Development of TiAl-Si Alloys-A Review

. 2021 Feb 22 ; 14 (4) : . [epub] 20210222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33671650

Grantová podpora
CA15102 COST Action

This paper describes the effect of silicon on the manufacturing process, structure, phase composition, and selected properties of titanium aluminide alloys. The experimental generation of TiAl-Si alloys is composed of titanium aluminide (TiAl, Ti3Al or TiAl3) matrix reinforced by hard and heat-resistant titanium silicides (especially Ti5Si3). The alloys are characterized by wear resistance comparable with tool steels, high hardness, and very good resistance to oxidation at high temperatures (up to 1000 °C), but also low room-temperature ductility, as is typical also for other intermetallic materials. These alloys had been successfully prepared by the means of powder metallurgical routes and melting metallurgy methods.

Zobrazit více v PubMed

Clemens H., Mayer S. Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties. Mater. High Temp. 2016;33:560–570. doi: 10.1080/09603409.2016.1163792. DOI

Cinca N., Lima C.R.C., Guilemany J.M. An overview of intermetallics research and application: Status of thermal spray coatings. J. Mater. Res. Technol. 2013;2:75–86. doi: 10.1016/j.jmrt.2013.03.013. DOI

Tewari R., Sarkar N.K., Harish D., Vishwanadh B., Dey G.K., Banerjee S. Chapter 9—Intermetallics and Alloys for High Temperature Applications. In: Tyagi A.K., Banerjee S., editors. Materials under Extreme Conditions. Elsevier; Amsterdam, The Netherlands: 2017. pp. 293–335. DOI

Yamaguchi M., Inui H., Ito K. High-temperature structural intermetallics. Acta Mater. 2000;48:307–322. doi: 10.1016/S1359-6454(99)00301-8. DOI

Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics. 2006;14:1123–1129. doi: 10.1016/j.intermet.2006.01.064. DOI

Dai J., Zhu J., Chen C., Weng F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd. 2016;685:784–798. doi: 10.1016/j.jallcom.2016.06.212. DOI

Novák P. Příprava, vlastnosti a použití intermetalických sloučenin. Chem. Listy. 2012;106:884–889.

Bourithis L., Papadimitriou G.D., Sideris J. Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness. Tribol. Int. 2006;39:479–489. doi: 10.1016/j.triboint.2005.03.005. DOI

Toboła D., Brostow W., Czechowski K., Rusek P. Improvement of wear resistance of some cold working tool steels. Wear. 2017;382–383:29–39. doi: 10.1016/j.wear.2017.03.023. DOI

Kumaran S., Sasikumar T., Arockiakumar R., Srinivasa Rao T. Nanostructured titanium aluminides prepared by mechanical alloying and subsequent thermal treatment. Powder Technol. 2008;185:124–130. doi: 10.1016/j.powtec.2007.10.006. DOI

Novák P., Průša F., Šerák J., Vojtěch D., Michalcová A. Oxidation resistance and thermal stability of Ti-Al-Si alloys produced by reactive sintering; Proceedings of the Metal 2009—18th International Conference on Metallurgy and Materials; Hradec nad Moravicí, Czech Republic. 19–21 May 2009.

Novák P., Vojtěch D., Šerák J., Kubásek J., Průša F., Knotek V., Michalcová A., Novák M. Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering. Chem. Listy. 2009;103:1022–1026.

McKamey C.G., DeVan J.H., Tortorelli P.F., Sikka V.K. A review of recent developments in Fe3Al-based alloys. J. Mater. Res. 1991;6:1779–1805. doi: 10.1557/JMR.1991.1779. DOI

Novák P., Michalcová A., Šerák J., Vojtěch D., Fabián T., Randáková S., Průša F., Knotek V., Novák M. Preparation of Ti–Al–Si alloys by reactive sintering. J. Alloys Compd. 2009;470:123–126. doi: 10.1016/j.jallcom.2008.02.046. DOI

Li X.-W., Sun H.-F., Fang W.-B., Ding Y.-F. Structure and morphology of Ti-Al composite powders treated by mechanical alloying. Trans. Nonferrous Met. Soc. China. 2011;21:s338–s341. doi: 10.1016/S1003-6326(11)61602-6. DOI

Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI

Vojtěch D., Lejček P., Kopeček J., Bialasová K. Směrová krystalizace eutektik systému Ti-Al-Si; Proceedings of the Metal 2009-18th International Conference on Metallurgy and Materials; Hradec nad Moravicí, Czech Republic. 19–21 May 2009.

Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14:1114–1122. doi: 10.1016/j.intermet.2005.10.019. DOI

Bewlay B.P., Nag S., Suzuki A., Weimer M.J. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016;33:549–559. doi: 10.1080/09603409.2016.1183068. DOI

Tetsui T., Shindo K., Kaji S., Kobayashi S., Takeyama M. Fabrication of TiAl components by means of hot forging and machining. Intermetallics. 2005;13:971–978. doi: 10.1016/j.intermet.2004.12.012. DOI

Okamoto H., Massalski T.B. Binary alloy phase diagrams requiring further studies. J. Phase Equilibria. 1994;15:500–521. doi: 10.1007/BF02649400. DOI

Guan Z.Q., Pfullmann T., Oehring M., Bormann R. Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends. J. Alloys Compd. 1997;252:245–251. doi: 10.1016/S0925-8388(96)02720-X. DOI

Suryanarayana C. Synthesis of nanocomposites by mechanical alloying. J. Alloys Compd. 2011;509(Suppl. 1):S229–S234. doi: 10.1016/j.jallcom.2010.09.063. DOI

Kimura Y., Pope D.P. Ductility and toughness in intermetallics. Intermetallics. 1998;6:567–571. doi: 10.1016/S0966-9795(98)00061-2. DOI

Stoloff N.S., Liu C.T., Deevi S.C. Emerging applications of intermetallics. Intermetallics. 2000;8:1313–1320. doi: 10.1016/S0966-9795(00)00077-7. DOI

Zhang W.J., Reddy B.V., Deevi S.C. Physical properties of TiAl-base alloys. Scr. Mater. 2001;45:645–651. doi: 10.1016/S1359-6462(01)01075-2. DOI

Shida Y., Anada H. The influence of ternary element addition on the oxidation behaviour of TiAl intermetallic compound in high temperature air. Corros. Sci. 1993;35:945–953. doi: 10.1016/0010-938X(93)90313-6. DOI

Xiong H.-P., Mao W., Xie Y.-H., Cheng Y.-Y., Li X.-H. Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance. Mater. Sci. Eng. A. 2005;391:10–18. doi: 10.1016/j.msea.2004.05.026. DOI

Goral M., Swadzba L., Moskal G., Hetmanczyk M., Tetsui T. Si-modified aluminide coatings deposited on Ti46Al7Nb alloy by slurry method. Intermetallics. 2009;17:965–967. doi: 10.1016/j.intermet.2009.04.006. DOI

Teng S., Liang W., Li Z., Ma X. Improvement of high-temperature oxidation resistance of TiAl-based alloy by sol–gel method. J. Alloys Compd. 2008;464:452–456. doi: 10.1016/j.jallcom.2007.10.017. DOI

Popela T., Vojtěch D. Characterization of pack-borided last-generation TiAl intermetallics. Surf. Coat. Technol. 2012;209:90–96. doi: 10.1016/j.surfcoat.2012.08.034. DOI

Li X.Y., Taniguchi S., Matsunaga Y., Nakagawa K., Fujita K. Influence of siliconizing on the oxidation behavior of a γ-TiAl based alloy. Intermetallics. 2003;11:143–150. doi: 10.1016/S0966-9795(02)00193-0. DOI

Xiong H.P., Xie Y.H., Mao W., Ma W.L., Chen Y.F., Li X.H., Cheng Y.Y. Improvement in the oxidation resistance of the TiAl-based alloy by liquid-phase siliconizing. Scr. Mater. 2003;49:1117–1122. doi: 10.1016/j.scriptamat.2003.08.008. DOI

Munro T.C., Gleeson B. The deposition of aluminide and silicide coatings on γ-TiAl using the halide-activated pack cementation method. Metall. Mater. Trans. A. 1996;27:3761–3772. doi: 10.1007/BF02595625. DOI

Liang W., Ma X.X., Zhao X.G., Zhang F., Shi J.Y., Zhang J. Oxidation kinetics of the pack siliconized TiAl-based alloy and microstructure evolution of the coating. Intermetallics. 2007;15:1–8. doi: 10.1016/j.intermet.2005.11.038. DOI

Xiang Z.D., Rose S.R., Datta P.K. Codeposition of Al and Si to form oxidation-resistant coatings on γ-TiAl by the pack cementation process. Mater. Chem. Phys. 2003;80:482–489. doi: 10.1016/S0254-0584(02)00551-5. DOI

