Development of TiAl-Si Alloys-A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CA15102
COST Action
PubMed
33671650
PubMed Central
PMC7926816
DOI
10.3390/ma14041030
PII: ma14041030
Knihovny.cz E-zdroje
- Klíčová slova
- alloy, properties, synthesis, titanium aluminide, titanium silicide,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper describes the effect of silicon on the manufacturing process, structure, phase composition, and selected properties of titanium aluminide alloys. The experimental generation of TiAl-Si alloys is composed of titanium aluminide (TiAl, Ti3Al or TiAl3) matrix reinforced by hard and heat-resistant titanium silicides (especially Ti5Si3). The alloys are characterized by wear resistance comparable with tool steels, high hardness, and very good resistance to oxidation at high temperatures (up to 1000 °C), but also low room-temperature ductility, as is typical also for other intermetallic materials. These alloys had been successfully prepared by the means of powder metallurgical routes and melting metallurgy methods.
Zobrazit více v PubMed
Clemens H., Mayer S. Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties. Mater. High Temp. 2016;33:560–570. doi: 10.1080/09603409.2016.1163792. DOI
Cinca N., Lima C.R.C., Guilemany J.M. An overview of intermetallics research and application: Status of thermal spray coatings. J. Mater. Res. Technol. 2013;2:75–86. doi: 10.1016/j.jmrt.2013.03.013. DOI
Tewari R., Sarkar N.K., Harish D., Vishwanadh B., Dey G.K., Banerjee S. Chapter 9—Intermetallics and Alloys for High Temperature Applications. In: Tyagi A.K., Banerjee S., editors. Materials under Extreme Conditions. Elsevier; Amsterdam, The Netherlands: 2017. pp. 293–335. DOI
Yamaguchi M., Inui H., Ito K. High-temperature structural intermetallics. Acta Mater. 2000;48:307–322. doi: 10.1016/S1359-6454(99)00301-8. DOI
Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics. 2006;14:1123–1129. doi: 10.1016/j.intermet.2006.01.064. DOI
Dai J., Zhu J., Chen C., Weng F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd. 2016;685:784–798. doi: 10.1016/j.jallcom.2016.06.212. DOI
Novák P. Příprava, vlastnosti a použití intermetalických sloučenin. Chem. Listy. 2012;106:884–889.
Bourithis L., Papadimitriou G.D., Sideris J. Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness. Tribol. Int. 2006;39:479–489. doi: 10.1016/j.triboint.2005.03.005. DOI
Toboła D., Brostow W., Czechowski K., Rusek P. Improvement of wear resistance of some cold working tool steels. Wear. 2017;382–383:29–39. doi: 10.1016/j.wear.2017.03.023. DOI
Kumaran S., Sasikumar T., Arockiakumar R., Srinivasa Rao T. Nanostructured titanium aluminides prepared by mechanical alloying and subsequent thermal treatment. Powder Technol. 2008;185:124–130. doi: 10.1016/j.powtec.2007.10.006. DOI
Novák P., Průša F., Šerák J., Vojtěch D., Michalcová A. Oxidation resistance and thermal stability of Ti-Al-Si alloys produced by reactive sintering; Proceedings of the Metal 2009—18th International Conference on Metallurgy and Materials; Hradec nad Moravicí, Czech Republic. 19–21 May 2009.
Novák P., Vojtěch D., Šerák J., Kubásek J., Průša F., Knotek V., Michalcová A., Novák M. Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering. Chem. Listy. 2009;103:1022–1026.
McKamey C.G., DeVan J.H., Tortorelli P.F., Sikka V.K. A review of recent developments in Fe3Al-based alloys. J. Mater. Res. 1991;6:1779–1805. doi: 10.1557/JMR.1991.1779. DOI
Novák P., Michalcová A., Šerák J., Vojtěch D., Fabián T., Randáková S., Průša F., Knotek V., Novák M. Preparation of Ti–Al–Si alloys by reactive sintering. J. Alloys Compd. 2009;470:123–126. doi: 10.1016/j.jallcom.2008.02.046. DOI
Li X.-W., Sun H.-F., Fang W.-B., Ding Y.-F. Structure and morphology of Ti-Al composite powders treated by mechanical alloying. Trans. Nonferrous Met. Soc. China. 2011;21:s338–s341. doi: 10.1016/S1003-6326(11)61602-6. DOI
Stoloff N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A. 1998;258:1–14. doi: 10.1016/S0921-5093(98)00909-5. DOI
Vojtěch D., Lejček P., Kopeček J., Bialasová K. Směrová krystalizace eutektik systému Ti-Al-Si; Proceedings of the Metal 2009-18th International Conference on Metallurgy and Materials; Hradec nad Moravicí, Czech Republic. 19–21 May 2009.
Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14:1114–1122. doi: 10.1016/j.intermet.2005.10.019. DOI
Bewlay B.P., Nag S., Suzuki A., Weimer M.J. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016;33:549–559. doi: 10.1080/09603409.2016.1183068. DOI
Tetsui T., Shindo K., Kaji S., Kobayashi S., Takeyama M. Fabrication of TiAl components by means of hot forging and machining. Intermetallics. 2005;13:971–978. doi: 10.1016/j.intermet.2004.12.012. DOI
Okamoto H., Massalski T.B. Binary alloy phase diagrams requiring further studies. J. Phase Equilibria. 1994;15:500–521. doi: 10.1007/BF02649400. DOI
Guan Z.Q., Pfullmann T., Oehring M., Bormann R. Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends. J. Alloys Compd. 1997;252:245–251. doi: 10.1016/S0925-8388(96)02720-X. DOI
Suryanarayana C. Synthesis of nanocomposites by mechanical alloying. J. Alloys Compd. 2011;509(Suppl. 1):S229–S234. doi: 10.1016/j.jallcom.2010.09.063. DOI
Kimura Y., Pope D.P. Ductility and toughness in intermetallics. Intermetallics. 1998;6:567–571. doi: 10.1016/S0966-9795(98)00061-2. DOI
Stoloff N.S., Liu C.T., Deevi S.C. Emerging applications of intermetallics. Intermetallics. 2000;8:1313–1320. doi: 10.1016/S0966-9795(00)00077-7. DOI
Zhang W.J., Reddy B.V., Deevi S.C. Physical properties of TiAl-base alloys. Scr. Mater. 2001;45:645–651. doi: 10.1016/S1359-6462(01)01075-2. DOI
Shida Y., Anada H. The influence of ternary element addition on the oxidation behaviour of TiAl intermetallic compound in high temperature air. Corros. Sci. 1993;35:945–953. doi: 10.1016/0010-938X(93)90313-6. DOI
Xiong H.-P., Mao W., Xie Y.-H., Cheng Y.-Y., Li X.-H. Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance. Mater. Sci. Eng. A. 2005;391:10–18. doi: 10.1016/j.msea.2004.05.026. DOI
Goral M., Swadzba L., Moskal G., Hetmanczyk M., Tetsui T. Si-modified aluminide coatings deposited on Ti46Al7Nb alloy by slurry method. Intermetallics. 2009;17:965–967. doi: 10.1016/j.intermet.2009.04.006. DOI
Teng S., Liang W., Li Z., Ma X. Improvement of high-temperature oxidation resistance of TiAl-based alloy by sol–gel method. J. Alloys Compd. 2008;464:452–456. doi: 10.1016/j.jallcom.2007.10.017. DOI
Popela T., Vojtěch D. Characterization of pack-borided last-generation TiAl intermetallics. Surf. Coat. Technol. 2012;209:90–96. doi: 10.1016/j.surfcoat.2012.08.034. DOI
Li X.Y., Taniguchi S., Matsunaga Y., Nakagawa K., Fujita K. Influence of siliconizing on the oxidation behavior of a γ-TiAl based alloy. Intermetallics. 2003;11:143–150. doi: 10.1016/S0966-9795(02)00193-0. DOI
Xiong H.P., Xie Y.H., Mao W., Ma W.L., Chen Y.F., Li X.H., Cheng Y.Y. Improvement in the oxidation resistance of the TiAl-based alloy by liquid-phase siliconizing. Scr. Mater. 2003;49:1117–1122. doi: 10.1016/j.scriptamat.2003.08.008. DOI
Munro T.C., Gleeson B. The deposition of aluminide and silicide coatings on γ-TiAl using the halide-activated pack cementation method. Metall. Mater. Trans. A. 1996;27:3761–3772. doi: 10.1007/BF02595625. DOI
Liang W., Ma X.X., Zhao X.G., Zhang F., Shi J.Y., Zhang J. Oxidation kinetics of the pack siliconized TiAl-based alloy and microstructure evolution of the coating. Intermetallics. 2007;15:1–8. doi: 10.1016/j.intermet.2005.11.038. DOI
Xiang Z.D., Rose S.R., Datta P.K. Codeposition of Al and Si to form oxidation-resistant coatings on γ-TiAl by the pack cementation process. Mater. Chem. Phys. 2003;80:482–489. doi: 10.1016/S0254-0584(02)00551-5. DOI
Vojtěch D., Novák P., Macháč P., Morťaniková M., Jurek K. Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment. J. Alloys Compd. 2008;464:179–184. doi: 10.1016/j.jallcom.2007.10.020. DOI
Xiong H.-P., Mao W., Ma W.-L., Xie Y.-H., Chen Y.-F., Yuan H., Li X.-H. Liquid-phase aluminizing and siliconizing at the surface of a Ti60 alloy and improvement in oxidation resistance. Mater. Sci. Eng. A. 2006;433:108–113. doi: 10.1016/j.msea.2006.06.059. DOI
Gray S., Jacobs M.H., Ponton C.B., Voice W., Evans H.E. A method of heat-treatment of near γ-TiAl to enhance oxidation resistance by the formation of a Ti5Si3 layer. Mater. Sci. Eng. A. 2004;384:77–82. doi: 10.1016/S0921-5093(04)00868-8. DOI
Zemčík L., Dlouhý A., Król S., Prażmowskic M. Vacuum Metallurgy of TiAl Intermetallics; Proceedings of the Metal 2005—14th International Conference on Metallurgy and Materials; Hradec nad Moravicí, Czech Republic. 24–26 May 2005.
