Synthesis of FeSi-FeAl Composites from Separately Prepared FeSi and FeAl Alloys and Their Structure and Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05126S
Czech Science Foundation
PubMed
38138827
PubMed Central
PMC10744454
DOI
10.3390/ma16247685
PII: ma16247685
Knihovny.cz E-zdroje
- Klíčová slova
- composite, iron aluminide, iron silicide, mechanical properties, separate synthesis,
- Publikační typ
- časopisecké články MeSH
Composites consisting of iron aluminide and iron silicide phases were studied in this work. Powders of iron aluminide and iron silicide were prepared by mechanical alloying separately. Subsequently, they were blended in three different proportions and sintered by the SPS method under various conditions. After sintering, the composites are composed of FeAl and amounts of other silicides (Fe5Si3 and Fe3Si). Ternary Fe-Al-Si phases were not determined, even though their presence was predicted by DFT calculations. This disagreement was explained by steric factors, i.e., by differences in the space lattice of the present phases. Hardness and tribological properties were measured on composites with various weight ratios of iron aluminide and iron silicide. The results show that sintered silicides with the matrix composed of iron aluminide reach comparable hardness to tool steels. The composites with higher mass ratios of iron aluminide than silicide have higher hardness and better tribological properties.
Zobrazit více v PubMed
[(accessed on 7 December 2023)]. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en.
Rizzo A., Goel S., Luisa Grilli M., Iglesias R., Jaworska L., Lapkovskis V., Novak P., Postolnyi B.O., Valerini D. The Critical Raw Materials in Cutting Tools for Machining Applications: A Review. Materials. 2020;13:1377. doi: 10.3390/ma13061377. PubMed DOI PMC
Zhao Z., Qi Q., Ma M., Han R., Shang Q., Yao S. The formation mechanism of TiC/Ni composites fabricated by pressureless reactive sintering. Int. J. Refract. Met. Hard Mater. 2021;97:105524. doi: 10.1016/j.ijrmhm.2021.105524. DOI
Sufiiarov V., Erutin D., Borisov E., Popovich A. Selective Laser Melting of Inconel 718/TiC Composite: Effect of TiC Particle Size. Metals. 2022;12:1729. doi: 10.3390/met12101729. DOI
Lemboub S., Boudebane A., Boudebane S., Bourbia A., Mezrag S., Gotor F.J. Complex TiC-Ni-based composites joined to steel support by thermal explosion under load: Synthesis, microstructure and tribological behavior. Compos. Interfaces. 2023:1–21. doi: 10.1080/09276440.2023.2268968. DOI
Lee D., Kim J., Park B., Jo I., Lee S.-K., Kim Y., Lee S.-B., Cho S. Mechanical and Thermal Neutron Absorbing Properties of B4C/Aluminum Alloy Composites Fabricated by Stir Casting and Hot Rolling Process. Metals. 2021;11:413. doi: 10.3390/met11030413. DOI
Knaislová A., Novák P., Cabibbo M., Jaworska L., Vojtěch D. Development of TiAl–Si Alloys—A Review. Materials. 2021;14:1030. doi: 10.3390/ma14041030. PubMed DOI PMC
Farzin-Nia F., Sterrett T., Sirney R. Effect of machining on fracture toughness of corundum. J. Mater. Sci. 1990;25:2527–2531. doi: 10.1007/BF00638054. DOI
Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
von Goldbeck O.K., editor. IRON—Binary Phase Diagrams. Springer; Berlin/Heidelberg, Germany: 1982. Fe—Si Iron—Silicon; pp. 136–139.
Nicheng S.H.I., Wenji B.A.I., Guowu L.I., Ming X., Jingsu Y., Zhesheng M.A., He R. Naquite, FeSi, a New Mineral Species from Luobusha, Tibet, Western China. Acta Geol. Sin.—Engl. Ed. 2012;86:533–538. doi: 10.1111/j.1755-6724.2012.00682.x. DOI
Savva N., Minyuk P., Subbotnikova T. Gupeiite Body in the Siberian Taiga (the Zone of Passage of the Tunguska Meteorite and the Vitim Bollid) Nat. Resour. 2022;13:53–64. doi: 10.4236/nr.2022.132004. DOI
Kudasov Y.B., Volkov A.G., Povzner A.A., Bajankin P.V., Bykov A.I., Dolotenko M.I., Guk V.G., Kolokol’chikov N.P., Krjuk V.V., Monakhov M.P., et al. Semiconductor–metal transition in FeSi in ultrahigh magnetic field. Phys. B Condens. Matter. 2001;298:486–490. doi: 10.1016/S0921-4526(01)00368-4. DOI
Matsushita S., Tsuruoka A., Kimura Y., Isobe T., Nakajima A. Influence of semiconductor crystallinity on a β-FeSi2 sensitized thermal cell. Solid-State Electron. 2019;158:70–74. doi: 10.1016/j.sse.2019.05.015. DOI
Niu Y., Zhang K., Cui X., Wu X., Yang J. Two-Dimensional Iron Silicide (FeSix) Alloys with Above-Room-Temperature Ferromagnetism. Nano Lett. 2023;23:2332–2338. doi: 10.1021/acs.nanolett.3c00113. PubMed DOI
Grunin A., Shevyrtalov S., Chichay K., Dikaya O., Barkovskaya N., Danilov D., Goikhman A. Strong uniaxial magnetic anisotropy in Fe3Si thin films. J. Magn. Magn. Mater. 2022;563:170047. doi: 10.1016/j.jmmm.2022.170047. DOI
Milekhine V., Onsøien M.I., Solberg J.K., Skaland T. Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si. Intermetallics. 2002;10:743–750. doi: 10.1016/S0966-9795(02)00046-8. DOI
Wu J., Chong X., Jiang Y., Feng J. Stability, electronic structure, mechanical and thermodynamic properties of Fe-Si binary compounds. J. Alloys Compd. 2017;693:859–870. doi: 10.1016/j.jallcom.2016.09.225. DOI
von Goldbeck O.K., editor. IRON—Binary Phase Diagrams. Springer; Berlin/Heidelberg, Germany: 1982. Iron—Aluminium Fe—Al; pp. 5–9.
