Properties of FeAlSi-X-Y Alloys (X,Y=Ni, Mo) Prepared by Mechanical Alloying and Spark Plasma Sintering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-07559S
Grantová Agentura České Republiky
PubMed
31936415
PubMed Central
PMC7013430
DOI
10.3390/ma13020292
PII: ma13020292
Knihovny.cz E-zdroje
- Klíčová slova
- compressive strength, hardness, mechanical alloying, oxidation resistance, spark plasma sintering, wear,
- Publikační typ
- časopisecké články MeSH
Short-term mechanical alloying and compaction by spark plasma sintering was used for the production of FeAl20Si20Mo20-XNiX (X corresponds to 5-15 wt %) alloy, which showed an ultrafine-grained microstructure with dimensions of phases around 200 nm or smaller. It was found that the addition of Mo and Ni to the FeAl20Si20 alloy results in the formation of the AlMoSi phase compared to the three-phase FeAl20Si20 alloy, which initially contained FeSi, Fe3Si, and Fe3Al2Si3 phases. All the investigated alloys increased their hardness, reaching up to 1401 HV 1 for the FeAl20Si20Mo5Ni15 alloy, which contained in total 58.5% of the FeSi and Fe3Al2Si3 phases. As a result, all the prepared alloys showed one order magnitude lower wear rates ranging from 3.14 to 5.97·10-6 mm3·N-1·m-1 as well as significantly lower friction coefficients compared to two reference tool steels. The alloys achieved high compressive strengths (up to 2200 MPa); however, they also exhibited high brittleness even after long-term annealing, which reduced the strengths of all the alloys below approximately 1600 MPa. Furthermore, the alloys were showing ductile behavior when compressively tested at elevated temperature of 800 °C. The oxidation resistance of the alloys was superior due to the formation of a compact Al2O3 protective layer that did not delaminate.
Czech Geological Survey Geologická 6 152 00 Prague Czech Republic
Institute of Physics The Czech Academy of Sciences Na Slovance 1999 2 182 00 Prague Czech Republic
Zobrazit více v PubMed
Xu C.H., Gao W., He Y.D. High temperature oxidation behaviour of FeAl intermetallics—Oxide scales formed in ambient atmosphere. Scr. Mater. 2000;42:975–980. doi: 10.1016/S1359-6462(00)00327-4. DOI
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Senčekova L., Palm M., Pešička J., Veselý J. Microstructures, mechanical properties and oxidation behaviour of single-phase Fe3Al (D03) and two-phase α-Fe,Al (A2)+Fe3Al (D03) FeAlV alloys. Intermetallics. 2016;73:58–66. doi: 10.1016/j.intermet.2016.03.004. DOI
Sina H., Corneliusson J., Turba K., Iyengar S. A study on the formation of iron aluminide (FeAl) from elemental powders. J. Alloy. Compd. 2015;636:261–269. doi: 10.1016/j.jallcom.2015.02.132. DOI
Li X., Prokopčáková P., Palm M. Microstructure and mechanical properties of Fe–Al–Ti–B alloys with additions of Mo and W. Mater. Sci. Eng. A. 2014;611:234–241. doi: 10.1016/j.msea.2014.05.077. DOI
Xu C.H., Gao W., Li S. Oxidation behaviour of FeAl intermetallics – the effect of Y on the scale spallation resistance. Corros. Sci. 2001;43:671–688. doi: 10.1016/S0010-938X(00)00104-9. DOI
Haušild P., Siegl J., Málek P., Šíma V. Effect of C, Ti, Zr and B alloying on fracture mechanisms in hot-rolled Fe–40 (at.%)Al. Intermetallics. 2009;17:680–687. doi: 10.1016/j.intermet.2009.02.008. DOI