Vojtěch D., Novák P., Macháč P., Morťaniková M., Jurek K. Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment. J. Alloys Compd. 2008;464:179–184. doi: 10.1016/j.jallcom.2007.10.020. DOI

Xiong H.-P., Mao W., Ma W.-L., Xie Y.-H., Chen Y.-F., Yuan H., Li X.-H. Liquid-phase aluminizing and siliconizing at the surface of a Ti60 alloy and improvement in oxidation resistance. Mater. Sci. Eng. A. 2006;433:108–113. doi: 10.1016/j.msea.2006.06.059. DOI

Gray S., Jacobs M.H., Ponton C.B., Voice W., Evans H.E. A method of heat-treatment of near γ-TiAl to enhance oxidation resistance by the formation of a Ti5Si3 layer. Mater. Sci. Eng. A. 2004;384:77–82. doi: 10.1016/S0921-5093(04)00868-8. DOI

Zemčík L., Dlouhý A., Król S., Prażmowskic M. Vacuum Metallurgy of TiAl Intermetallics; Proceedings of the Metal 2005—14th International Conference on Metallurgy and Materials; Hradec nad Moravicí, Czech Republic. 24–26 May 2005.

de Farias Azevedo C.R., Flower H.M. Microstructure and phase relationships in Ti–Al–Si system. Mater. Sci. Technol. 1999;15:869–877. doi: 10.1179/026708399101506661. DOI

Wu J.S., Beaven P.A., Wagner R. The Ti3(Al, Si) + Ti5(Si, Al)3 Eutectic Reaction in the Ti-Al-Si system. Scr. Metall. Mater. 1990;24:207–212. doi: 10.1016/0956-716X(90)90593-6. DOI

Novák P., Kříž J., Průša F., Kubásek J., Marek I., Michalcová A., Voděrová M., Vojtěch D. Structure and properties of Ti–Al–Si-X alloys produced by SHS method. Intermetallics. 2013;39:11–19. doi: 10.1016/j.intermet.2013.03.009. DOI

Tkachenko S., Datskevich O., Dvořák K., Spotz Z., Kulak L., Čelko L. Isothermal oxidation behavior of experimental Ti−Al−Si alloys at 700 °C in air. J. Alloys Compd. 2017;694:1098–1108. doi: 10.1016/j.jallcom.2016.10.044. DOI

Gurrappa I. An oxidation model for predicting the life of titanium alloy components in gas turbine engines. J. Alloys Compd. 2005;389:190–197. doi: 10.1016/j.jallcom.2004.05.079. DOI

Gaddam R., Antti M.L., Pederson R. Influence of alpha-case layer on the low cycle fatigue properties of Ti-6Al-2Sn-4Zr-2Mo alloy. Mater. Sci. Eng. A. 2014;599:51–56. doi: 10.1016/j.msea.2014.01.059. DOI

Montanari R., Costanza G., Tata M.E., Testani C. Lattice expansion of Ti–6Al–4V by nitrogen and oxygen absorption. Mater. Charact. 2008;59:334–337. doi: 10.1016/j.matchar.2006.12.014. DOI

Woodfield A.P., Postans P.J., Loretto M.H., Smallman R.E. The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S. Acta Metall. 1988;36:507–515. doi: 10.1016/0001-6160(88)90082-X. DOI

Vojtěch D., Čížová H., Jurek K., Maixner J. Influence of silicon on high-temperature cyclic oxidation behaviour of titanium. J. Alloys Compd. 2005;394:240–249. doi: 10.1016/j.jallcom.2004.11.019. DOI

Vojtěch D., Bártová B., Kubatík T. High temperature oxidation of titanium–silicon alloys. Mater. Sci. Eng. A. 2003;361:50–57. doi: 10.1016/S0921-5093(03)00564-1. DOI

Kitashima T., Yamabe-Mitarai Y. Oxidation Behavior of Germanium- and/or Silicon-Bearing Near-α Titanium Alloys in Air. Metall. Mater. Trans. A. 2015;46:2758–2767. doi: 10.1007/s11661-015-2835-2. DOI

Saha R., Nandy T., Misra R., Jacob K.T. Microstructural changes induced by ternary additions in a hypo-eutectic titanium-silicon alloy. J. Mater. Sci. 1991;26:2637–2644. doi: 10.1007/BF02387731. DOI

Novák P., Kříž J., Michalcová A., Vojtěch D. Microstructure Evolution of Fe-Al-Si and Ti-Al-Si Alloys during High-Temperature Oxidation. Mater. Sci. Forum. 2014;782:353–358. doi: 10.4028/www.scientific.net/MSF.782.353. DOI

