Properties of FeAlSi-X-Y Alloys (X,Y=Ni, Mo) Prepared by Mechanical Alloying and Spark Plasma Sintering

. 2020 Jan 08 ; 13 (2) : . [epub] 20200108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31936415

Grantová podpora
17-07559S Grantová Agentura České Republiky

Short-term mechanical alloying and compaction by spark plasma sintering was used for the production of FeAl20Si20Mo20-XNiX (X corresponds to 5-15 wt %) alloy, which showed an ultrafine-grained microstructure with dimensions of phases around 200 nm or smaller. It was found that the addition of Mo and Ni to the FeAl20Si20 alloy results in the formation of the AlMoSi phase compared to the three-phase FeAl20Si20 alloy, which initially contained FeSi, Fe3Si, and Fe3Al2Si3 phases. All the investigated alloys increased their hardness, reaching up to 1401 HV 1 for the FeAl20Si20Mo5Ni15 alloy, which contained in total 58.5% of the FeSi and Fe3Al2Si3 phases. As a result, all the prepared alloys showed one order magnitude lower wear rates ranging from 3.14 to 5.97·10-6 mm3·N-1·m-1 as well as significantly lower friction coefficients compared to two reference tool steels. The alloys achieved high compressive strengths (up to 2200 MPa); however, they also exhibited high brittleness even after long-term annealing, which reduced the strengths of all the alloys below approximately 1600 MPa. Furthermore, the alloys were showing ductile behavior when compressively tested at elevated temperature of 800 °C. The oxidation resistance of the alloys was superior due to the formation of a compact Al2O3 protective layer that did not delaminate.

Zobrazit více v PubMed

Xu C.H., Gao W., He Y.D. High temperature oxidation behaviour of FeAl intermetallics—Oxide scales formed in ambient atmosphere. Scr. Mater. 2000;42:975–980. doi: 10.1016/S1359-6462(00)00327-4. DOI

Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI

Senčekova L., Palm M., Pešička J., Veselý J. Microstructures, mechanical properties and oxidation behaviour of single-phase Fe3Al (D03) and two-phase α-Fe,Al (A2)+Fe3Al (D03) FeAlV alloys. Intermetallics. 2016;73:58–66. doi: 10.1016/j.intermet.2016.03.004. DOI

Sina H., Corneliusson J., Turba K., Iyengar S. A study on the formation of iron aluminide (FeAl) from elemental powders. J. Alloy. Compd. 2015;636:261–269. doi: 10.1016/j.jallcom.2015.02.132. DOI

Li X., Prokopčáková P., Palm M. Microstructure and mechanical properties of Fe–Al–Ti–B alloys with additions of Mo and W. Mater. Sci. Eng. A. 2014;611:234–241. doi: 10.1016/j.msea.2014.05.077. DOI

Xu C.H., Gao W., Li S. Oxidation behaviour of FeAl intermetallics – the effect of Y on the scale spallation resistance. Corros. Sci. 2001;43:671–688. doi: 10.1016/S0010-938X(00)00104-9. DOI

Haušild P., Siegl J., Málek P., Šíma V. Effect of C, Ti, Zr and B alloying on fracture mechanisms in hot-rolled Fe–40 (at.%)Al. Intermetallics. 2009;17:680–687. doi: 10.1016/j.intermet.2009.02.008. DOI

Palm M. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI

Schmitt A., Kumar K.S., Kauffmann A., Li X., Stein F., Heilmaier M. Creep of binary Fe-Al alloys with ultrafine lamellar microstructures. Intermetallics. 2017;90:180–187. doi: 10.1016/j.intermet.2017.07.016. DOI

Hadef F. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review. J. Magn. Magn. Mater. 2016;419:105–118. doi: 10.1016/j.jmmm.2016.06.021. DOI

Fei W., Kuiry S.C., Seal S. Inhibition of metastable alumina formation on Fe-Cr-Al-Y alloy fibers at high temperature using titania coating. Oxid. Met. 2004;62:29–44. doi: 10.1023/B:OXID.0000038784.73316.a4. DOI

Kadiri H.E., Molins R., Bienvenu Y., Horstemeyer M.F. Abnormal High Growth Rates of Metastable Aluminas on FeCrAl Alloys. Oxid. Met. 2005;64:63–97. doi: 10.1007/s11085-005-5715-0. DOI

