLoS ONE. 2014;9:e93928. doi: 10.1371/journal.pone.0093928. PubMed DOI PMC
Crow M.T., Mani K., Nam Y.J., Kitsis R.N. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ. Res. 2004;95:957–970. doi: 10.1161/01.RES.0000148632.35500.d9. PubMed DOI
Bertero E., Popoiu T.A., Maack C. Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection. Basic Res. Cardiol. 2024;119:569–585. doi: 10.1007/s00395-024-01060-2. PubMed DOI PMC
Grancara S., Ohkubo S., Artico M., Ciccariello M., Manente S., Bragadin M., Toninello A., Agostinelli E. Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines. Amino Acids. 2016;48:2313–2326. doi: 10.1007/s00726-016-2323-z. PubMed DOI
Fanti F., Sergi M., Compagnone D. LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices. J. Pharm. Biomed. Anal. 2025;256:116681. doi: 10.1016/j.jpba.2025.116681. PubMed DOI
Kiyuna L.A., Albuquerque R.P.E., Chen C.H., Mochly-Rosen D., Ferreira J.C.B. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic. Biol. Med. 2018;129:155–168. doi: 10.1016/j.freeradbiomed.2018.09.019. PubMed DOI PMC
Dalle-Donne I., Rossi R., Colombo R., Giustarini D., Milzani A. Biomarkers of oxidative damage in human disease. Clin. Chem. 2006;52:601–623. doi: 10.1373/clinchem.2005.061408. PubMed DOI
Meagher E.A., FitzGerald G.A. Indices of lipid peroxidation in vivo: Strengths and limitations. Free Radic. Biol. Med. 2000;28:1745–1750. doi: 10.1016/S0891-5849(00)00232-X. PubMed DOI
Lankin V.Z., Tikhaze A.K., Melkumyants A.M. Malondialdehyde as an important key factor of molecular mechanisms of vascular wall damage under heart diseases development. Int. J. Mol. Sci. 2022;24:128. doi: 10.3390/ijms24010128. PubMed DOI PMC
Galano J.M., Lee Y.Y., Oger C., Vigor C., Vercauteren J., Durand T., Giera M., Lee J.C. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog. Lipid Res. 2017;68:83–108. doi: 10.1016/j.plipres.2017.09.004. PubMed DOI
Morciano G., Pinton P. Modulation of mitochondrial permeability transition pores in reperfusion injury: Mechanisms and therapeutic approaches. Eur. J. Clin. Investig. 2025;55:e14331. doi: 10.1111/eci.14331. PubMed DOI PMC
Ravandi A., Kuksis A., Shaikh N., Jackowski G. Preparation of Schiff base adducts of phosphatidylcholine core aldehydes and aminophospholipids, amino acids, and myoglobin. Lipids. 1997;32:989–1001. doi: 10.1007/s11745-997-0129-6. PubMed DOI
Stamenkovic A., Pierce G.N., Ravandi A. Phospholipid oxidation products in ferroptotic myocardial cell death. Am. J. Physiol. Heart Circ. Physiol. 2019;317:H156–H163. doi: 10.1152/ajpheart.00076.2019. PubMed DOI
Sharma S., Sharma P., Bailey T., Bhattarai S., Subedi U., Miller C., Ara H., Kidambi S., Sun H., Panchatcharam M., et al. Electrophilic aldehyde 4-hydroxy-2-nonenal mediated signaling and mitochondrial dysfunction. Biomolecules. 2022;12:1555. doi: 10.3390/biom12111555. PubMed DOI PMC
Nakamura K., Miura D., Kusano K.F., Fujimoto Y., Sumita-Yoshikawa W., Fuke S., Nishii N., Nagase S., Hata Y., Morita H., et al. 4-Hydroxy-2-nonenal induces calcium overload via the generation of reactive oxygen species in isolated rat cardiac myocytes. J. Card. Fail. 2009;15:709–716. doi: 10.1016/j.cardfail.2009.04.008. PubMed DOI
Hortigón-Vinagre M.P., Henao F. Apoptotic cell death in cultured cardiomyocytes following exposure to low concentrations of 4-hydroxy-2-nonenal. Cardiovasc. Toxicol. 2014;14:275–287. doi: 10.1007/s12012-014-9251-5. PubMed DOI
Stavrovskaya I.G., Baranov S.V., Guo X., Davies S.S., Roberts L.J., 2nd, Kristal B.S. Reactive gamma-ketoaldehydes formed via the isoprostane pathway disrupt mitochondrial respiration and calcium homeostasis. Free Radic. Biol. Med. 2010;49:567–579. doi: 10.1016/j.freeradbiomed.2010.04.037. PubMed DOI PMC