Lu X., He X.B., Zhang B., Qu X.H., Zhang L., Guo Z.X., Tian J.J. High-temperature oxidation behavior of TiAl-based alloys fabricated by spark plasma sintering. J. Alloys Compd. 2009;478:220–225. doi: 10.1016/j.jallcom.2008.11.134. DOI

Wendler B.G., Kaczmarek Ł. Oxidation resistance of nanocrystalline microalloyed γ-TiAl coatings under isothermal conditions and thermal fatigue. J. Mater. Process. Technol. 2005;164–165:947–953. doi: 10.1016/j.jmatprotec.2005.02.158. DOI

Lasek F. Základy Degradačních Procesů. Vysoká škola báňská–Technická univerzita Ostrava; Ostrava, Czech Republic: 2013.

Kekare S.A., Aswath P.B. Oxidation of TiAl based intermetallics. J. Mater. Sci. 1997;32:2485–2499. doi: 10.1023/A:1018529829167. DOI

Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI

Barin I., Platzki G. Thermochemical Data of Pure Substances. VCH; Weinheim, NY, USA: 1995.

Wang J.-Q., Kong L.-Y., Li T.-F., Xiong T.-Y. High temperature oxidation behavior of Ti(Al,Si)3 diffusion coating on γ-TiAl by cold spray. Trans. Nonferrous Met. Soc. China. 2016;26:1155–1162. doi: 10.1016/S1003-6326(16)64214-0. DOI

Swadzba L., Moskal G., Hetmanczyk M., Mendala B., Jarczyk G. Long-term cyclic oxidation of Al–Si diffusion coatings deposited by Arc-PVD on TiAlCrNb alloy. Surf. Coat. Technol. 2004;184:93–101. doi: 10.1016/j.surfcoat.2003.10.001. DOI

Li Y.-Q., Xie F.-Q., Wu X.-Q. Microstructure and high temperature oxidation resistance of Si–Y co-deposition coatings prepared on TiAl alloy by pack cementation process. Trans. Nonferrous Met. Soc. China. 2015;25:803–810. doi: 10.1016/S1003-6326(15)63666-4. DOI

Yang M.-R., Wu S.-K. Oxidation resistance improvement of TiAl intermetallics using surface modification. Bull. Coll. Eng. 2003;89:3–19.

Pilone D., Brotzu A., Felli F. Effect of surface modification on the stability of oxide scales formed on TiAl intermetallic alloys at high temperature. Procedia Struct. Integr. 2016;2:2291–2298. doi: 10.1016/j.prostr.2016.06.287. DOI

Shida Y., Anada H. The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air. Oxid. Met. 1996;45:197–219. doi: 10.1007/BF01046826. DOI

Sauthoff G. Intermetallics. VCH; Weinheim, Germany: New York, NY, USA: Basel, Switzerland: Cambridge, UK: Tokyo, Japan: 1995.

Brady M.P., Smialek J.L., Humphrey D.L., Smith J. The role of Cr in promoting protective alumina scale formation by γ-based Ti-Al-Cr alloys—II. Oxidation behavior in air. Acta Mater. 1997;45:2371–2382. doi: 10.1016/S1359-6454(96)00361-8. DOI

Laska N., Braun R., Knittel S. Oxidation behavior of protective Ti-Al-Cr based coatings applied on the γ-TiAl alloys Ti-48-2-2 and TNM-B1. Surf. Coat. Technol. 2018;349:347–356. doi: 10.1016/j.surfcoat.2018.05.067. DOI

Milman Y.V., Miracle D.B., Chugunova S.I., Voskoboinik I.V., Korzhova N.P., Legkaya T.N., Podrezov Y.N. Mechanical behaviour of Al3Ti intermetallic and L12 phases on its basis. Intermetallics. 2001;9:839–845. doi: 10.1016/S0966-9795(01)00073-5. DOI

Brady M.P., Smialek J.L., Smith J., Humphrey D.L. The role of Cr in promoting protective alumina scale formation by γ-based Ti-Al-Cr alloys—I. Compatibility with alumina and oxidation behavior in oxygen. Acta Mater. 1997;45:2357–2369. doi: 10.1016/S1359-6454(96)00362-X. DOI

Zhou C.G., Vang Y., Gong S.K., Xu H.B. Mechanism of Cr effect for improvement of oxidation resistance of Ti-Al-Cr alloys. Acta Aeronaut. Astronaut. Sin. 2001;22:73–77.