Matysik P., Jóźwiak S., Czujko T. Characterization of Low-Symmetry Structures from Phase Equilibrium of Fe-Al System—Microstructures and Mechanical Properties. Materials. 2015;8:914–931. doi: 10.3390/ma8030914. PubMed DOI PMC
Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI
Nagpal P., Baker I. Effect of cooling rate on hardness of FeAl and NiAl. Metall. Trans. A. 1990;21:2281–2282. doi: 10.1007/BF02647891. DOI
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Kumar A., Singh A., Suhane A. A critical review on mechanically alloyed high entropy alloys: Processing challenges and properties. Mater. Res. Express. 2022;9:052001. doi: 10.1088/2053-1591/ac69b3. DOI
Nakayama H., Kobayashi K., Mikami M. Fabrication of Fe2VAl Alloy Powders by Short-term Mechanical Alloying. J. Jpn. Soc. Powder Powder Metall. 2008;55:845–849. doi: 10.2497/jjspm.55.845. DOI
Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006;41:763–777. doi: 10.1007/s10853-006-6555-2. PubMed DOI PMC
Tokita M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics. 2021;4:160–198. doi: 10.3390/ceramics4020014. DOI
Hulbert D.M., Anders A., Dudina D.V., Andersson J., Jiang D., Unuvar C., Anselmi-Tamburini U., Lavernia E.J., Mukherjee A.K. The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 2008;104:033305. doi: 10.1063/1.2963701. DOI
Trapp J., Semenov A., Eberhardt O., Nöthe M., Wallmersperger T., Kieback B. Fundamental principles of spark plasma sintering of metals: Part II—About the existence or non-existence of the ‘spark plasma effect’. Powder Metall. 2020;63:312–328. doi: 10.1080/00325899.2020.1829349. DOI
Bubesh Kumar D., Selva babu B., Aravind Jerrin K.M., Joseph N., Jiss A. Review of Spark Plasma Sintering Process. IOP Conf. Ser. Mater. Sci. Eng. 2020;993:012004. doi: 10.1088/1757-899X/993/1/012004. DOI
Novák P., Michalcová A., Voděrová M., Šíma M., Šerák J., Vojtěch D., Wienerová K. Effect of reactive sintering conditions on microstructure of Fe–Al–Si alloys. J. Alloys Compd. 2010;493:81–86. doi: 10.1016/j.jallcom.2009.12.040. DOI
Raghavan V. Al-Fe-Si (aluminum-iron-silicon) J. Phase Equilibria. 2002;23:362. doi: 10.1361/105497102770331604. DOI
Gates-Rector S., Blanton T. The powder diffraction file: A quality materials characterization database. Powder Diffr. 2019;34:34–360. doi: 10.1017/S0885715619000812. DOI
Marder R., Estournès C., Chevallier G., Chaim R. Numerical model for sparking and plasma formation during spark plasma sintering of ceramic compacts. J. Mater. Sci. 2015;50:4636–4645. doi: 10.1007/s10853-015-9015-z. DOI
Bhadauria N., Pandey S., Pandey P.M. Wear and enhancement of wear resistance—A review. Mater. Today Proc. 2020;26:2986–2991. doi: 10.1016/j.matpr.2020.02.616. DOI
Novák P., Nová K. Oxidation Behavior of Fe–Al, Fe–Si and Fe–Al–Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC
Muro M., Artola G., Gorriño A., Angulo C. Wear and Friction Evaluation of Different Tool Steels for Hot Stamping. Adv. Mater. Sci. Eng. 2018;2018:3296398. doi: 10.1155/2018/3296398. DOI
Toboła D., Brostow W., Czechowski K., Rusek P. Improvement of wear resistance of some cold working tool steels. Wear. 2017;382–383:29–39. doi: 10.1016/j.wear.2017.03.023. DOI