Mendoza A., Patel P., Robichaux D., Ramirez D., Karch J. Inhibition of the mPTP and lipid peroxidation is additively protective against I/R injury. Circ. Res. 2024;134:1292–1305. doi: 10.1161/CIRCRESAHA.123.323882. PubMed DOI PMC
Paradies G., Petrosillo G., Paradies V., Ruggiero F.M. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 2009;45:643–650. doi: 10.1016/j.ceca.2009.03.012. PubMed DOI
Grijalba M.T., Vercesi A.E., Schreier S. Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry. 1999;38:13279–13287. doi: 10.1021/bi9828674. PubMed DOI
Ding J., Yang Z., Ma H., Zhang H. Mitochondrial aldehyde dehydrogenase in myocardial ischemic and ischemia-reperfusion injury. Adv. Exp. Med. Biol. 2019;1193:107–120. PubMed
Pan G., Roy B., Harding P., Lanigan T., Hilgarth R., Thandavarayan R.A., Palaniyandi S.S. Effects of intracardiac delivery of aldehyde dehydrogenase 2 gene in myocardial salvage. Gene Ther. 2023;30:115–121. doi: 10.1038/s41434-022-00345-2. PubMed DOI PMC
Sharma S., Bhattarai S., Ara H., Sun G., St Clair D.K., Bhuiyan M.S., Kevil C., Watts M.N., Dominic P., Shimizu T., et al. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy. Redox Biol. 2020;37:101740. doi: 10.1016/j.redox.2020.101740. PubMed DOI PMC
Hwang H.V., Sandeep N., Paige S.L., Ranjbarvaziri S., Hu D.Q., Zhao M., Lan I.S., Coronado M., Kooiker K.B., Wu S.M., et al. 4HNE impairs myocardial bioenergetics in congenital heart disease-induced right ventricular failure. Circulation. 2020;142:1667–1683. doi: 10.1161/CIRCULATIONAHA.120.045470. PubMed DOI PMC
Circu M.L., Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010;48:749–762. doi: 10.1016/j.freeradbiomed.2009.12.022. PubMed DOI PMC
Ferko M., Alanova P., Janko D., Opletalova B., Andelova N. Mitochondrial peroxiredoxins and monoamine oxidase-A: Dynamic regulators of ROS signaling in cardioprotection. Physiol. Res. 2024;73:887–900. doi: 10.33549/physiolres.935513. PubMed DOI PMC
Popoiu T.A., Maack C., Bertero E. Mitochondrial calcium signaling and redox homeostasis in cardiac health and disease. Front. Mol. Med. 2023;3:1235188. doi: 10.3389/fmmed.2023.1235188. PubMed DOI PMC
Tappia P.S., Dent M.R., Dhalla N.S. Oxidative stress and redox regulation of phospholipase D in myocardial disease. Free Radic. Biol. Med. 2006;41:349–361. doi: 10.1016/j.freeradbiomed.2006.03.025. PubMed DOI
Makazan Z., Saini H.K., Dhalla N.S. Role of oxidative stress in alterations of mitochondrial function in ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H1986–H1994. doi: 10.1152/ajpheart.01214.2006. PubMed DOI
Wang X., Takeda S., Mochizuki S., Jindal R., Dhalla N.S. Mechanisms of hydrogen peroxide-induced increase in intracellular calcium in cardiomyocytes. J. Cardiovasc. Pharmacol. Ther. 1999;4:41–48. doi: 10.1177/107424849900400107. PubMed DOI
Zhang C., Chang X., Zhao D., He Y., Dong G., Gao L. Mitochondria and myocardial ischemia/reperfusion injury: Effects of Chinese herbal medicine and the underlying mechanisms. J. Pharm. Anal. 2025;15:101051. doi: 10.1016/j.jpha.2024.101051. PubMed DOI PMC
Wang R., Chen X., Li X., Wang K. Molecular therapy of cardiac ischemia-reperfusion injury based on mitochondria and ferroptosis. J. Mol. Med. 2023;101:1059–1071. doi: 10.1007/s00109-023-02346-z. PubMed DOI
Cortassa S., Juhaszova M., Aon M.A., Zorov D.B., Sollott S.J. Mitochondrial Ca2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J. Mol. Cell Cardiol. 2021;151:113–125. doi: 10.1016/j.yjmcc.2020.11.013. PubMed DOI PMC
Pavez-Giani M.G., Sánchez-Aguilera P.I., Bomer N., Miyamoto S., Booij H.G., Giraldo P., Oberdorf-Maass S.U., Nijholt K.T., Yurista S.R., Milting H., et al. ATPase inhibitory factor-1 disrupts mitochondrial Ca2+ handling and promotes pathological cardiac hypertrophy through CaMKIIδ. Int. J. Mol. Sci. 2021;22:4427. doi: 10.3390/ijms22094427. PubMed DOI PMC