de Farias Azevedo C.R., Flower H.M. Microstructure and phase relationships in Ti–Al–Si system. Mater. Sci. Technol. 1999;15:869–877. doi: 10.1179/026708399101506661. DOI
Wu J.S., Beaven P.A., Wagner R. The Ti3(Al, Si) + Ti5(Si, Al)3 Eutectic Reaction in the Ti-Al-Si system. Scr. Metall. Mater. 1990;24:207–212. doi: 10.1016/0956-716X(90)90593-6. DOI
Novák P., Kříž J., Průša F., Kubásek J., Marek I., Michalcová A., Voděrová M., Vojtěch D. Structure and properties of Ti–Al–Si-X alloys produced by SHS method. Intermetallics. 2013;39:11–19. doi: 10.1016/j.intermet.2013.03.009. DOI
Tkachenko S., Datskevich O., Dvořák K., Spotz Z., Kulak L., Čelko L. Isothermal oxidation behavior of experimental Ti−Al−Si alloys at 700 °C in air. J. Alloys Compd. 2017;694:1098–1108. doi: 10.1016/j.jallcom.2016.10.044. DOI
Gurrappa I. An oxidation model for predicting the life of titanium alloy components in gas turbine engines. J. Alloys Compd. 2005;389:190–197. doi: 10.1016/j.jallcom.2004.05.079. DOI
Gaddam R., Antti M.L., Pederson R. Influence of alpha-case layer on the low cycle fatigue properties of Ti-6Al-2Sn-4Zr-2Mo alloy. Mater. Sci. Eng. A. 2014;599:51–56. doi: 10.1016/j.msea.2014.01.059. DOI
Montanari R., Costanza G., Tata M.E., Testani C. Lattice expansion of Ti–6Al–4V by nitrogen and oxygen absorption. Mater. Charact. 2008;59:334–337. doi: 10.1016/j.matchar.2006.12.014. DOI
Woodfield A.P., Postans P.J., Loretto M.H., Smallman R.E. The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S. Acta Metall. 1988;36:507–515. doi: 10.1016/0001-6160(88)90082-X. DOI
Vojtěch D., Čížová H., Jurek K., Maixner J. Influence of silicon on high-temperature cyclic oxidation behaviour of titanium. J. Alloys Compd. 2005;394:240–249. doi: 10.1016/j.jallcom.2004.11.019. DOI
Vojtěch D., Bártová B., Kubatík T. High temperature oxidation of titanium–silicon alloys. Mater. Sci. Eng. A. 2003;361:50–57. doi: 10.1016/S0921-5093(03)00564-1. DOI
Kitashima T., Yamabe-Mitarai Y. Oxidation Behavior of Germanium- and/or Silicon-Bearing Near-α Titanium Alloys in Air. Metall. Mater. Trans. A. 2015;46:2758–2767. doi: 10.1007/s11661-015-2835-2. DOI
Saha R., Nandy T., Misra R., Jacob K.T. Microstructural changes induced by ternary additions in a hypo-eutectic titanium-silicon alloy. J. Mater. Sci. 1991;26:2637–2644. doi: 10.1007/BF02387731. DOI
Novák P., Kříž J., Michalcová A., Vojtěch D. Microstructure Evolution of Fe-Al-Si and Ti-Al-Si Alloys during High-Temperature Oxidation. Mater. Sci. Forum. 2014;782:353–358. doi: 10.4028/www.scientific.net/MSF.782.353. DOI
Lu X., He X.B., Zhang B., Qu X.H., Zhang L., Guo Z.X., Tian J.J. High-temperature oxidation behavior of TiAl-based alloys fabricated by spark plasma sintering. J. Alloys Compd. 2009;478:220–225. doi: 10.1016/j.jallcom.2008.11.134. DOI
Wendler B.G., Kaczmarek Ł. Oxidation resistance of nanocrystalline microalloyed γ-TiAl coatings under isothermal conditions and thermal fatigue. J. Mater. Process. Technol. 2005;164–165:947–953. doi: 10.1016/j.jmatprotec.2005.02.158. DOI
Lasek F. Základy Degradačních Procesů. Vysoká škola báňská–Technická univerzita Ostrava; Ostrava, Czech Republic: 2013.
