Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-07559S
Grantová Agentura České Republiky
PubMed
31146415
PubMed Central
PMC6600787
DOI
10.3390/ma12111748
PII: ma12111748
Knihovny.cz E-zdroje
- Klíčová slova
- Fe–Al–Si alloy, iron aluminide, iron silicide, oxidation,
- Publikační typ
- časopisecké články MeSH
Iron aluminides are still deeply investigated materials for their use in power plants, automotive and chemical industry, and other sectors. This paper shows that it is possible to strongly improve their oxidation behavior by the addition of silicon. The description of the synergic effect of aluminum and silicon on the oxidation behavior of Fe-Al-Si alloys at 800 °C in air is presented. The oxidation rate, microstructure, phase, and chemical composition of these ternary alloys are compared with the binary Fe-Al and Fe-Si alloys. Results showed that the oxidation of Fe-Al-Si ternary alloys provides an oxide layer based on aluminum oxide with a low concentration of iron and silicon. Below this oxide layer, there is a layer of silicides formed as a result of depletion by aluminum, which forms a secondary oxidation protection.
Zobrazit více v PubMed
Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI
Kratochvíl P., Dobeš F., Vodičková V. The effect of silicon on the structure of Fe-40 at.% Al type alloys with high contents of carbon (1.9–3.8 at.%) Intermetallics. 2009;17:39–45. doi: 10.1016/j.intermet.2008.09.004. DOI
Kopeček J., Haušild P., Jurek K., Jarošová M., Drahokoupil J., Novák P., Šíma V. Precipitation in the Fe-38 at.% Al-1 at.% C alloy. Intermetallics. 2010;18:1327–1331. doi: 10.1016/j.intermet.2010.03.027. DOI
Yolshina L.A., Muradymov R.V., Korsun I.V., Yakovlev G.A., Smirnov S.V. Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties. J. Alloys Comp. 2016;663:449–459. doi: 10.1016/j.jallcom.2015.12.084. DOI
Hotař A., Palm M., Kratochvíl P., Vodičková V., Daniš S. High-temperature oxidation behaviour of Zr alloyed Fe3Al-type iron aluminide. Corros. Sci. 2012;63:71–81. doi: 10.1016/j.corsci.2012.05.027. DOI
Hotař A., Kratochvíl P. The corrosion resistance of iron aluminide Fe28Al3Cr0.02Ce (at%) in a molten glass. Intermetallics. 2007;15:439–441. doi: 10.1016/j.intermet.2006.07.006. DOI
Zamanzade M., Barnoush A., Motz C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI
Morris D.G., Muñoz-Morris M.A. Development of creep-resistant iron aluminides. Mater. Sci. Eng. A. 2007;462:45–52. doi: 10.1016/j.msea.2005.10.083. DOI
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Boulesteix C., Kolarik V., Pedraza F. Steam oxidation of aluminide coatings under high pressure and for long exposures. Corros. Sci. 2018;144:328–338. doi: 10.1016/j.corsci.2018.08.053. DOI
Audigié P., Encinas-Sánchez V., Juez-Lorenzo M., Rodríguez S., Gutiérrez M., Pérez F.J., Agüero A. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants. Surf. Coat. Technol. 2018;349:1148–1157. doi: 10.1016/j.surfcoat.2018.05.081. DOI
Nowak K., Kupka M., Maszybrocka J., Barylski A. Effect of thermal oxidation process on wear resistance of B2 iron aluminide. Vacuum. 2015;114:221–225. doi: 10.1016/j.vacuum.2014.11.021. DOI
Xia J., Li C.X., Dong H. Thermal oxidation treatment of B2 iron aluminide for improved wear resistance. Wear. 2005;258:1804–1812. doi: 10.1016/j.wear.2004.12.016. DOI
Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals. 2018;9:20. doi: 10.3390/met9010020. DOI
Cvijović-Alagić I., Cvijović Z., Zagorac D., Jovanović M.T. Cyclic oxidation of Ti3Al-based materials. Ceram. Int. 2019;45:9423–9438. doi: 10.1016/j.ceramint.2018.08.287. DOI
Novák P., Michalcová A., Marek I., Mudrová M., Saksl K., Bednarčík J., Zikmund P., Vojtěch D. On the formation of intermetallics in Fe–Al system—An in situ XRD study. Intermetallics. 2013;32:127–136. doi: 10.1016/j.intermet.2012.08.020. DOI
Mhadhbi M., Suñol J.J., Khitouni M. Influence of Heat Treatments on the Structure of FeAl Powders Mixture Obtained by Mechanical Alloying. Phys. Procedia. 2013;40:38–44. doi: 10.1016/j.phpro.2012.12.005. DOI
Zou B., Shen P., Cao X., Jiang Q. The mechanism of thermal explosion (TE) synthesis of TiC–TiB2 particulate locally reinforced steel matrix composites from an Al–Ti–B4C system via a TE-casting route. Mater. Chem. Phys. 2012;132:51–62. doi: 10.1016/j.matchemphys.2011.10.051. DOI
Yanson T.I., Manyako M.B., Bodak O.I., German N.V., Zarechnyuk O.S., Cerny R., Pacheco J.V., Yvon K. Triclinic Fe3Al2Si3 and Orthorhombic Fe3Al2Si4 with New Structure Types. Acta Crystallogr. Sect. C. 1996;52:2964–2967. doi: 10.1107/S0108270196008694. DOI
Houngniou C., Chevalier S., Larpin J.P. High-Temperature-Oxidation Behavior of Iron–Aluminide Diffusion Coatings. Oxid. Met. 2006;65:409–439. doi: 10.1007/s11085-006-9033-y. DOI
Jürgen Grabke H. Oxidation of Aluminides. Volume 251–254. Materials Science Forum Trans Tech Publications; Zürich, Switzerland: 1997. pp. 149–162.
Vojtěch D., Bártová B., Kubatík T. High temperature oxidation of titanium–silicon alloys. Mater. Sci. Eng. A. 2003;361:50–57. doi: 10.1016/S0921-5093(03)00564-1. DOI
Barin I. Thermochemical Data of Pure Substances. VCH; Weinheim, Germany: New York, NY, USA: 1993.
Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys
The Critical Raw Materials in Cutting Tools for Machining Applications: A Review
Effect of Initial Powders on Properties of FeAlSi Intermetallics