Bertero E., Nickel A., Kohlhaas M., Hohl M., Sequeira V., Brune C., Schwemmlein J., Abeber M., Schuh K., Kutschka I., et al. Loss of mitochondrial Ca2+ uniporter limits inotropic reserve and provides trigger and substrate for arrhythmias in Barth syndrome cardiomyopathy. Circulation. 2021;144:1694–1713. doi: 10.1161/CIRCULATIONAHA.121.053755. PubMed DOI
Donoso P., Sanchez G., Bull R., Hidalgo C. Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front. Biosci. 2011;16:553–567. doi: 10.2741/3705. PubMed DOI
Tokuhisa T., Yano M., Obayashi M., Noma T., Mochizuki M., Oda T., Okuda S., Doi M., Liu J., Ikeda Y., et al. AT1 receptor antagonist restores cardiac ryanodine receptor function, rendering isoproterenol-induced failing heart less susceptible to Ca2+-leak induced by oxidative stress. Circ. J. 2006;70:777–786. doi: 10.1253/circj.70.777. PubMed DOI
Murphy E., Eisner D.A. How does mitochondrial Ca2+ change during ischemia and reperfusion? Implications for activation of the permeability transition pore. J. Gen. Physiol. 2025;157:e202313520. doi: 10.1085/jgp.202313520. PubMed DOI PMC
Hamilton S., Terentyeva R., Clements R.T., Belevych A.E., Terentyev D. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. J. Mol. Cell Cardiol. 2021;156:105–113. doi: 10.1016/j.yjmcc.2021.04.002. PubMed DOI PMC
Morciano G., Rimessi A., Patergnani S., Vitto V.A., Danese A., Kahsay A., Palumbo L., Bonora M., Wieckowski M.R., Giorgi C., et al. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol. Res. 2022;177:106119. doi: 10.1016/j.phrs.2022.106119. PubMed DOI
Diaz-Juarez J., Suarez J., Cividini F., Scott B.T., Diemer T., Dai A., Dillmann W.H. Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. Am. J. Physiol. Cell Physiol. 2016;311:C1005–C1013. doi: 10.1152/ajpcell.00236.2016. PubMed DOI PMC
O-Uchi J., Ryu S.Y., Jhun B.S., Hurst S., Sheu S.S. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antiox Redox Signal. 2014;21:987–1006. doi: 10.1089/ars.2013.5681. PubMed DOI PMC
Duchen M.R. Roles of mitochondria in health and disease. Diabetes. 2004;53:S96–S102. doi: 10.2337/diabetes.53.2007.S96. PubMed DOI
Pacher P., Csordás G., Hajnóczky G. Mitochondrial Ca2+ signaling and cardiac apoptosis. Biol. Signals Recept. 2001;10:200–223. doi: 10.1159/000046888. PubMed DOI
Piamsiri C., Fefelova N., Pamarthi S.H., Gwathmey J.K., Chattipakorn S.C., Chattipakorn N., Xie L.H. Potential roles of IP3 receptors and calcium in programmed cell death and implications in cardiovascular diseases. Biomolecules. 2024;14:1334. doi: 10.3390/biom14101334. PubMed DOI PMC
Dhalla N.S., Temsah R.M., Netticadan T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000;18:655–673. doi: 10.1097/00004872-200018060-00002. PubMed DOI
Bell E.L., Klimova T.A., Eisenbart J., Moraes C.T., Murphy M.P., Budinger G.S., Chandel N.S. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007;177:1029–1036. doi: 10.1083/jcb.200609074. PubMed DOI PMC
Stein L.R., Imai S.-I. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 2012;23:420–428. doi: 10.1016/j.tem.2012.06.005. PubMed DOI PMC
Chen W.W., Birsoy K., Mihaylova M.M., Snitkin H., Stasinski I., Yucel B., Bayraktar E.C., Carette J.E., Clish C.B., Brum-melkamp T.R., et al. Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells. Cell Rep. 2014;7:27–34. doi: 10.1016/j.celrep.2014.02.046. PubMed DOI PMC
Wrogemann K., Nylen E.G. Mitochondrial calcium overloading in cardiomyopathic hamsters. J. Mol. Cell Cardiol. 1978;10:185–195. doi: 10.1016/0022-2828(78)90042-1. PubMed DOI
Dhalla N.S., Lee S.-L., Shah K.R., Elimban V., Suzuki S., Jasmin G. Cardiomyopathic Heart. New York Raven Press Ltd.; New York, NY, USA: 1994. Behaviour of subcellular organelles during the development of congestive heart failure in cardiomyopathic hamsters (UM-X7. 1) pp. 1–14.