Kekare S.A., Aswath P.B. Oxidation of TiAl based intermetallics. J. Mater. Sci. 1997;32:2485–2499. doi: 10.1023/A:1018529829167. DOI
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Barin I., Platzki G. Thermochemical Data of Pure Substances. VCH; Weinheim, NY, USA: 1995.
Wang J.-Q., Kong L.-Y., Li T.-F., Xiong T.-Y. High temperature oxidation behavior of Ti(Al,Si)3 diffusion coating on γ-TiAl by cold spray. Trans. Nonferrous Met. Soc. China. 2016;26:1155–1162. doi: 10.1016/S1003-6326(16)64214-0. DOI
Swadzba L., Moskal G., Hetmanczyk M., Mendala B., Jarczyk G. Long-term cyclic oxidation of Al–Si diffusion coatings deposited by Arc-PVD on TiAlCrNb alloy. Surf. Coat. Technol. 2004;184:93–101. doi: 10.1016/j.surfcoat.2003.10.001. DOI
Li Y.-Q., Xie F.-Q., Wu X.-Q. Microstructure and high temperature oxidation resistance of Si–Y co-deposition coatings prepared on TiAl alloy by pack cementation process. Trans. Nonferrous Met. Soc. China. 2015;25:803–810. doi: 10.1016/S1003-6326(15)63666-4. DOI
Yang M.-R., Wu S.-K. Oxidation resistance improvement of TiAl intermetallics using surface modification. Bull. Coll. Eng. 2003;89:3–19.
Pilone D., Brotzu A., Felli F. Effect of surface modification on the stability of oxide scales formed on TiAl intermetallic alloys at high temperature. Procedia Struct. Integr. 2016;2:2291–2298. doi: 10.1016/j.prostr.2016.06.287. DOI
Shida Y., Anada H. The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air. Oxid. Met. 1996;45:197–219. doi: 10.1007/BF01046826. DOI
Sauthoff G. Intermetallics. VCH; Weinheim, Germany: New York, NY, USA: Basel, Switzerland: Cambridge, UK: Tokyo, Japan: 1995.
Brady M.P., Smialek J.L., Humphrey D.L., Smith J. The role of Cr in promoting protective alumina scale formation by γ-based Ti-Al-Cr alloys—II. Oxidation behavior in air. Acta Mater. 1997;45:2371–2382. doi: 10.1016/S1359-6454(96)00361-8. DOI
Laska N., Braun R., Knittel S. Oxidation behavior of protective Ti-Al-Cr based coatings applied on the γ-TiAl alloys Ti-48-2-2 and TNM-B1. Surf. Coat. Technol. 2018;349:347–356. doi: 10.1016/j.surfcoat.2018.05.067. DOI
Milman Y.V., Miracle D.B., Chugunova S.I., Voskoboinik I.V., Korzhova N.P., Legkaya T.N., Podrezov Y.N. Mechanical behaviour of Al3Ti intermetallic and L12 phases on its basis. Intermetallics. 2001;9:839–845. doi: 10.1016/S0966-9795(01)00073-5. DOI
Brady M.P., Smialek J.L., Smith J., Humphrey D.L. The role of Cr in promoting protective alumina scale formation by γ-based Ti-Al-Cr alloys—I. Compatibility with alumina and oxidation behavior in oxygen. Acta Mater. 1997;45:2357–2369. doi: 10.1016/S1359-6454(96)00362-X. DOI
Zhou C.G., Vang Y., Gong S.K., Xu H.B. Mechanism of Cr effect for improvement of oxidation resistance of Ti-Al-Cr alloys. Acta Aeronaut. Astronaut. Sin. 2001;22:73–77.
