Synthesis of FeSi-FeAl Composites from Separately Prepared FeSi and FeAl Alloys and Their Structure and Properties

. 2023 Dec 17 ; 16 (24) : . [epub] 20231217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38138827

Grantová podpora
23-05126S Czech Science Foundation

Composites consisting of iron aluminide and iron silicide phases were studied in this work. Powders of iron aluminide and iron silicide were prepared by mechanical alloying separately. Subsequently, they were blended in three different proportions and sintered by the SPS method under various conditions. After sintering, the composites are composed of FeAl and amounts of other silicides (Fe5Si3 and Fe3Si). Ternary Fe-Al-Si phases were not determined, even though their presence was predicted by DFT calculations. This disagreement was explained by steric factors, i.e., by differences in the space lattice of the present phases. Hardness and tribological properties were measured on composites with various weight ratios of iron aluminide and iron silicide. The results show that sintered silicides with the matrix composed of iron aluminide reach comparable hardness to tool steels. The composites with higher mass ratios of iron aluminide than silicide have higher hardness and better tribological properties.

Zobrazit více v PubMed

[(accessed on 7 December 2023)]. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en.

Rizzo A., Goel S., Luisa Grilli M., Iglesias R., Jaworska L., Lapkovskis V., Novak P., Postolnyi B.O., Valerini D. The Critical Raw Materials in Cutting Tools for Machining Applications: A Review. Materials. 2020;13:1377. doi: 10.3390/ma13061377. PubMed DOI PMC

Zhao Z., Qi Q., Ma M., Han R., Shang Q., Yao S. The formation mechanism of TiC/Ni composites fabricated by pressureless reactive sintering. Int. J. Refract. Met. Hard Mater. 2021;97:105524. doi: 10.1016/j.ijrmhm.2021.105524. DOI

Sufiiarov V., Erutin D., Borisov E., Popovich A. Selective Laser Melting of Inconel 718/TiC Composite: Effect of TiC Particle Size. Metals. 2022;12:1729. doi: 10.3390/met12101729. DOI

Lemboub S., Boudebane A., Boudebane S., Bourbia A., Mezrag S., Gotor F.J. Complex TiC-Ni-based composites joined to steel support by thermal explosion under load: Synthesis, microstructure and tribological behavior. Compos. Interfaces. 2023:1–21. doi: 10.1080/09276440.2023.2268968. DOI

Lee D., Kim J., Park B., Jo I., Lee S.-K., Kim Y., Lee S.-B., Cho S. Mechanical and Thermal Neutron Absorbing Properties of B4C/Aluminum Alloy Composites Fabricated by Stir Casting and Hot Rolling Process. Metals. 2021;11:413. doi: 10.3390/met11030413. DOI

Knaislová A., Novák P., Cabibbo M., Jaworska L., Vojtěch D. Development of TiAl–Si Alloys—A Review. Materials. 2021;14:1030. doi: 10.3390/ma14041030. PubMed DOI PMC

Farzin-Nia F., Sterrett T., Sirney R. Effect of machining on fracture toughness of corundum. J. Mater. Sci. 1990;25:2527–2531. doi: 10.1007/BF00638054. DOI

Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC

von Goldbeck O.K., editor. IRON—Binary Phase Diagrams. Springer; Berlin/Heidelberg, Germany: 1982. Fe—Si Iron—Silicon; pp. 136–139.

Nicheng S.H.I., Wenji B.A.I., Guowu L.I., Ming X., Jingsu Y., Zhesheng M.A., He R. Naquite, FeSi, a New Mineral Species from Luobusha, Tibet, Western China. Acta Geol. Sin.—Engl. Ed. 2012;86:533–538. doi: 10.1111/j.1755-6724.2012.00682.x. DOI

Savva N., Minyuk P., Subbotnikova T. Gupeiite Body in the Siberian Taiga (the Zone of Passage of the Tunguska Meteorite and the Vitim Bollid) Nat. Resour. 2022;13:53–64. doi: 10.4236/nr.2022.132004. DOI

Kudasov Y.B., Volkov A.G., Povzner A.A., Bajankin P.V., Bykov A.I., Dolotenko M.I., Guk V.G., Kolokol’chikov N.P., Krjuk V.V., Monakhov M.P., et al. Semiconductor–metal transition in FeSi in ultrahigh magnetic field. Phys. B Condens. Matter. 2001;298:486–490. doi: 10.1016/S0921-4526(01)00368-4. DOI

Matsushita S., Tsuruoka A., Kimura Y., Isobe T., Nakajima A. Influence of semiconductor crystallinity on a β-FeSi2 sensitized thermal cell. Solid-State Electron. 2019;158:70–74. doi: 10.1016/j.sse.2019.05.015. DOI

Niu Y., Zhang K., Cui X., Wu X., Yang J. Two-Dimensional Iron Silicide (FeSix) Alloys with Above-Room-Temperature Ferromagnetism. Nano Lett. 2023;23:2332–2338. doi: 10.1021/acs.nanolett.3c00113. PubMed DOI

