High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28772824
PubMed Central
PMC5459057
DOI
10.3390/ma10050465
PII: ma10050465
Knihovny.cz E-zdroje
- Klíčová slova
- hardness, high-pressure spark plasma sintering (HP SPS), intermetallics, powder metallurgy (PM),
- Publikační typ
- časopisecké články MeSH
Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.
DIISM Università Politecnica delle Marche Via Brecce Bianche 60131 Ancona Italy
The Institute of Advanced Manufacturing Technology Wroclawska 37A 30 011 Krakow Poland
Zobrazit více v PubMed
Licheri R., Orrù R., Musa C., Locci A.M., Cao G. Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis. J. Alloys Compd. 2009;478:572–578. doi: 10.1016/j.jallcom.2008.11.092. DOI
Licheri R., Musa C., Orrù R., Cao G. Influence of the heating rate on the in situ synthesis and consolidation of ZrB2 by reactive Spark Plasma Sintering. J. Eur. Ceram. Soc. 2015;35:1129–1137. doi: 10.1016/j.jeurceramsoc.2014.10.039. DOI
Lagos M.A., Agote I., Atxaga G., Adarraga O., Pambaguian L. Fabrication and characterization of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering. Mater. Sci. Eng. A. 2016;655:44–49. doi: 10.1016/j.msea.2015.12.050. DOI
Kermani M., Razavi M., Rahimipour M.R., Zakeri M. The effect of temperature on the in situ synthesis-sintering and mechanical properties of MoSi2 prepared by spark plasma sintering. J. Alloys Compd. 2014;585:229–233. doi: 10.1016/j.jallcom.2013.09.125. DOI
Yung D.L., Cygan S., Antonov M., Jaworska L., Hussainova I. Ultra high-pressure spark plasma sintered ZrC-Mo and ZrC-TiC composites. Int. J. Refract. Met. Hard Mater. 2016;61:201–206. doi: 10.1016/j.ijrmhm.2016.09.014. DOI
Vallauri D., DeBenedetti B., Jaworska L., Klimczyk P., Rodriguez M.A. Wear-resistant ceramic and metal-ceramic ultrafine composites fabricated from combustion synthesised metastable powders. J. Refract. Met. Hard Mater. 2009;27:996–1003. doi: 10.1016/j.ijrmhm.2009.07.003. DOI
Klimczyk P., Figiel P., Jaworska L., Bućko M. Wysokociśnieniowe spiekanie nanoproszków w układzie Si3N4-SiC. Ceramics. 2008;103:459–466.
Dadlez R., Jaroszewski W. Tektonika. Wydawnictwo Naukowe PWN; Warszawa, Poland: 1994. p. 744.
Tokita M. Mechanism of spark plasma sintering; Proceeding of NEDO International Symposium on Functionally Graded Materials; Tokyo, Japan. 21–22 October 1999; pp. 1–13.
Suárez M., Fernández A., Menéndez J.L., Torrecillas R., Kessel H.U., Hennicke J., Kirchner R., Kessel T. Challenges and opportunities for spark plasma sintering: A key technology for a new generation of materials. InTech. 2013 doi: 10.5772/53706. DOI
Knaislová A., Novák P., Průša F. Preparation of Ti–Al–Si alloys by powder metallurgy. Manuf. Technol. 2016;16:1274–1278.
Knaislová A., Novák P., Nová K. Using of Microscopy in optimization of the Ti–Al–Si alloys preparation by powder metallurgy. Manuf. Technol. 2016;16:946–949.
Novák P., Vojtěch D., Šerák J., Kubásek J., Průša F., Knotek V., Michalcová A., Novák M. Syntéza intermediálních fází systému Ti–Al–Si metodou reaktivní sintrace. Chemické listy. 2009;103:1022–1026.
European Commission Critical Raw Materials. [(accessed on 22 March 2017)]; Available online: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en.
Yang F., Kong F.T., Chen Y.Y., Xiao S.L. Effect of spark plasma sintering temperature on the microstructure and mechanical properties of a Ti2AlC/TiAl composite. J. Allays Compd. 2010;496:462–466. doi: 10.1016/j.jallcom.2010.02.077. DOI
Novák P., Michalcová A., Šerák J., Vojtěch D., Fabián T., Randáková S., Průša F., Knotek V., Novák M. Preparation of Ti–Al–Si alloys by reactive sintering. J. Allays Compd. 2009;470:123–126. doi: 10.1016/j.jallcom.2008.02.046. DOI
Alman D.E. Reactive sintering of TiAl–Ti5Si3 in situ composites. Intermetallics. 2005;13:572–579. doi: 10.1016/j.intermet.2004.09.011. DOI
Chen Y., Yu H.B., Xhang D., Lihua Ch. Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy. Mater. Sci. Eng. A. 2009;525:166–173. doi: 10.1016/j.msea.2009.06.056. DOI
Development of TiAl-Si Alloys-A Review
Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods
Reactive Sintering Mechanism and Phase Formation in Ni-Ti-Al Powder Mixture During Heating