Dong Z., Jiang H., Feng X., Wang Z. Effect of Cr on high temperature oxidation of TiAl. Trans. Nonferrous Met. Soc. China. 2006;16:2004–2008.
Wei D.-B., Zhang P.-Z., Yao Z.-J., Liang W.-P., Miao Q., Xu Z. Oxidation of double-glow plasma chromising coating on TC4 titanium alloys. Corros. Sci. 2013;66:43–50. doi: 10.1016/j.corsci.2012.08.063. DOI
Jiang H., Hirohasi M., Lu Y., Imanari H. Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al. Scr. Mater. 2002;46:639–643. doi: 10.1016/S1359-6462(02)00042-8. DOI
Vojtěch D., Čížkovský J., Novák P., Šerák J., Fabián T. Effect of niobium on the structure and high-temperature oxidation of TiAl–Ti5Si3 eutectic alloy. Intermetallics. 2008;16:896–903. doi: 10.1016/j.intermet.2008.04.005. DOI
Yoshihara M., Miura K. Effects of Nb addition on oxidation behavior of TiAl. Intermetallics. 1995;3:357–363. doi: 10.1016/0966-9795(95)94254-C. DOI
Jiang H.-R., Wang Z.-L., Ma W.-S., Feng X.-R., Dong Z.-Q., Zhang L., Liu Y. Effects of Nb and Si on high temperature oxidation of TiAl. Trans. Nonferrous Met. Soc. China. 2008;18:512–517. doi: 10.1016/S1003-6326(08)60090-4. DOI
Popela T., Vojtěch D., Vogt J.-B., Michalcová A. Structural, mechanical and oxidation characteristics of siliconized Ti–Al–X (X=Nb, Ta) alloys. Appl. Surf. Sci. 2014;307:579–588. doi: 10.1016/j.apsusc.2014.04.076. DOI
Nazmy M., Noseda C., Staubli M., Phillipsen B. Processing and Design Issues in High Temperature Materials. TMS; Warrendale, PA, USA: 1979. p. 159.
Grilli M., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R., Ruello M. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials. 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC
Bartl A., Tkaczyk A., Amato A., Beolchini F., Lapkovskis V., Petranik M. Supply and Substitution Options for Selected Critical Raw Materials: Cobalt, Niobium, Tungsten, Yttrium and Rare Earths Elements. Detritus. 2018;3:37–42. doi: 10.31025/2611-4135/2018.13697. DOI
Novák P., Jaworska L., Cabibbo M. Intermetallics as innovative CRM-free materials. IOP Conf. Ser. Mater. Sci. Eng. 2018;329:12013. doi: 10.1088/1757-899X/329/1/012013. DOI
Critical Raw Materials. [(accessed on 23 January 2021)]; Available online: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en.
Urbina M., Rinaldi A., Cuesta-Lopez S., Sobetkii A., Slobozeanu A.E., Szakalos P., Qin Y., Prakasam M., Piticescu R.-R., Ducros C., et al. The methodologies and strategies for the development of novel material systems and coatings for applications in extreme environments—A critical review. Manuf. Rev. 2018;5:9. doi: 10.1051/mfreview/2018006. DOI
Kvanin V.L., Balikhina N.T., Vadchenko S.G., Borovinskaya I.P., Sychev A.E. Preparation of γ-TiAl intermetallic compounds through self-propagating high-temperature synthesis and compaction. Inorg. Mater. 2008;44:1194–1198. doi: 10.1134/S0020168508110095. DOI
Lapin J. TiAl-based alloys: Present status and future perspectives; Proceedings of the Metal 2009; Hradec nad Moravicí, Czech Republic. 19–21 May 2009.
Stoloff N.S., Sikka V.K. Physical Metallurgy and Processing of Intermetallic Compounds. Springer; Boston, MA USA: 1996.