Siasos G., Tsigkou V., Kosmopoulos M., Theodosiadis D., Simantiris S., Tagkou N.M., Tsimpiktsioglou A., Stampouloglou P.K., Oikonomou E., Mourouzis K., et al. Mitochondria and cardiovascular diseases—From pathophysiology to treatment. Ann. Transl. Med. 2018;6:256. doi: 10.21037/atm.2018.06.21. PubMed DOI PMC
Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K.J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. Biol. Chem. 1990;265:16330–16336. doi: 10.1016/S0021-9258(17)46227-2. PubMed DOI
Davis R.E., Williams M. Mitochondrial function and dysfunction: An update. J. Pharmacol. Exp. Ther. 2012;342:598–607. doi: 10.1124/jpet.112.192104. PubMed DOI
Van Der Bliek A.M., Sedensky M.M., Morgan P.G. Cell biology of the mitochondrion. Genetics. 2017;207:843–871. doi: 10.1534/genetics.117.300262. PubMed DOI PMC
Murphy E., Ardehali H., Balaban R.S., DiLisa F., Dorn G.W., Kitsis R.N., Otsu K., Ping P., Rizzuto R., Sack M.N., et al. Mitochondrial function, biology, and role in disease: A scientific statement from the American Heart Association. Circ. Res. 2016;118:1960–1991. doi: 10.1161/RES.0000000000000104. PubMed DOI PMC
Galluzzi L., Kepp O., Trojel-Hansen C., Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ. Res. 2012;111:1198–1207. doi: 10.1161/CIRCRESAHA.112.268946. PubMed DOI
Vázquez-Carrada M., Vilchis-Landeros M.M., Vázquez-Meza H., Uribe-Ramírez D., Matuz-Mares D. A new perspective on the role of alterations in mitochondrial proteins involved in ATP synthesis and mobilization in cardiomyopathies. Int. J. Mol. Sci. 2025;26:2768. doi: 10.3390/ijms26062768. PubMed DOI PMC
Mootha V.K., Bunkenborg J., Olsen J.V., Hjerrild M., Wisniewski J.R., Stahl E., Bolouri M.S., Ray H.N., Sihag S., Kamal M., et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003;115:629–640. doi: 10.1016/S0092-8674(03)00926-7. PubMed DOI
Collins T.J., Berridge M.J., Lipp P., Bootman M.D. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 2002;21:1616–1627. doi: 10.1093/emboj/21.7.1616. PubMed DOI PMC
Glatz J.F., Nabben M., Young M.E., Schulze P.C., Taegtmeyer H., Luiken J.J. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165579. doi: 10.1016/j.bbadis.2019.165579. PubMed DOI PMC
Stanley W.C., Recchia F.A., Lopaschuk G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005;85:1093–1129. doi: 10.1152/physrev.00006.2004. PubMed DOI
Taylor S.W., Fahy E., Zhang B., Glenn G.M., Warnock D.E., Wiley S., Murphy A.N., Gaucher S.P., Capaldi R.A., Gibson B.W., et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol. 2003;21:281–286. doi: 10.1038/nbt793. PubMed DOI
Zhao Q., Sun Q., Zhou L., Liu K., Jiao K. Complex Regulation of mitochondrial function during cardiac development. J. Am. Heart Assoc. 2019;8:e012731. doi: 10.1161/JAHA.119.012731. PubMed DOI PMC
Pagliarini D.J., Rutter J. Hallmarks of a new era in mitochondrial biochemistry. Genes Dev. 2013;27:2615–2627. doi: 10.1101/gad.229724.113. PubMed DOI PMC
Chandel N.S. Mitochondria as signaling organelles. BMC Biol. 2014;12:34. doi: 10.1186/1741-7007-12-34. PubMed DOI PMC
Zhou B., Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Investig. 2018;128:3716–3726. doi: 10.1172/JCI120849. PubMed DOI PMC
Neubauer S. The failing heart-an engine out of fuel. N. Engl. J. Med. 2007;356:1140–1151. doi: 10.1056/NEJMra063052. PubMed DOI
Bertero E., Maack C. Metabolic remodelling in heart failure. Nat. Rev. Cardiol. 2018;15:457–470. doi: 10.1038/s41569-018-0044-6. PubMed DOI
Yang H.M. Mitochondrial dysfunction in cardiovascular diseases. Int. J. Mol. Sci. 2025;26:1917. doi: 10.3390/ijms26051917. PubMed DOI PMC
Yang J., Guo Q., Feng X., Liu Y., Zhou Y. Mitochondrial dysfunction in cardiovascular diseases: Potential targets for treatment. Front. Cell Dev. Biol. 2022;10:841523. doi: 10.3389/fcell.2022.841523. PubMed DOI PMC
Chistiakov D.A., Shkurat T.P., Melnichenko A.A., Grechko A.V., Orekhov A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018;50:121–127. doi: 10.1080/07853890.2017.1417631. PubMed DOI
