Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics

. 2019 May 29 ; 12 (11) : . [epub] 20190529

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31146415

Grantová podpora
17-07559S Grantová Agentura České Republiky

Iron aluminides are still deeply investigated materials for their use in power plants, automotive and chemical industry, and other sectors. This paper shows that it is possible to strongly improve their oxidation behavior by the addition of silicon. The description of the synergic effect of aluminum and silicon on the oxidation behavior of Fe-Al-Si alloys at 800 °C in air is presented. The oxidation rate, microstructure, phase, and chemical composition of these ternary alloys are compared with the binary Fe-Al and Fe-Si alloys. Results showed that the oxidation of Fe-Al-Si ternary alloys provides an oxide layer based on aluminum oxide with a low concentration of iron and silicon. Below this oxide layer, there is a layer of silicides formed as a result of depletion by aluminum, which forms a secondary oxidation protection.

Zobrazit více v PubMed

Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI

Kratochvíl P., Dobeš F., Vodičková V. The effect of silicon on the structure of Fe-40 at.% Al type alloys with high contents of carbon (1.9–3.8 at.%) Intermetallics. 2009;17:39–45. doi: 10.1016/j.intermet.2008.09.004. DOI

Kopeček J., Haušild P., Jurek K., Jarošová M., Drahokoupil J., Novák P., Šíma V. Precipitation in the Fe-38 at.% Al-1 at.% C alloy. Intermetallics. 2010;18:1327–1331. doi: 10.1016/j.intermet.2010.03.027. DOI

Yolshina L.A., Muradymov R.V., Korsun I.V., Yakovlev G.A., Smirnov S.V. Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties. J. Alloys Comp. 2016;663:449–459. doi: 10.1016/j.jallcom.2015.12.084. DOI

Hotař A., Palm M., Kratochvíl P., Vodičková V., Daniš S. High-temperature oxidation behaviour of Zr alloyed Fe3Al-type iron aluminide. Corros. Sci. 2012;63:71–81. doi: 10.1016/j.corsci.2012.05.027. DOI

Hotař A., Kratochvíl P. The corrosion resistance of iron aluminide Fe28Al3Cr0.02Ce (at%) in a molten glass. Intermetallics. 2007;15:439–441. doi: 10.1016/j.intermet.2006.07.006. DOI

Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI

Morris D.G., Muñoz-Morris M.A. Development of creep-resistant iron aluminides. Mater. Sci. Eng. A. 2007;462:45–52. doi: 10.1016/j.msea.2005.10.083. DOI

Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI

Boulesteix C., Kolarik V., Pedraza F. Steam oxidation of aluminide coatings under high pressure and for long exposures. Corros. Sci. 2018;144:328–338. doi: 10.1016/j.corsci.2018.08.053. DOI

Audigié P., Encinas-Sánchez V., Juez-Lorenzo M., Rodríguez S., Gutiérrez M., Pérez F.J., Agüero A. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants. Surf. Coat. Technol. 2018;349:1148–1157. doi: 10.1016/j.surfcoat.2018.05.081. DOI

Nowak K., Kupka M., Maszybrocka J., Barylski A. Effect of thermal oxidation process on wear resistance of B2 iron aluminide. Vacuum. 2015;114:221–225. doi: 10.1016/j.vacuum.2014.11.021. DOI

Xia J., Li C.X., Dong H. Thermal oxidation treatment of B2 iron aluminide for improved wear resistance. Wear. 2005;258:1804–1812. doi: 10.1016/j.wear.2004.12.016. DOI

Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals. 2018;9:20. doi: 10.3390/met9010020. DOI

Cvijović-Alagić I., Cvijović Z., Zagorac D., Jovanović M.T. Cyclic oxidation of Ti3Al-based materials. Ceram. Int. 2019;45:9423–9438. doi: 10.1016/j.ceramint.2018.08.287. DOI

Novák P., Michalcová A., Marek I., Mudrová M., Saksl K., Bednarčík J., Zikmund P., Vojtěch D. On the formation of intermetallics in Fe–Al system—An in situ XRD study. Intermetallics. 2013;32:127–136. doi: 10.1016/j.intermet.2012.08.020. DOI

Mhadhbi M., Suñol J.J., Khitouni M. Influence of Heat Treatments on the Structure of FeAl Powders Mixture Obtained by Mechanical Alloying. Phys. Procedia. 2013;40:38–44. doi: 10.1016/j.phpro.2012.12.005. DOI

Zou B., Shen P., Cao X., Jiang Q. The mechanism of thermal explosion (TE) synthesis of TiC–TiB2 particulate locally reinforced steel matrix composites from an Al–Ti–B4C system via a TE-casting route. Mater. Chem. Phys. 2012;132:51–62. doi: 10.1016/j.matchemphys.2011.10.051. DOI

Yanson T.I., Manyako M.B., Bodak O.I., German N.V., Zarechnyuk O.S., Cerny R., Pacheco J.V., Yvon K. Triclinic Fe3Al2Si3 and Orthorhombic Fe3Al2Si4 with New Structure Types. Acta Crystallogr. Sect. C. 1996;52:2964–2967. doi: 10.1107/S0108270196008694. DOI

Houngniou C., Chevalier S., Larpin J.P. High-Temperature-Oxidation Behavior of Iron–Aluminide Diffusion Coatings. Oxid. Met. 2006;65:409–439. doi: 10.1007/s11085-006-9033-y. DOI

Jürgen Grabke H. Oxidation of Aluminides. Volume 251–254. Materials Science Forum Trans Tech Publications; Zürich, Switzerland: 1997. pp. 149–162.

Vojtěch D., Bártová B., Kubatík T. High temperature oxidation of titanium–silicon alloys. Mater. Sci. Eng. A. 2003;361:50–57. doi: 10.1016/S0921-5093(03)00564-1. DOI

Barin I. Thermochemical Data of Pure Substances. VCH; Weinheim, Germany: New York, NY, USA: 1993.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Synthesis of FeSi-FeAl Composites from Separately Prepared FeSi and FeAl Alloys and Their Structure and Properties

. 2023 Dec 17 ; 16 (24) : . [epub] 20231217

Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy

. 2021 Jun 02 ; 14 (11) : . [epub] 20210602

Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys

. 2021 Feb 13 ; 14 (4) : . [epub] 20210213

The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides

. 2020 Sep 17 ; 25 (18) : . [epub] 20200917

The Critical Raw Materials in Cutting Tools for Machining Applications: A Review

. 2020 Mar 18 ; 13 (6) : . [epub] 20200318

Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering

. 2020 Feb 10 ; 13 (3) : . [epub] 20200210

Properties of FeAlSi-X-Y Alloys (X,Y=Ni, Mo) Prepared by Mechanical Alloying and Spark Plasma Sintering

. 2020 Jan 08 ; 13 (2) : . [epub] 20200108

Effect of Initial Powders on Properties of FeAlSi Intermetallics

. 2019 Sep 04 ; 12 (18) : . [epub] 20190904

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...