Novák P., Kříž J., Michalcová A., Vojtěch D. Effect of alloying elements on properties of PM Ti-Al-Si alloys. Acta Metall. Slovaca. 2013;19:240–246. doi: 10.12776/ams.v19i4.121. DOI
Alman D.E. Reactive sintering of TiAl–Ti5Si3 in situ composites. Intermetallics. 2005;13:572–579. doi: 10.1016/j.intermet.2004.09.011. DOI
Subrahmanyam J., Vijayakumar M. Self-propagating high-temperature synthesis. J. Mater. Sci. 1992;27:6249–6273. doi: 10.1007/BF00576271. DOI
Morsi K. Review: Reaction synthesis processing of Ni–Al intermetallic materials. Mater. Sci. Eng. A. 2001;299:1–15. doi: 10.1016/S0921-5093(00)01407-6. DOI
Ma Y., Fan Q., Zhang J., Shi J., Xiao G., Gu M. Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2008;23:381–385. doi: 10.1007/s11595-007-3281-6. DOI
Wang T., Liu R.Y., Zhu M.L., Zhang J.S. Activation energy of self-heating process Studied by DSC. J. Therm. Anal. Calorim. 2002;70:507–519. doi: 10.1023/A:1021684726126. DOI
Ferguson H., Whychell D.T., Federation M.P.I., International A. 2000 International Conference on Powder Metallurgy & Particulate Materials, Tyoto, Japan, 12–16 November 2000. Metal Powder Industries Federation; University Park, PA, USA: 2000. Advances in Powder Metallurgy and Particulate Materials 2000.
Rice R.W., McDonough W.J. Intrinsic Volume Changes of Self-propagating Synthesis. J. Am. Ceram. Soc. 1985;68:C-122–C-123. doi: 10.1111/j.1151-2916.1985.tb15328.x. DOI
Yang W.Y., Weatherly G.C. A study of combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 1996;31:3707–3713. doi: 10.1007/BF00352784. DOI
Wenbin F., Lianxi H., Wenxiong H., Erde W., Xiaoqing L. Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering. Mater. Sci. Eng. A. 2005;403:186–190. doi: 10.1016/j.msea.2005.04.049. DOI
Cardoso K.R., Rodrigues C.A.D., Botta F.W.J. Processing of aluminium alloys containing titanium addition by mechanical alloying. Mater. Sci. Eng. A. 2004;375−377:1201–1205. doi: 10.1016/j.msea.2003.10.001. DOI
Novák P., Průša F., Šerák J., Vojtěch D., Michalcová A. High-temperature behaviour of Ti–Al–Si alloys produced by reactive sintering. J. Alloys Compd. 2010;504:320–324. doi: 10.1016/j.jallcom.2010.05.115. DOI
Knaislová A., Novák P., Cabibbo M., Průša F., Paoletti C., Jaworska L., Vojtěch D. Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. J. Alloys Compd. 2018;752:317–326. doi: 10.1016/j.jallcom.2018.04.187. DOI
Školáková A., Novák P., Salvetr P., Moravec H., Šefl V., Deduytsche D., Detavernier C. Investigation of the Effect of Magnesium on the Microstructure and Mechanical Properties of NiTi Shape Memory Alloy Prepared by Self-Propagating High-Temperature Synthesis. Metall. Mater. Trans. A. 2017;48:3559–3569. doi: 10.1007/s11661-017-4105-y. DOI
Salvetr P., Kubatík T.F., Pignol D., Novák P. Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique. Metall. Mater. Trans. B. 2017;48:772–778. doi: 10.1007/s11663-016-0894-4. DOI
Xiao W., Zhang L., Jiang H. Effects of Si on high temperature oxidation resistance of TiAl alloy. Beijing Hangkong Hangtian Daxue Xuebao/J. Beijing Univ. Aeronaut. Astronaut. 2006;32:365–368.
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Skotnicová K., Kursa M. Prášková Metalurgie. Vysoká škola báňská—Technická univerzita Ostrava; Ostrava, Czech Republic: 2013.