Palm M. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI
Schmitt A., Kumar K.S., Kauffmann A., Li X., Stein F., Heilmaier M. Creep of binary Fe-Al alloys with ultrafine lamellar microstructures. Intermetallics. 2017;90:180–187. doi: 10.1016/j.intermet.2017.07.016. DOI
Hadef F. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review. J. Magn. Magn. Mater. 2016;419:105–118. doi: 10.1016/j.jmmm.2016.06.021. DOI
Fei W., Kuiry S.C., Seal S. Inhibition of metastable alumina formation on Fe-Cr-Al-Y alloy fibers at high temperature using titania coating. Oxid. Met. 2004;62:29–44. doi: 10.1023/B:OXID.0000038784.73316.a4. DOI
Kadiri H.E., Molins R., Bienvenu Y., Horstemeyer M.F. Abnormal High Growth Rates of Metastable Aluminas on FeCrAl Alloys. Oxid. Met. 2005;64:63–97. doi: 10.1007/s11085-005-5715-0. DOI
Novák P., Knotek V., Šerák J., Michalcová A., Vojtěch D. Synthesis of Fe-Al-Si intermediary phases by reactive sintering. Powder Metall. 2011;54:167–171. doi: 10.1179/174329009X449314. DOI
Gupta S.P. Intermetallic compound formation in Fe–Al–Si ternary system: Part I. Mater. Charact. 2002;49:269–291. doi: 10.1016/S1044-5803(03)00006-8. DOI
Novák P., Knotek V., Voděrová M., Kubásek J., Šerák J., Michalcová A., Vojtěch D. Intermediary phases formation in Fe–Al–Si alloys during reactive sintering. J. Alloy. Compd. 2010;497:90–94. doi: 10.1016/j.jallcom.2010.03.028. DOI
Novák P., Michalcová A., Voděrová M., Šíma M., Šerák J., Vojtěch D., Wienerová K. Effect of reactive sintering conditions on microstructure of Fe–Al–Si alloys. J. Alloy. Compd. 2010;493:81–86. doi: 10.1016/j.jallcom.2009.12.040. DOI
Han Y., Ban C., Zhang H., Nagaumi H., Ba Q., Cui J. Investigations on the Solidification Behavior of Al-Fe-Si Alloy in an Alternating Magnetic Field. Mater. Trans. 2006;47:2092–2098. doi: 10.2320/matertrans.47.2092. DOI
Golovin I.S., Strahl A., Neuhäuser H. Anelastic relaxation and structure of ternary Fe–Al–Me alloys with Me=Co, Cr, Ge, Mn, Nb, Si, Ta, Ti, Zr. Int. J. Mater. Res. 2006;97:1078–1092. doi: 10.3139/146.101341. DOI
Milekhine V., Onsøien M., Solberg J.K., Skaland T. Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si. Intermetallics. 2002;10:743–750. doi: 10.1016/S0966-9795(02)00046-8. DOI
Galano M., Rubiolo G.H. Creep behaviour of a FeSi-base metallic glass containing nanocrystals. Scr. Mater. 2003;48:617–622. doi: 10.1016/S1359-6462(02)00470-0. DOI
Jóźwiak S., Karczewski K., Bojar Z. The effect of loading mode changes during the sintering process on the mechanical properties of FeAl intermetallic sinters. Intermetallics. 2013;33:99–104. doi: 10.1016/j.intermet.2012.10.003. DOI
Sundar R.S., Deevi S.C. High-temperature strength and creep resistance of FeAl. Mater. Sci. Eng. A. 2003;357:124–133. doi: 10.1016/S0921-5093(03)00261-2. DOI
Wu J., Chong X., Jiang Y., Feng J. Stability, electronic structure, mechanical and thermodynamic properties of Fe-Si binary compounds. J. Alloy. Compd. 2017;693:859–870. doi: 10.1016/j.jallcom.2016.09.225. DOI
Novák P., Mejzlíková L., Hošek V., Martínek M., Marek I., Michalcova A. Structure and Properties of Fe-Ni-Al-Si Alloys Produced by Powder Metallurgy. Acta Phys. Pol. A. 2012;122:524–527. doi: 10.12693/APhysPolA.122.524. DOI
Nová K., Novák P., Arzel A., Průša F. Alloying of Fe-Al-Si Alloys by Nickel and Titanium. Manuf. Technol. 2018;18:645–649. doi: 10.21062/ujep/154.2018/a/1213-2489/MT/18/4/645. DOI