Calbet J.A.L., Martín-Rodríguez S., Martin-Rincon M., Morales-Alamo D. An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox Biol. 2020;35:101478. doi: 10.1016/j.redox.2020.101478. PubMed DOI PMC
Rosca M.G., Hoppel C.L. Mitochondrial dysfunction in heart failure. Heart Fail. Rev. 2013;18:607–622. doi: 10.1007/s10741-012-9340-0. PubMed DOI PMC
Schwarzer M., Rohrbach S., Niemann B. Heart and mitochondria: Pathophysiology and implications for cardiac surgeons. Thorac. Cardiovasc. Surg. 2018;66:11–19. doi: 10.1055/s-0037-1615263. PubMed DOI
Bonora M., Wieckowski M.R., Sinclair D.A., Kroemer G., Pinton P., Galluzzi L. Targeting mitochondria for cardiovascular disorders: Therapeutic potential and obstacles. Nat. Rev. Cardiol. 2019;16:33–55. doi: 10.1038/s41569-018-0074-0. PubMed DOI PMC
Borghetti G., von Lewinski D., Eaton D.M., Sourij H., Houser S.R., Wallner M. Diabetic cardiomyopathy: Current and future therapies. Beyond glycemic control. Front. Physiol. 2018;9:1514. doi: 10.3389/fphys.2018.01514. PubMed DOI PMC
Ferrara D., Montecucco F., Dallegri F., Carbone F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J. Cell Physiol. 2019;234:21630–21641. doi: 10.1002/jcp.28821. PubMed DOI
Paolisso P., Bergamaschi L., Saturi G., D’Angelo E.C., Magnani I., Toniolo S., Stefanizzi A., Rinaldi A., Bartoli L., Angeli F., et al. Secondary prevention medical therapy and outcomes in patients with myocardial infarction with non-obstructive coronary artery disease. Front. Pharmacol. 2020;10:1606. doi: 10.3389/fphar.2019.01606. PubMed DOI PMC
Wang X.L., Gao P., Zou Y.Z. The relationship between mitochondrial oxidative stress and diabetic cardiomyopathy. Chin. Clin. Pharmacol. Therap. 2021;33:1080–1085.
Kaludercic N., Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front. Cardiovasc. Med. 2020;7:12. doi: 10.3389/fcvm.2020.00012. PubMed DOI PMC
Evangelista I., Nuti R., Picchioni T., Dotta F., Palazzuoli A. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy. Int. J. Mol. Sci. 2019;20:3264. doi: 10.3390/ijms20133264. PubMed DOI PMC
Biala A.K., Dhingra R., Kirshenbaum L.A. Mitochondrial dynamics: Orchestrating the journey to advanced age. J. Mol. Cell Cardiol. 2015;83:37–43. doi: 10.1016/j.yjmcc.2015.04.015. PubMed DOI
Chang X., Li Y., Cai C., Wu F., He J., Zhang Y., Zhong J., Tan Y., Liu R., Zhu H., et al. Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism. 2022;137:155313. doi: 10.1016/j.metabol.2022.155313. PubMed DOI
Tokuyama T., Yanagi S. Role of mitochondrial dynamics in heart diseases. Genes. 2023;14:1876. doi: 10.3390/genes14101876. PubMed DOI PMC
Gao F., Liang T., Lu Y.W., Fu X., Dong X., Pu L., Hong T., Zhou Y., Zhang Y., Liu N., et al. A defect in mitochondrial protein translation influences mitonuclear communication in the heart. Nat. Commun. 2023;14:1595. doi: 10.1038/s41467-023-37291-5. PubMed DOI PMC
Gabillard-Lefort C., Thibault T., Lenaers G., Wiesner R.J., Mialet-Perez J., Baris O.R. Heart of the matter: Mitochondrial dynamics and genome alterations in cardiac aging. Mech. Ageing Dev. 2025;224:112044. doi: 10.1016/j.mad.2025.112044. PubMed DOI
Chen Y., Liu Y., Dorn G.W. 2nd. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ. Res. 2011;109:1327–1331. doi: 10.1161/CIRCRESAHA.111.258723. PubMed DOI PMC
Qin Y., Li A., Liu B., Jiang W., Gao M., Tian X., Gong G. Mitochondrial fusion mediated by fusion promotion and fission inhibition directs adult mouse heart function toward a different direction. FASEB J. 2020;34:663–675. doi: 10.1096/fj.201901671R. PubMed DOI
Jarreta D., Orús J., Barrientos A., Miró O., Roig E., Heras M., Moraes C.T., Cardellach F., Casademont J. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc. Res. 2000;45:860–865. doi: 10.1016/S0008-6363(99)00388-0. PubMed DOI