Dong Z., Jiang H., Feng X., Wang Z. Effect of Cr on high temperature oxidation of TiAl. Trans. Nonferrous Met. Soc. China. 2006;16:2004–2008.

Wei D.-B., Zhang P.-Z., Yao Z.-J., Liang W.-P., Miao Q., Xu Z. Oxidation of double-glow plasma chromising coating on TC4 titanium alloys. Corros. Sci. 2013;66:43–50. doi: 10.1016/j.corsci.2012.08.063. DOI

Jiang H., Hirohasi M., Lu Y., Imanari H. Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al. Scr. Mater. 2002;46:639–643. doi: 10.1016/S1359-6462(02)00042-8. DOI

Vojtěch D., Čížkovský J., Novák P., Šerák J., Fabián T. Effect of niobium on the structure and high-temperature oxidation of TiAl–Ti5Si3 eutectic alloy. Intermetallics. 2008;16:896–903. doi: 10.1016/j.intermet.2008.04.005. DOI

Yoshihara M., Miura K. Effects of Nb addition on oxidation behavior of TiAl. Intermetallics. 1995;3:357–363. doi: 10.1016/0966-9795(95)94254-C. DOI

Jiang H.-R., Wang Z.-L., Ma W.-S., Feng X.-R., Dong Z.-Q., Zhang L., Liu Y. Effects of Nb and Si on high temperature oxidation of TiAl. Trans. Nonferrous Met. Soc. China. 2008;18:512–517. doi: 10.1016/S1003-6326(08)60090-4. DOI

Popela T., Vojtěch D., Vogt J.-B., Michalcová A. Structural, mechanical and oxidation characteristics of siliconized Ti–Al–X (X=Nb, Ta) alloys. Appl. Surf. Sci. 2014;307:579–588. doi: 10.1016/j.apsusc.2014.04.076. DOI

Nazmy M., Noseda C., Staubli M., Phillipsen B. Processing and Design Issues in High Temperature Materials. TMS; Warrendale, PA, USA: 1979. p. 159.

Grilli M., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R., Ruello M. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials. 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC

Bartl A., Tkaczyk A., Amato A., Beolchini F., Lapkovskis V., Petranik M. Supply and Substitution Options for Selected Critical Raw Materials: Cobalt, Niobium, Tungsten, Yttrium and Rare Earths Elements. Detritus. 2018;3:37–42. doi: 10.31025/2611-4135/2018.13697. DOI

Novák P., Jaworska L., Cabibbo M. Intermetallics as innovative CRM-free materials. IOP Conf. Ser. Mater. Sci. Eng. 2018;329:12013. doi: 10.1088/1757-899X/329/1/012013. DOI

Critical Raw Materials. [(accessed on 23 January 2021)]; Available online: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en.

Urbina M., Rinaldi A., Cuesta-Lopez S., Sobetkii A., Slobozeanu A.E., Szakalos P., Qin Y., Prakasam M., Piticescu R.-R., Ducros C., et al. The methodologies and strategies for the development of novel material systems and coatings for applications in extreme environments—A critical review. Manuf. Rev. 2018;5:9. doi: 10.1051/mfreview/2018006. DOI

Kvanin V.L., Balikhina N.T., Vadchenko S.G., Borovinskaya I.P., Sychev A.E. Preparation of γ-TiAl intermetallic compounds through self-propagating high-temperature synthesis and compaction. Inorg. Mater. 2008;44:1194–1198. doi: 10.1134/S0020168508110095. DOI

Lapin J. TiAl-based alloys: Present status and future perspectives; Proceedings of the Metal 2009; Hradec nad Moravicí, Czech Republic. 19–21 May 2009.

Stoloff N.S., Sikka V.K. Physical Metallurgy and Processing of Intermetallic Compounds. Springer; Boston, MA USA: 1996.