Grunin A., Shevyrtalov S., Chichay K., Dikaya O., Barkovskaya N., Danilov D., Goikhman A. Strong uniaxial magnetic anisotropy in Fe3Si thin films. J. Magn. Magn. Mater. 2022;563:170047. doi: 10.1016/j.jmmm.2022.170047. DOI

Milekhine V., Onsøien M.I., Solberg J.K., Skaland T. Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si. Intermetallics. 2002;10:743–750. doi: 10.1016/S0966-9795(02)00046-8. DOI

Wu J., Chong X., Jiang Y., Feng J. Stability, electronic structure, mechanical and thermodynamic properties of Fe-Si binary compounds. J. Alloys Compd. 2017;693:859–870. doi: 10.1016/j.jallcom.2016.09.225. DOI

von Goldbeck O.K., editor. IRON—Binary Phase Diagrams. Springer; Berlin/Heidelberg, Germany: 1982. Iron—Aluminium Fe—Al; pp. 5–9.

Matysik P., Jóźwiak S., Czujko T. Characterization of Low-Symmetry Structures from Phase Equilibrium of Fe-Al System—Microstructures and Mechanical Properties. Materials. 2015;8:914–931. doi: 10.3390/ma8030914. PubMed DOI PMC

Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI

Nagpal P., Baker I. Effect of cooling rate on hardness of FeAl and NiAl. Metall. Trans. A. 1990;21:2281–2282. doi: 10.1007/BF02647891. DOI

Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI

Kumar A., Singh A., Suhane A. A critical review on mechanically alloyed high entropy alloys: Processing challenges and properties. Mater. Res. Express. 2022;9:052001. doi: 10.1088/2053-1591/ac69b3. DOI

Nakayama H., Kobayashi K., Mikami M. Fabrication of Fe2VAl Alloy Powders by Short-term Mechanical Alloying. J. Jpn. Soc. Powder Powder Metall. 2008;55:845–849. doi: 10.2497/jjspm.55.845. DOI

Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006;41:763–777. doi: 10.1007/s10853-006-6555-2. PubMed DOI PMC

Tokita M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics. 2021;4:160–198. doi: 10.3390/ceramics4020014. DOI

Hulbert D.M., Anders A., Dudina D.V., Andersson J., Jiang D., Unuvar C., Anselmi-Tamburini U., Lavernia E.J., Mukherjee A.K. The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 2008;104:033305. doi: 10.1063/1.2963701. DOI

Trapp J., Semenov A., Eberhardt O., Nöthe M., Wallmersperger T., Kieback B. Fundamental principles of spark plasma sintering of metals: Part II—About the existence or non-existence of the ‘spark plasma effect’. Powder Metall. 2020;63:312–328. doi: 10.1080/00325899.2020.1829349. DOI

Bubesh Kumar D., Selva babu B., Aravind Jerrin K.M., Joseph N., Jiss A. Review of Spark Plasma Sintering Process. IOP Conf. Ser. Mater. Sci. Eng. 2020;993:012004. doi: 10.1088/1757-899X/993/1/012004. DOI

Novák P., Michalcová A., Voděrová M., Šíma M., Šerák J., Vojtěch D., Wienerová K. Effect of reactive sintering conditions on microstructure of Fe–Al–Si alloys. J. Alloys Compd. 2010;493:81–86. doi: 10.1016/j.jallcom.2009.12.040. DOI

Raghavan V. Al-Fe-Si (aluminum-iron-silicon) J. Phase Equilibria. 2002;23:362. doi: 10.1361/105497102770331604. DOI

Gates-Rector S., Blanton T. The powder diffraction file: A quality materials characterization database. Powder Diffr. 2019;34:34–360. doi: 10.1017/S0885715619000812. DOI

Marder R., Estournès C., Chevallier G., Chaim R. Numerical model for sparking and plasma formation during spark plasma sintering of ceramic compacts. J. Mater. Sci. 2015;50:4636–4645. doi: 10.1007/s10853-015-9015-z. DOI

Bhadauria N., Pandey S., Pandey P.M. Wear and enhancement of wear resistance—A review. Mater. Today Proc. 2020;26:2986–2991. doi: 10.1016/j.matpr.2020.02.616. DOI

Novák P., Nová K. Oxidation Behavior of Fe–Al, Fe–Si and Fe–Al–Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC

Muro M., Artola G., Gorriño A., Angulo C. Wear and Friction Evaluation of Different Tool Steels for Hot Stamping. Adv. Mater. Sci. Eng. 2018;2018:3296398. doi: 10.1155/2018/3296398. DOI

Toboła D., Brostow W., Czechowski K., Rusek P. Improvement of wear resistance of some cold working tool steels. Wear. 2017;382–383:29–39. doi: 10.1016/j.wear.2017.03.023. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...