Buchwald A., Till H., Unterberg C., Oberschmidt R., Figulla H.R., Wiegand V. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur. Heart J. 1990;11:509–516. doi: 10.1093/oxfordjournals.eurheartj.a059743. PubMed DOI
Abel E.D., Doenst T. Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovasc. Res. 2011;90:234–242. doi: 10.1093/cvr/cvr015. PubMed DOI PMC
Bragoszewski P., Turek M., Chacinska A. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system. Open Biol. 2017;7:170007. doi: 10.1098/rsob.170007. PubMed DOI PMC
Berthiaume J.M., Kurdys J.G., Muntean D.M., Rosca M.G. Mitochondrial NAD+/NADH redox state and diabetic cardiomyopathy. Antioxid. Redox Signal. 2019;30:375–398. doi: 10.1089/ars.2017.7415. PubMed DOI PMC
Mongirdien A., Liuiz A., Karčiauskaitė D., Mazgelyt E., Liekis A., Sadauskien I. Relationship between oxidative stress and left ventricle markers in patients with chronic heart failure. Cells. 2023;12:803. doi: 10.3390/cells12050803. PubMed DOI PMC
Shah A.K., Bhullar S.K., Elimban V., Dhalla N.S. Oxidative Stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants. 2021;10:931. doi: 10.3390/antiox10060931. PubMed DOI PMC
Li Y.Y., Chen D., Watkins S.C., Feldman A.M. Mitochondrial abnormalities in tumor necrosis factor-α–induced heart failure are associated with impaired DNA repair activity. Circulation. 2001;104:2492–2497. doi: 10.1161/hc4501.098944. PubMed DOI
Ozcan C., Bienengraeber M., Hodgson D.M., Mann D.L., Terzic A. Mitochondrial tolerance to stress impaired in failing heart. J. Mol. Cell Cardiol. 2003;35:1161–1166. doi: 10.1016/S0022-2828(03)00204-9. PubMed DOI
Sabbah H.N., Sharov V., Riddle J.M., Kono T., Lesch M., Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J. Mol. Cell Cardiol. 1992;24:1333–1347. doi: 10.1016/0022-2828(92)93098-5. PubMed DOI
Ide T., Tsutsui H., Hayashidani S., Kang D., Suematsu N., Nakamura K.-I., Utsumi H., Hamasaki N., Takeshita A. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ. Res. 2001;88:529–535. doi: 10.1161/01.RES.88.5.529. PubMed DOI
Sobel B.E., Spann J.F., Jr., Pool P.E., Sonnenblick E.H., Braunwald E. Normal oxidative phosphorylation in mitochondria from the failing heart. Circ. Res. 1967;21:355–364. doi: 10.1161/01.RES.21.3.355. DOI
Sordahl L., McCollum W., Wood W., Schwartz A., Peterzan M.A., Lygate C.A., Neubauer S., Rider O.J., Gong G., Liu J., et al. Mitochondria and sarcoplasmic reticulum function in cardiac hypertrophy and failure. Am. J. Physiol.-Leg. Content. 1973;224:497–502. doi: 10.1152/ajplegacy.1973.224.3.497. PubMed DOI
Sack M.N., Rader T.A., Park S., Bastin J., McCune S.A., Kelly D.P. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94:2837–2842. doi: 10.1161/01.CIR.94.11.2837. PubMed DOI
Sabbah H.N., Gupta R.C., Kohli S., Wang M., Hachem S., Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ. Heart Fail. 2016;9:e002206. doi: 10.1161/CIRCHEARTFAILURE.115.002206. PubMed DOI PMC
Ayoub I.M., Radhakrishnan J., Gazmuri R.J. Targeting mitochondria for resuscitation from cardiac arrest. Crit. Care Med. 2008;36:S440–S446. doi: 10.1097/CCM.0b013e31818a89f4. PubMed DOI PMC
Rudokas M.W., McKay M., Toksoy Z., Eisen J.N., Bögner M., Young L.H., Akar F.G. Mitochondrial network remodeling of the diabetic heart: Implications to ischemia related cardiac dysfunction. Cardiovasc. Diabetol. 2024;23:261. doi: 10.1186/s12933-024-02357-1. PubMed DOI PMC
Ramachandra C.J.A., Hernandez-Resendiz S., Crespo-Avilan G.E., Lin Y.H., Hausenloy D.J. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 2020;57:102884. doi: 10.1016/j.ebiom.2020.102884. PubMed DOI PMC
Bugger H., Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165768. doi: 10.1016/j.bbadis.2020.165768. PubMed DOI
Dongworth R.K., Hall A.R., Burke N., Hausenloy D.J. Targeting mitochondria for cardioprotection: Examining the benefit for patients. Future Cardiol. 2014;10:255–272. doi: 10.2217/fca.14.6. PubMed DOI