Rao K.P., Zhou J.B. Characterization of mechanically alloyed Ti–Al–Si powder blends and their subsequent thermal stability. Mater. Sci. Eng. A. 2002;338:282–298. doi: 10.1016/S0921-5093(02)00095-3. DOI
Gu J., Gu S., Xue L., Wu S., Yan Y. Microstructure and mechanical properties of in-situ Al13Fe4/Al composites prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A. 2012;558:684–691. doi: 10.1016/j.msea.2012.08.076. DOI
Vyas A., Rao K.P., Prasad Y.V.R.K. Mechanical alloying characteristics and thermal stability of Ti–Al–Si and Ti–Al–Si–C powders. J. Alloys Compd. 2009;475:252–260. doi: 10.1016/j.jallcom.2008.07.094. DOI
Guo W., Iasonna A., Magini M., Martelli S., Padella F. Synthesis of amorphous and metastable Ti40Al60 alloys by mechanical alloying of elemental powders. J. Mater. Sci. 1994;29:2436–2444. doi: 10.1007/BF00363438. DOI
Szewczak E., Presz A., Witek A., Wyrzykowski J.W., Matyja H. Microstructure and phase composition of mechanically alloyed and hot pressed Ti-Al alloys. Nanostructured Mater. 1999;12:167–170. doi: 10.1016/S0965-9773(99)00090-2. DOI
Benhaddad S., Bhan S., Rahmat A. Effect of ball milling time on Ti-Al and Ni-Al powder mixtures. J. Mater. Sci. Lett. 1997;16:855–857. doi: 10.1023/A:1018503213933. DOI
Krasnowski M., Grabias A., Kulik T. Phase transformations during mechanical alloying of Fe–50% Al and subsequent heating of the milling product. J. Alloys Compd. 2006;424:119–127. doi: 10.1016/j.jallcom.2005.12.077. DOI
Haghighi S.E., Janghorban K., Izadi S. Structural evolution of Fe–50at.% Al powders during mechanical alloying and subsequent annealing processes. J. Alloys Compd. 2010;495:260–264. doi: 10.1016/j.jallcom.2010.01.145. DOI
Novák P., Průša F., Nová K., Bernatiková A., Salvetr P., Kopeček J., Haušild P. Application of Mechanical Alloying in Synthesis of Intermetallics. Acta Phys. Pol. A. 2018;134:720–723. doi: 10.12693/APhysPolA.134.720. DOI
Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals. 2018;9:20. doi: 10.3390/met9010020. DOI
Novák P., Moravec H., Vojtěch V., Knaislová A., Školáková A., Kubatík T.F., Kopeček J. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and Spark Plasma Sintering. Mater. Tehnol. 2017;51:141–144. doi: 10.17222/mit.2016.011. DOI
Zoz H., Reichardt R., Ren H. Energy Balance during Mechanical Alloying, Measurement and Calculation Method supported by the MALTOZ®-software. Adv. Powder Metall. 1999;1:1–109.
Koch C.C. Intermetallic matrix composites prepared by mechanical alloying—A review. Mater. Sci. Eng. A. 1998;244:39–48. doi: 10.1016/S0921-5093(97)00824-1. DOI
Rao K.P., Du Y.J. In situ formation of titanium silicides-reinforced TiAl-based composites. Mater. Sci. Eng. A. 2000;277:46–56. doi: 10.1016/S0921-5093(99)00557-2. DOI
Knaislová A., Linhart J., Novák P., Průša F., Kopeček J., Laufek F., Vojtěch D. Preparation of TiAl15Si15 intermetallic alloy by mechanical alloying and the spark plasma sintering method. Powder Metall. 2019;62:56–60. doi: 10.1080/00325899.2019.1569812. DOI
Zhang Z.-H., Liu Z.-F., Lu J.-F., Shen X.-B., Wang F.-C., Wang Y.-D. The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge. Scr. Mater. 2014;81:56–59. doi: 10.1016/j.scriptamat.2014.03.011. DOI
Balima F., Bellin F., Michau D., Viraphong O., Poulon-Quintin A., Chung U.C., Dourfaye A., Largeteau A. High pressure pulsed electric current activated equipment (HP-SPS) for material processing. Mater. Des. 2018;139:541–548. doi: 10.1016/j.matdes.2017.11.040. DOI
Prakasam M., Balima F., Cygan S., Klimczyk P., Jaworska L., Largeteau A. Chapter 9—Ultrahigh pressure SPS (HP-SPS) as new syntheses and exploration tool in materials science. In: Cao G., Estournès C., Garay J., Orrù R., editors. Spark Plasma Sintering. Elsevier; Amsterdam, The Netherlands: 2019. pp. 201–218. DOI
Suárez M., Fernández A., Menéndez J.L., Torrecillas R., Kessel H.U., Hennicke J., Kirchner R., Kessel T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. InTechOpen; London, UK: 2013. DOI