Novák P., Knotek V., Šerák J., Michalcová A., Vojtěch D. Synthesis of Fe-Al-Si intermediary phases by reactive sintering. Powder Metall. 2011;54:167–171. doi: 10.1179/174329009X449314. DOI

Gupta S.P. Intermetallic compound formation in Fe–Al–Si ternary system: Part I. Mater. Charact. 2002;49:269–291. doi: 10.1016/S1044-5803(03)00006-8. DOI

Novák P., Knotek V., Voděrová M., Kubásek J., Šerák J., Michalcová A., Vojtěch D. Intermediary phases formation in Fe–Al–Si alloys during reactive sintering. J. Alloy. Compd. 2010;497:90–94. doi: 10.1016/j.jallcom.2010.03.028. DOI

Novák P., Michalcová A., Voděrová M., Šíma M., Šerák J., Vojtěch D., Wienerová K. Effect of reactive sintering conditions on microstructure of Fe–Al–Si alloys. J. Alloy. Compd. 2010;493:81–86. doi: 10.1016/j.jallcom.2009.12.040. DOI

Han Y., Ban C., Zhang H., Nagaumi H., Ba Q., Cui J. Investigations on the Solidification Behavior of Al-Fe-Si Alloy in an Alternating Magnetic Field. Mater. Trans. 2006;47:2092–2098. doi: 10.2320/matertrans.47.2092. DOI

Golovin I.S., Strahl A., Neuhäuser H. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me=Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr. Int. J. Mater. Res. 2006;97:1078–1092. doi: 10.3139/146.101341. DOI

Milekhine V., Onsøien M., Solberg J.K., Skaland T. Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si. Intermetallics. 2002;10:743–750. doi: 10.1016/S0966-9795(02)00046-8. DOI

Galano M., Rubiolo G.H. Creep behaviour of a FeSi-base metallic glass containing nanocrystals. Scr. Mater. 2003;48:617–622. doi: 10.1016/S1359-6462(02)00470-0. DOI

Jóźwiak S., Karczewski K., Bojar Z. The effect of loading mode changes during the sintering process on the mechanical properties of FeAl intermetallic sinters. Intermetallics. 2013;33:99–104. doi: 10.1016/j.intermet.2012.10.003. DOI

Sundar R.S., Deevi S.C. High-temperature strength and creep resistance of FeAl. Mater. Sci. Eng. A. 2003;357:124–133. doi: 10.1016/S0921-5093(03)00261-2. DOI

Wu J., Chong X., Jiang Y., Feng J. Stability, electronic structure, mechanical and thermodynamic properties of Fe-Si binary compounds. J. Alloy. Compd. 2017;693:859–870. doi: 10.1016/j.jallcom.2016.09.225. DOI

Novák P., Mejzlíková L., Hošek V., Martínek M., Marek I., Michalcova A. Structure and Properties of Fe-Ni-Al-Si Alloys Produced by Powder Metallurgy. Acta Phys. Pol. A. 2012;122:524–527. doi: 10.12693/APhysPolA.122.524. DOI

Nová K., Novák P., Arzel A., Průša F. Alloying of Fe-Al-Si Alloys by Nickel and Titanium. Manuf. Technol. 2018;18:645–649. doi: 10.21062/ujep/154.2018/a/1213-2489/MT/18/4/645. DOI

Jóźwiak S., Karczewski K., Bojar Z. Kinetics of reactions in FeAl synthesis studied by the DTA technique and JMA model. Intermetallics. 2010;18:1332–1337. doi: 10.1016/j.intermet.2010.02.021. DOI

Canakci A., Erdemir F., Varol T., Ozkaya S. Formation of Fe–Al intermetallic coating on low-carbon steel by a novel mechanical alloying technique. Powder Technol. 2013;247:24–29. doi: 10.1016/j.powtec.2013.07.002. DOI

Dobromyslov A.V., Taluts N.I., Pilyugin V.P., Tolmachev T.P. Mechanical alloying of Al–Fe alloys using severe deformation by high-pressure torsion. Phys. Met. Metallogr. 2015;116:942–950. doi: 10.1134/S0031918X15090057. DOI

Neikov O.D. In: Handbook of Non-Ferrous Metal Powders. Neikov O.D., Naboychenko S.S., Murashova I.V., Gopienko V.G., Frishberg I.V., Lotsko D.V., editors. Elsevier; Oxford, UK: pp. 63–79. DOI