Yang Y., Owusu F.B., Wu H., Zhang X., Li R., Liu Z., Zhang S., Leng L., Wang Q. Mitochondria as therapeutic targets for natural products in the treatment of cardiovascular diseases. J. Ethnopharmacol. 2025;6:119588. doi: 10.1016/j.jep.2025.119588. PubMed DOI
Moe G.W., Marín-García J. Role of cell death in the progression of heart failure. Heart Fail. Rev. 2016;21:157–167. doi: 10.1007/s10741-016-9532-0. PubMed DOI
Peart J.N., Gross G.J. Sarcolemmal and mitochondrial KATP channels and myocardial ischemic preconditioning. J. Cell Mol. Med. 2002;6:453–464. doi: 10.1111/j.1582-4934.2002.tb00449.x. PubMed DOI PMC
Halestrap A.P., Clarke S.J., Javadov S.A. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc. Res. 2004;61:372–385. doi: 10.1016/S0008-6363(03)00533-9. PubMed DOI
Yellon D.M., Beikoghli Kalkhoran S., Davidson S.M. The RISK pathway leading to mitochondria and cardioprotection: How everything started. Basic Res. Cardiol. 2023;118:22. doi: 10.1007/s00395-023-00992-5. PubMed DOI PMC
Halestrap A.P. Calcium, mitochondria and reperfusion injury: A pore way to die. Biochem. Soc. Trans. 2006;34:232–237. doi: 10.1042/BST0340232. PubMed DOI
Rabinovich-Nikitin I., Kirshenbaum L.A. Circadian regulated control of myocardial ischemia-reperfusion injury. Trends Cardiovasc. Med. 2024;34:1–7. doi: 10.1016/j.tcm.2022.09.003. PubMed DOI
Liu C., Zhang D., Long K., Qi W., Pang L., Li J., Cheng K.K., Cai Y. From exosomes to mitochondria and myocardial infarction: Molecular insight and therapeutic challenge. Pharmacol. Res. 2024;209:107468. doi: 10.1016/j.phrs.2024.107468. PubMed DOI
Zhao Y., Ponnusamy M., Dong Y., Zhang L., Wang K., Li P. Effects of miRNAs on myocardial apoptosis by modulating mitochondria related proteins. Clin. Exp. Pharmacol. Physiol. 2017;44:431–440. doi: 10.1111/1440-1681.12720. PubMed DOI
Hayashida K., Takegawa R., Shoaib M., Aoki T., Choudhary R.C., Kuschner C.E., Nishikimi M., Miyara S.J., Rolston D.M., Guevara S., et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: A systematic review of animal and human studies. J. Transl. Med. 2021;19:214. doi: 10.1186/s12967-021-02878-3. PubMed DOI PMC
Jan M.I., Khan R.A., Ali T., Bilal M., Bo L., Sajid A., Malik A., Urehman N., Waseem N., Nawab J., et al. Interplay of mitochondria apoptosis regulatory factors and microRNAs in valvular heart disease. Arch. Biochem. Biophys. 2017;633:50–57. doi: 10.1016/j.abb.2017.09.001. PubMed DOI
Lotz C., Herrmann J., Notz Q., Meybohm P., Kehl F. Mitochondria and pharmacologic cardiac conditioning-at the heart of ischemic injury. Int. J. Mol. Sci. 2021;22:3224. doi: 10.3390/ijms22063224. PubMed DOI PMC
Guo Z., Tian Y., Liu N., Chen Y., Chen X., Yuan G., Chang A., Chang X., Wu J., Zhou H. Mitochondrial stress as a central player in the pathogenesis of hypoxia-related myocardial dysfunction: New insights. Int. J. Med. Sci. 2024;21:2502–2509. doi: 10.7150/ijms.99359. PubMed DOI PMC
Hernandez-Resendiz S., Prakash A., Loo S.J., Semenzato M., Chinda K., Crespo-Avilan G.E., Dam L.C., Lu S., Scorrano L., Hausenloy D.J. Targeting mitochondrial shape: At the heart of cardioprotection. Basic Res. Cardiol. 2023;118:49. doi: 10.1007/s00395-023-01019-9. PubMed DOI PMC
Suarez J., Cividini F., Scott B.T., Lehmann K., Díaz-Juárez J., Diemer T., Dai A., Suarez J.A., Jain M., Dillmann W.H. Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. J. Biol. Chem. 2018;293:8182–8195. doi: 10.1074/jbc.RA118.002066. PubMed DOI PMC
Dillmann W.H. Diabetic cardiomyopathy. Circ. Res. 2019;124:1160–1162. doi: 10.1161/CIRCRESAHA.118.314665. PubMed DOI PMC
Paar V., Haslinger M., Krombholz-Reindl P., Pittner S., Neuner M., Jirak P., Kolbitsch T., Minnich B., Schroedl F., Kaser-Eichberger A., et al. Hypertrophic cardiomyopathy is characterized by alterations of the mitochondrial calcium uniporter complex proteins: Insights from patients with aortic valve stenosis versus hypertrophic obstructive cardiomyopathy. Front. Pharmacol. 2023;14:1264216. doi: 10.3389/fphar.2023.1264216. PubMed DOI PMC