Novák P., Kříž J., Michalcová A., Vojtěch D. Effect of alloying elements on properties of PM Ti-Al-Si alloys. Acta Metall. Slovaca. 2013;19:240–246. doi: 10.12776/ams.v19i4.121. DOI

Alman D.E. Reactive sintering of TiAl–Ti5Si3 in situ composites. Intermetallics. 2005;13:572–579. doi: 10.1016/j.intermet.2004.09.011. DOI

Subrahmanyam J., Vijayakumar M. Self-propagating high-temperature synthesis. J. Mater. Sci. 1992;27:6249–6273. doi: 10.1007/BF00576271. DOI

Morsi K. Review: Reaction synthesis processing of Ni–Al intermetallic materials. Mater. Sci. Eng. A. 2001;299:1–15. doi: 10.1016/S0921-5093(00)01407-6. DOI

Ma Y., Fan Q., Zhang J., Shi J., Xiao G., Gu M. Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2008;23:381–385. doi: 10.1007/s11595-007-3281-6. DOI

Wang T., Liu R.Y., Zhu M.L., Zhang J.S. Activation energy of self-heating process Studied by DSC. J. Therm. Anal. Calorim. 2002;70:507–519. doi: 10.1023/A:1021684726126. DOI

Ferguson H., Whychell D.T., Federation M.P.I., International A. 2000 International Conference on Powder Metallurgy & Particulate Materials, Tyoto, Japan, 12–16 November 2000. Metal Powder Industries Federation; University Park, PA, USA: 2000. Advances in Powder Metallurgy and Particulate Materials 2000.

Rice R.W., McDonough W.J. Intrinsic Volume Changes of Self-propagating Synthesis. J. Am. Ceram. Soc. 1985;68:C-122–C-123. doi: 10.1111/j.1151-2916.1985.tb15328.x. DOI

Yang W.Y., Weatherly G.C. A study of combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 1996;31:3707–3713. doi: 10.1007/BF00352784. DOI

Wenbin F., Lianxi H., Wenxiong H., Erde W., Xiaoqing L. Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering. Mater. Sci. Eng. A. 2005;403:186–190. doi: 10.1016/j.msea.2005.04.049. DOI

Cardoso K.R., Rodrigues C.A.D., Botta F.W.J. Processing of aluminium alloys containing titanium addition by mechanical alloying. Mater. Sci. Eng. A. 2004;375−377:1201–1205. doi: 10.1016/j.msea.2003.10.001. DOI

Novák P., Průša F., Šerák J., Vojtěch D., Michalcová A. High-temperature behaviour of Ti–Al–Si alloys produced by reactive sintering. J. Alloys Compd. 2010;504:320–324. doi: 10.1016/j.jallcom.2010.05.115. DOI

Knaislová A., Novák P., Cabibbo M., Průša F., Paoletti C., Jaworska L., Vojtěch D. Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. J. Alloys Compd. 2018;752:317–326. doi: 10.1016/j.jallcom.2018.04.187. DOI

Školáková A., Novák P., Salvetr P., Moravec H., Šefl V., Deduytsche D., Detavernier C. Investigation of the Effect of Magnesium on the Microstructure and Mechanical Properties of NiTi Shape Memory Alloy Prepared by Self-Propagating High-Temperature Synthesis. Metall. Mater. Trans. A. 2017;48:3559–3569. doi: 10.1007/s11661-017-4105-y. DOI

Salvetr P., Kubatík T.F., Pignol D., Novák P. Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique. Metall. Mater. Trans. B. 2017;48:772–778. doi: 10.1007/s11663-016-0894-4. DOI

Xiao W., Zhang L., Jiang H. Effects of Si on high temperature oxidation resistance of TiAl alloy. Beijing Hangkong Hangtian Daxue Xuebao/J. Beijing Univ. Aeronaut. Astronaut. 2006;32:365–368.

Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI

Skotnicová K., Kursa M. Prášková Metalurgie. Vysoká škola báňská—Technická univerzita Ostrava; Ostrava, Czech Republic: 2013.

Rao K.P., Zhou J.B. Characterization of mechanically alloyed Ti–Al–Si powder blends and their subsequent thermal stability. Mater. Sci. Eng. A. 2002;338:282–298. doi: 10.1016/S0921-5093(02)00095-3. DOI

Gu J., Gu S., Xue L., Wu S., Yan Y. Microstructure and mechanical properties of in-situ Al13Fe4/Al composites prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A. 2012;558:684–691. doi: 10.1016/j.msea.2012.08.076. DOI

Vyas A., Rao K.P., Prasad Y.V.R.K. Mechanical alloying characteristics and thermal stability of Ti–Al–Si and Ti–Al–Si–C powders. J. Alloys Compd. 2009;475:252–260. doi: 10.1016/j.jallcom.2008.07.094. DOI

Guo W., Iasonna A., Magini M., Martelli S., Padella F. Synthesis of amorphous and metastable Ti40Al60 alloys by mechanical alloying of elemental powders. J. Mater. Sci. 1994;29:2436–2444. doi: 10.1007/BF00363438. DOI