Čech J., Haušild P., Karlík M., Kadlecová V., Čapek J., Průša F., Novák P. Mechanical Properties of FeAlSi Powders Prepared by Mechanical Alloying from Different Initial Feedstock Materials. Matériaux Tech. 2019;107:6. doi: 10.1051/mattech/2018063. DOI

Azzaza S., Alleg S., Sunol J.J. Phase Transformation in the Ball Milled Fe31Co31Nb8B30 Powders. Adv. Mater. Phys. Chem. 2013;3:90–100. doi: 10.4236/ampc.2013.31A011. DOI

Izadi S., Akbari G.H., Janghorban K. Sintering and mechanical properties of mechanically alloyed Fe–Al–(B) nanostructures. J. Alloy. Compd. 2010;496:699–702. doi: 10.1016/j.jallcom.2010.02.177. DOI

Jiang T. Investigation of Phase Composition and Microstructure of the FeAl Intermetallics Compounds Bulks Fabricated by Mechanical Alloying Process and Hot-Pressing Process. Adv. Mater. Res. 2011;228:899–904. doi: 10.4028/www.scientific.net/AMR.228-229.899. DOI

Kalita M.P.C., Perumal A., Srinivasan A. Structural analysis of mechanically alloyed nanocrystalline Fe75Si15Al10 powders. Mater. Lett. 2007;61:824–826. doi: 10.1016/j.matlet.2006.05.076. DOI

Kalita M.P.C., Perumal A., Srinivasan A. Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying. J. Magn. Magn. Mater. 2008;320:2780–2783. doi: 10.1016/j.jmmm.2008.06.014. DOI

Boukherroub N., Guittoum A., Laggoun A., Hemmous M., Martínez-Blanco D., Blanco J.A., Souami N., Gorria P., Bourzami A., Lenoble O. Microstructure and magnetic properties of nanostructured (Fe0.8Al0.2)100–xSix alloy produced by mechanical alloying. J. Magn. Magn. Mater. 2015;385:151–159. doi: 10.1016/j.jmmm.2015.03.011. DOI

Průša F., Šesták J., Školáková A., Novák P., Haušild P., Karlík M., Minárik P., Kopeček J., Laufek F. Application of SPS consolidation and its influence on the properties of the FeAl20Si20 alloys prepared by mechanical alloying. Mater. Sci. Eng. A. 2019;761:138020. doi: 10.1016/j.msea.2019.06.030. DOI

Ma R.P., Wan M., Huang J., Xie Q., Suzuki T. Calculation of electronic structure and mechanical properties of DO 3 – Fe 75-x Si 25 Ni x intermetallic compounds by first principles. Int. J. Mod. Phys. B. 2015 doi: 10.1142/S0217979215500873. DOI

Yanson T.I., Manyako M.B., Bodak O.I., German N.V., Zarechnyuk O.S., Cerný R., Yvon K. Triclinic Fe3Al2Si3 and Orthorhombic Fe3Al2Si4 with New Structure Types. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1996;52:2964–2967. doi: 10.1107/S0108270196008694. DOI

Apiñaniz E., Legarra E., Plazaola F., Garitaonandia J.S. Influence of addition of Si in FeAl alloys: Theory. J. Magn. Magn. Mater. 2008;320:e692–e695. doi: 10.1016/j.jmmm.2008.04.047. DOI

Gale W.F., Totemeier T.C. Smithells Metals Reference Book. Elsevier Science; Amsterdam, The Netherlands: 2003.

Kupenko I., Merkel S., Achorner M., Plückthun C., Liermann H.-P., Sanchez-Valle C. EGU General Assembly Conference Abstracts. EGU2017; Vienna, Austria: 2017. Plastic deformation of FeSi at high pressures: Implications for planetary cores.

Ehlers S.K., Mendiratta M.G. Tensile behaviour of two DO3-ordered alloys: Fe3Si and Fe-20 at % Al-5 at % Si. J. Mater. Sci. 1984;19:2203–2210. doi: 10.1007/BF01058096. DOI

Zhao L.-Z., Zhao M.-J., Li D.-Y., Zhang J., Xiong G.-Y. Study on Fe–Al–Si in situ composite coating fabricated by laser cladding. Appl. Surf. Sci. 2012;258:3368–3372. doi: 10.1016/j.apsusc.2011.09.057. DOI

Novak P., Nova K. Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...