Zarrouk-Mahjoub S., Mehri S., Ouarda F., Finsterer J., Boussaada R. Mitochondrial tRNA glutamine variant in hypertrophic cardiomyopathy. Herz. 2015;40:436–441. doi: 10.1007/s00059-013-3950-8. PubMed DOI
Roselló-Lletí E., Tarazón E., Barderas M.G., Ortega A., Otero M., Molina-Navarro M.M., Lago F., González-Juanatey J.R., Salvador A., Portolés M., et al. Heart mitochondrial proteome study elucidates changes in cardiac energy metabolism and antioxidant PRDX3 in human dilated cardiomyopathy. PLoS ONE. 2014;9:e112971. doi: 10.1371/journal.pone.0112971. PubMed DOI PMC
Lippi M., Maione A.S., Chiesa M., Perrucci G.L., Iengo L., Sattin T., Cencioni C., Savoia M., Zeiher A.M., Tundo F., et al. Omics analyses of stromal cells from ACM patients reveal alterations in chromatin organization and mitochondrial homeostasis. Int. J. Mol. Sci. 2023;24:10017. doi: 10.3390/ijms241210017. PubMed DOI PMC
Hsiao Y.T., Shimizu I., Wakasugi T., Yoshida Y., Ikegami R., Hayashi Y., Suda M., Katsuumi G., Nakao M., Ozawa T., et al. Cardiac mitofusin-1 is reduced in non-responding patients with idiopathic dilated cardiomyopathy. Sci. Rep. 2021;11:6722. doi: 10.1038/s41598-021-86209-y. PubMed DOI PMC
Campbell T., Lou X., Slone J., Brown J., Bromwell M., Liu J., Bai R., Haude K., Balog A., Cui H., et al. Mitochondrial genome variant m.3250T>C as a possible risk factor for mitochondrial cardiomyopathy. Hum. Mutat. 2021;42:177–188. doi: 10.1002/humu.24143. PubMed DOI
Reyat J.S., Sommerfeld L.C., O’reilly M., Cardoso V.R., Thiemann E., Khan A.O., O’shea C., Harder S., Müller C., Barlow J., et al. PITX2 deficiency leads to atrial mitochondrial dysfunction. Cardiovasc. Res. 2024;120:1907–1923. doi: 10.1093/cvr/cvae169. PubMed DOI PMC
Rai A.K., Sanghvi S., Muthukumaran N.S., Chandrasekera D., Kadam A., Kishore J., Kyriazis I.D., Tomar D., Ponnalagu D., Shettigar V., et al. Role of mitochondrial ribosomal protein L7/L12 (MRPL12) in diabetic ischemic heart disease. Free Radic. Biol. Med. 2024;222:531–538. doi: 10.1016/j.freeradbiomed.2024.07.003. PubMed DOI
Kane M.S., Juncos J.X.M., Manzoor S., Grenett M., Oh J.-Y., Pat B., Ahmed M.I., Lewis C., Davies J.E., Denney T.S., et al. Gene expression and ultra-structural evidence for metabolic derangement in the primary mitral regurgitation heart. Eur. Heart J. Open. 2024;4:oeae034. doi: 10.1093/ehjopen/oeae034. PubMed DOI PMC
Lee R.G., Balasubramaniam S., Stentenbach M., Kralj T., McCubbin T., Padman B., Smith J., Riley L.G., Priyadarshi A., Peng L., et al. Deleterious variants in CRLS1 lead to cardiolipin deficiency and cause an autosomal recessive multi-system mitochondrial disease. Hum. Mol. Genet. 2022;31:3597–3612. doi: 10.1093/hmg/ddac040. PubMed DOI PMC
Garcia A.M., McPhaul J.C., Sparagna G.C., Jeffrey D.A., Jonscher R.L., Patel S.S., Sucharov C.C., Stauffer B.L., Miyamoto S.D., Chatfield K.C. Alteration of cardiolipin biosynthesis and remodeling in single right ventricle congenital heart disease. Am. J. Physiol. Heart Circ. Physiol. 2020;318:H787–H800. doi: 10.1152/ajpheart.00494.2019. PubMed DOI PMC
Dhalla N.S., Mota K.O., Elimban V., Shah A.K., de Vasconcelos C.M.L., Bhullar S.K. Role of vasoactive hormone-induced signal transduction in cardiac hypertrophy and heart failure. Cells. 2024;13:856. doi: 10.3390/cells13100856. PubMed DOI PMC
Li T., Wang N., Yi D., Xiao Y., Li X., Shao B., Wu Z., Bai J., Shi X., Wu C., et al. ROS-mediated ferroptosis and pyroptosis in cardiomyocytes: An update. Life Sci. 2025;370:123565. doi: 10.1016/j.lfs.2025.123565. PubMed DOI
Daiber A., Hahad O., Andreadou I., Steven S., Daub S., Münzel T. Redox-related biomarkers in human cardiovascular disease-classical footprints and beyond. Redox Biol. 2021;42:101875. doi: 10.1016/j.redox.2021.101875. PubMed DOI PMC
Bhullar S.K., Dhalla N.S. Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells. 2022;11:3336. doi: 10.3390/cells11213336. PubMed DOI PMC