Szewczak E., Presz A., Witek A., Wyrzykowski J.W., Matyja H. Microstructure and phase composition of mechanically alloyed and hot pressed Ti-Al alloys. Nanostructured Mater. 1999;12:167–170. doi: 10.1016/S0965-9773(99)00090-2. DOI

Benhaddad S., Bhan S., Rahmat A. Effect of ball milling time on Ti-Al and Ni-Al powder mixtures. J. Mater. Sci. Lett. 1997;16:855–857. doi: 10.1023/A:1018503213933. DOI

Krasnowski M., Grabias A., Kulik T. Phase transformations during mechanical alloying of Fe–50% Al and subsequent heating of the milling product. J. Alloys Compd. 2006;424:119–127. doi: 10.1016/j.jallcom.2005.12.077. DOI

Haghighi S.E., Janghorban K., Izadi S. Structural evolution of Fe–50at.% Al powders during mechanical alloying and subsequent annealing processes. J. Alloys Compd. 2010;495:260–264. doi: 10.1016/j.jallcom.2010.01.145. DOI

Novák P., Průša F., Nová K., Bernatiková A., Salvetr P., Kopeček J., Haušild P. Application of Mechanical Alloying in Synthesis of Intermetallics. Acta Phys. Pol. A. 2018;134:720–723. doi: 10.12693/APhysPolA.134.720. DOI

Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals. 2018;9:20. doi: 10.3390/met9010020. DOI

Novák P., Moravec H., Vojtěch V., Knaislová A., Školáková A., Kubatík T.F., Kopeček J. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and Spark Plasma Sintering. Mater. Tehnol. 2017;51:141–144. doi: 10.17222/mit.2016.011. DOI

Zoz H., Reichardt R., Ren H. Energy Balance during Mechanical Alloying, Measurement and Calculation Method supported by the MALTOZ®-software. Adv. Powder Metall. 1999;1:1–109.

Koch C.C. Intermetallic matrix composites prepared by mechanical alloying—A review. Mater. Sci. Eng. A. 1998;244:39–48. doi: 10.1016/S0921-5093(97)00824-1. DOI

Rao K.P., Du Y.J. In situ formation of titanium silicides-reinforced TiAl-based composites. Mater. Sci. Eng. A. 2000;277:46–56. doi: 10.1016/S0921-5093(99)00557-2. DOI

Knaislová A., Linhart J., Novák P., Průša F., Kopeček J., Laufek F., Vojtěch D. Preparation of TiAl15Si15 intermetallic alloy by mechanical alloying and the spark plasma sintering method. Powder Metall. 2019;62:56–60. doi: 10.1080/00325899.2019.1569812. DOI

Zhang Z.-H., Liu Z.-F., Lu J.-F., Shen X.-B., Wang F.-C., Wang Y.-D. The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge. Scr. Mater. 2014;81:56–59. doi: 10.1016/j.scriptamat.2014.03.011. DOI

Balima F., Bellin F., Michau D., Viraphong O., Poulon-Quintin A., Chung U.C., Dourfaye A., Largeteau A. High pressure pulsed electric current activated equipment (HP-SPS) for material processing. Mater. Des. 2018;139:541–548. doi: 10.1016/j.matdes.2017.11.040. DOI

Prakasam M., Balima F., Cygan S., Klimczyk P., Jaworska L., Largeteau A. Chapter 9—Ultrahigh pressure SPS (HP-SPS) as new syntheses and exploration tool in materials science. In: Cao G., Estournès C., Garay J., Orrù R., editors. Spark Plasma Sintering. Elsevier; Amsterdam, The Netherlands: 2019. pp. 201–218. DOI

Suárez M., Fernández A., Menéndez J.L., Torrecillas R., Kessel H.U., Hennicke J., Kirchner R., Kessel T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. InTechOpen; London, UK: 2013. DOI

Groza J.R., Zavaliangos A. Sintering activation by external electrical field. Mater. Sci. Eng. A. 2000;287:171–177. doi: 10.1016/S0921-5093(00)00771-1. DOI

Liu Y., Liu W. Mechanical alloying and spark plasma sintering of the intermetallic compound Ti50Al50. J. Alloys Compd. 2007;440:154–157. doi: 10.1016/j.jallcom.2006.09.060. DOI

Knaislová A., Novák P., Průša F., Cabibbo M., Jaworska L., Vojtěch D. High-temperature oxidation of Ti–Al–Si alloys prepared by powder metallurgy. J. Alloys Compd. 2019;810:151895. doi: 10.1016/j.jallcom.2019.151895. DOI