Groza J.R., Zavaliangos A. Sintering activation by external electrical field. Mater. Sci. Eng. A. 2000;287:171–177. doi: 10.1016/S0921-5093(00)00771-1. DOI
Liu Y., Liu W. Mechanical alloying and spark plasma sintering of the intermetallic compound Ti50Al50. J. Alloys Compd. 2007;440:154–157. doi: 10.1016/j.jallcom.2006.09.060. DOI
Knaislová A., Novák P., Průša F., Cabibbo M., Jaworska L., Vojtěch D. High-temperature oxidation of Ti–Al–Si alloys prepared by powder metallurgy. J. Alloys Compd. 2019;810:151895. doi: 10.1016/j.jallcom.2019.151895. DOI
Schneibel J.H., Rawn C.J. Thermal expansion anisotropy of ternary titanium silicides based on Ti5Si3. Acta Mater. 2004;52:3843–3848. doi: 10.1016/j.actamat.2004.04.033. DOI
Kasraee K., Yousefpour M., Tayebifard S.A. Microstructure and mechanical properties of Ti5Si3 fabricated by spark plasma sintering. J. Alloys Compd. 2019;779:942–949. doi: 10.1016/j.jallcom.2018.11.319. DOI
Liang G., Meng Q., Li Z., Wang E. Consolidation of nanocrystalline Al-Ti alloy powders synthesized by mechanical alloying. Nanostructured Mater. 1995;5:673–678. doi: 10.1016/0965-9773(95)00276-K. DOI
Calderon H.A., Garibay-Febles V., Umemoto M., Yamaguchi M. Mechanical properties of nanocrystalline Ti–Al–X alloys. Mater. Sci. Eng. A. 2002;329–331:196–205. doi: 10.1016/S0921-5093(01)01568-4. DOI
Molnárová O., Málek P., Veselý J., Minárik P., Lukáč F., Chráska T., Novák P., Průša F. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy. Materials. 2018;11:547. doi: 10.3390/ma11040547. PubMed DOI PMC
Knaislová A., Novák P., Cygan S., Jaworska L., Cabibbo M. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys. Materials. 2017;10:465. doi: 10.3390/ma10050465. PubMed DOI PMC
Kermani M., Razavi M., Rahimipour M.R., Zakeri M. The effect of temperature on the in situ synthesis–sintering and mechanical properties of MoSi2 prepared by spark plasma sintering. J. Alloys Compd. 2014;585:229–233. doi: 10.1016/j.jallcom.2013.09.125. DOI
Licheri R., Orrù R., Musa C., Locci A.M., Cao G. Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis. J. Alloys Compd. 2009;478:572–578. doi: 10.1016/j.jallcom.2008.11.092. DOI
Licheri R., Musa C., Orrù R., Cao G. Influence of the heating rate on the in situ synthesis and consolidation of ZrB2 by reactive Spark Plasma Sintering. J. Eur. Ceram. Soc. 2015;35:1129–1137. doi: 10.1016/j.jeurceramsoc.2014.10.039. DOI
Lagos M.A., Agote I., Atxaga G., Adarraga O., Pambaguian L. Fabrication and characterisation of Titanium Matrix Composites obtained using a combination of Self propagating High temperature Synthesis and Spark Plasma Sintering. Mater. Sci. Eng. A. 2016;655:44–49. doi: 10.1016/j.msea.2015.12.050. DOI
Yung D.-L., Cygan S., Antonov M., Jaworska L., Hussainova I. Ultra high-pressure spark plasma sintered ZrC-Mo and ZrC-TiC composites. Int. J. Refract. Met. Hard Mater. 2016;61:201–206. doi: 10.1016/j.ijrmhm.2016.09.014. DOI
Vallauri D., DeBenedetti B., Jaworska L., Klimczyk P., Rodriguez M.A. Wear-resistant ceramic and metal–ceramic ultrafine composites fabricated from combustion synthesised metastable powders. Int. J. Refract. Met. Hard Mater. 2009;27:996–1003. doi: 10.1016/j.ijrmhm.2009.07.003. DOI
Klimczyk P., Figiel P., Jaworska L., Bućko M.M. Wysokociśnieniowe spiekanie nanoproszków w układzie Si3N4-SiC. Ceramics. 2008;103:459–466.
Dadlez R., Jaroszewski W. Tektonika. Wydawnictwo Naukowe PWN; Warszawa, Poland: 1994. p. 744.
Luo Q., Li Q., Zhang J.-Y., Chen S.-L., Chou K.-C. Experimental investigation and thermodynamic calculation of the Al–Si–Ti system in Al-rich corner. J. Alloys Compd. 2014;602:58–65. doi: 10.1016/j.jallcom.2014.02.107. DOI
Knaislová A., Novák P., Kopeček J., Průša F. Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods. Materials. 2019;12:3084. doi: 10.3390/ma12193084. PubMed DOI PMC
de Campos M.F. Selected Values for the Stacking Fault Energy of Face Centered Cubic Metals. Mater. Sci. Forum. 2008;591–593:708–711. doi: 10.4028/www.scientific.net/MSF.591-593.708. DOI