Reactive Sintering Mechanism and Phase Formation in Ni-Ti-Al Powder Mixture During Heating

. 2018 Apr 27 ; 11 (5) : . [epub] 20180427

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29702609

This work aims to describe the formation of intermetallics in the Ni-Ti-Al system in dependence on the heating rate, which has been determined previously as the crucial factor of thermal explosion self-propagating synthesis (TE-SHS). The tested alloys contained 1⁻7 wt % aluminum. Thermal analysis has been realized by the optical pyrometer under the conditions of high heating rates up to 110 °C·min−1. TE-SHS process in Ni-Ti-Al system is initiated by exothermic reaction of nickel aluminides Ni₂Al₃ and NiAl₃ at the temperature of 535⁻610 °C. The next reactions occur in dependence on the heating rate. Samples containing 1⁻3 wt % of aluminum exhibit the similar initiation temperature as Ni-Ti binary mixture. The samples containing 5 wt % and more of aluminum were fully reacted after sintering at 800 °C with the heating rate of 300 °C·min−1 and the initiation temperature of the TE-SHS was observed close to Al-Al₃Ni eutectic temperature (between 630⁻640 °C).

Zobrazit více v PubMed

Novak P., Vojtech D., Serak J., Kubasek J., Prusa F., Knotek V., Michalcova A., Novak M. Synthesis of intermediary phases in Ti-Al-Si system by reactive sintering. Chem. Listy. 2009;103:1022–1026.

Elahinia M.H., Hashemi M., Tabesh M., Bhaduri S.B. Manufacturing and processing of NiTi implants: A review. Prog. Mater. Sci. 2012;57:911–946. doi: 10.1016/j.pmatsci.2011.11.001. DOI

Sadrnezhad S.K., Raz S.B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy. Metall. Mater. Trans. B. 2005;36:395–403. doi: 10.1007/s11663-005-0068-2. DOI

Novák P., Mejzlíková L., Michalcová A., Čapek J., Beran P., Vojtěch D. Effect of SHS conditions on microstructure of NiTi shape memory alloy. Intermetallics. 2013;42:85–91. doi: 10.1016/j.intermet.2013.05.015. DOI

Krone L., Schüller E., Bram M., Hamed O., Buchkremer H.P., Stöver D. Mechanical behaviour of NiTi parts prepared by powder metallurgical methods. Mater. Sci. Eng. A. 2004;378:185–190. doi: 10.1016/j.msea.2003.10.345. DOI

Knaislová A., Novák P., Cygan S., Jaworska L., Cabibbo M. High-pressure spark plasma sintering (HP SPS): A promising and reliable method for preparing Ti–Al–Si alloys. Materials. 2017;10:465. doi: 10.3390/ma10050465. PubMed DOI PMC

Novák P., Moravec H., Salvetr P., Průša F., Drahokoupil J., Kopeček J., Karlík M., Kubatík T.F. Preparation of nitinol by non-conventional powder metallurgy techniques. Mater. Sci. Technol. 2015;31:1886–1893. doi: 10.1179/1743284715Y.0000000041. DOI

Yeh C.L., Sung W.Y. Synthesis of niti intermetallics by self-propagating combustion. J. Alloys Compd. 2004;376:79–88. doi: 10.1016/j.jallcom.2003.12.016. DOI

Biswas A., Roy S.K. Comparison between the microstructural evolutions of two modes of SHS of NiAl: Key to a common reaction mechanism. Acta Mater. 2004;52:257–270. doi: 10.1016/j.actamat.2003.08.018. DOI

Whitney M., Corbin S.F., Gorbet R.B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Mater. 2008;56:559–570. doi: 10.1016/j.actamat.2007.10.012. DOI

Cluff D., Corbin S.F. The influence of Ni powder size, compact composition and sintering profile on the shape memory transformation and tensile behaviour of NiTi. Intermetallics. 2010;18:1480–1490. doi: 10.1016/j.intermet.2010.03.043. DOI

Cluff D.R., Corbin S.F., Gharghouri M.A. Investigating the influence of Ti powder purity on phase evolution during NiTi sintering using in-situ neutron diffraction. Intermetallics. 2017;83:43–54. doi: 10.1016/j.intermet.2016.12.001. DOI

Whitney M., Corbin S.F., Gorbet R.B. Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi. Intermetallics. 2009;17:894–906. doi: 10.1016/j.intermet.2009.03.018. DOI

Jabur A.S., Al-Haidary J.T., Al-Hasani E.S. Characterization of Ni–Ti shape memory alloys prepared by powder metallurgy. J. Alloys Compd. 2013;578:136–142. doi: 10.1016/j.jallcom.2013.05.029. DOI

Sina H., Surreddi K.B., Iyengar S. Phase evolution during the reactive sintering of ternary Al–Ni–Ti powder compacts. J. Alloys Compd. 2016;661:294–305. doi: 10.1016/j.jallcom.2015.11.105. DOI

Novák P., Školáková A., Pignol D., Průša F., Salvetr P., Kubatík T.F., Perriere L., Karlík M. Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy. Mater. Chem. Phys. 2016;181:295–300. doi: 10.1016/j.matchemphys.2016.06.062. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...