Schneibel J.H., Rawn C.J. Thermal expansion anisotropy of ternary titanium silicides based on Ti5Si3. Acta Mater. 2004;52:3843–3848. doi: 10.1016/j.actamat.2004.04.033. DOI

Kasraee K., Yousefpour M., Tayebifard S.A. Microstructure and mechanical properties of Ti5Si3 fabricated by spark plasma sintering. J. Alloys Compd. 2019;779:942–949. doi: 10.1016/j.jallcom.2018.11.319. DOI

Liang G., Meng Q., Li Z., Wang E. Consolidation of nanocrystalline Al-Ti alloy powders synthesized by mechanical alloying. Nanostructured Mater. 1995;5:673–678. doi: 10.1016/0965-9773(95)00276-K. DOI

Calderon H.A., Garibay-Febles V., Umemoto M., Yamaguchi M. Mechanical properties of nanocrystalline Ti–Al–X alloys. Mater. Sci. Eng. A. 2002;329–331:196–205. doi: 10.1016/S0921-5093(01)01568-4. DOI

Molnárová O., Málek P., Veselý J., Minárik P., Lukáč F., Chráska T., Novák P., Průša F. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy. Materials. 2018;11:547. doi: 10.3390/ma11040547. PubMed DOI PMC

Knaislová A., Novák P., Cygan S., Jaworska L., Cabibbo M. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys. Materials. 2017;10:465. doi: 10.3390/ma10050465. PubMed DOI PMC

Kermani M., Razavi M., Rahimipour M.R., Zakeri M. The effect of temperature on the in situ synthesis–sintering and mechanical properties of MoSi2 prepared by spark plasma sintering. J. Alloys Compd. 2014;585:229–233. doi: 10.1016/j.jallcom.2013.09.125. DOI

Licheri R., Orrù R., Musa C., Locci A.M., Cao G. Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis. J. Alloys Compd. 2009;478:572–578. doi: 10.1016/j.jallcom.2008.11.092. DOI

Licheri R., Musa C., Orrù R., Cao G. Influence of the heating rate on the in situ synthesis and consolidation of ZrB2 by reactive Spark Plasma Sintering. J. Eur. Ceram. Soc. 2015;35:1129–1137. doi: 10.1016/j.jeurceramsoc.2014.10.039. DOI

Lagos M.A., Agote I., Atxaga G., Adarraga O., Pambaguian L. Fabrication and characterisation of Titanium Matrix Composites obtained using a combination of Self propagating High temperature Synthesis and Spark Plasma Sintering. Mater. Sci. Eng. A. 2016;655:44–49. doi: 10.1016/j.msea.2015.12.050. DOI

Yung D.-L., Cygan S., Antonov M., Jaworska L., Hussainova I. Ultra high-pressure spark plasma sintered ZrC-Mo and ZrC-TiC composites. Int. J. Refract. Met. Hard Mater. 2016;61:201–206. doi: 10.1016/j.ijrmhm.2016.09.014. DOI

Vallauri D., DeBenedetti B., Jaworska L., Klimczyk P., Rodriguez M.A. Wear-resistant ceramic and metal–ceramic ultrafine composites fabricated from combustion synthesised metastable powders. Int. J. Refract. Met. Hard Mater. 2009;27:996–1003. doi: 10.1016/j.ijrmhm.2009.07.003. DOI

Klimczyk P., Figiel P., Jaworska L., Bućko M.M. Wysokociśnieniowe spiekanie nanoproszków w układzie Si3N4-SiC. Ceramics. 2008;103:459–466.

Dadlez R., Jaroszewski W. Tektonika. Wydawnictwo Naukowe PWN; Warszawa, Poland: 1994. p. 744.

Luo Q., Li Q., Zhang J.-Y., Chen S.-L., Chou K.-C. Experimental investigation and thermodynamic calculation of the Al–Si–Ti system in Al-rich corner. J. Alloys Compd. 2014;602:58–65. doi: 10.1016/j.jallcom.2014.02.107. DOI

Knaislová A., Novák P., Kopeček J., Průša F. Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods. Materials. 2019;12:3084. doi: 10.3390/ma12193084. PubMed DOI PMC

de Campos M.F. Selected Values for the Stacking Fault Energy of Face Centered Cubic Metals. Mater. Sci. Forum. 2008;591–593:708–711. doi: 10.4028/www.scientific.net/MSF.591-593.708. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...