Jóźwiak S., Karczewski K., Bojar Z. Kinetics of reactions in FeAl synthesis studied by the DTA technique and JMA model. Intermetallics. 2010;18:1332–1337. doi: 10.1016/j.intermet.2010.02.021. DOI
Canakci A., Erdemir F., Varol T., Ozkaya S. Formation of Fe–Al intermetallic coating on low-carbon steel by a novel mechanical alloying technique. Powder Technol. 2013;247:24–29. doi: 10.1016/j.powtec.2013.07.002. DOI
Dobromyslov A.V., Taluts N.I., Pilyugin V.P., Tolmachev T.P. Mechanical alloying of Al–Fe alloys using severe deformation by high-pressure torsion. Phys. Met. Metallogr. 2015;116:942–950. doi: 10.1134/S0031918X15090057. DOI
Neikov O.D. In: Handbook of Non-Ferrous Metal Powders. Neikov O.D., Naboychenko S.S., Murashova I.V., Gopienko V.G., Frishberg I.V., Lotsko D.V., editors. Elsevier; Oxford, UK: pp. 63–79. DOI
Čech J., Haušild P., Karlík M., Kadlecová V., Čapek J., Průša F., Novák P. Mechanical Properties of FeAlSi Powders Prepared by Mechanical Alloying from Different Initial Feedstock Materials. Matériaux Tech. 2019;107:6. doi: 10.1051/mattech/2018063. DOI
Azzaza S., Alleg S., Sunol J.J. Phase Transformation in the Ball Milled Fe31Co31Nb8B30 Powders. Adv. Mater. Phys. Chem. 2013;3:90–100. doi: 10.4236/ampc.2013.31A011. DOI
Izadi S., Akbari G.H., Janghorban K. Sintering and mechanical properties of mechanically alloyed Fe–Al–(B) nanostructures. J. Alloy. Compd. 2010;496:699–702. doi: 10.1016/j.jallcom.2010.02.177. DOI
Jiang T. Investigation of Phase Composition and Microstructure of the FeAl Intermetallics Compounds Bulks Fabricated by Mechanical Alloying Process and Hot-Pressing Process. Adv. Mater. Res. 2011;228:899–904. doi: 10.4028/www.scientific.net/AMR.228-229.899. DOI
Kalita M.P.C., Perumal A., Srinivasan A. Structural analysis of mechanically alloyed nanocrystalline Fe75Si15Al10 powders. Mater. Lett. 2007;61:824–826. doi: 10.1016/j.matlet.2006.05.076. DOI
Kalita M.P.C., Perumal A., Srinivasan A. Structure and magnetic properties of nanocrystalline Fe75Si25 powders prepared by mechanical alloying. J. Magn. Magn. Mater. 2008;320:2780–2783. doi: 10.1016/j.jmmm.2008.06.014. DOI
Boukherroub N., Guittoum A., Laggoun A., Hemmous M., Martínez-Blanco D., Blanco J.A., Souami N., Gorria P., Bourzami A., Lenoble O. Microstructure and magnetic properties of nanostructured (Fe0.8Al0.2)100–xSix alloy produced by mechanical alloying. J. Magn. Magn. Mater. 2015;385:151–159. doi: 10.1016/j.jmmm.2015.03.011. DOI
Průša F., Šesták J., Školáková A., Novák P., Haušild P., Karlík M., Minárik P., Kopeček J., Laufek F. Application of SPS consolidation and its influence on the properties of the FeAl20Si20 alloys prepared by mechanical alloying. Mater. Sci. Eng. A. 2019;761:138020. doi: 10.1016/j.msea.2019.06.030. DOI
Ma R.P., Wan M., Huang J., Xie Q., Suzuki T. Calculation of electronic structure and mechanical properties of DO 3 – Fe 75-x Si 25 Ni x intermetallic compounds by first principles. Int. J. Mod. Phys. B. 2015 doi: 10.1142/S0217979215500873. DOI
Yanson T.I., Manyako M.B., Bodak O.I., German N.V., Zarechnyuk O.S., Cerný R., Yvon K. Triclinic Fe3Al2Si3 and Orthorhombic Fe3Al2Si4 with New Structure Types. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1996;52:2964–2967. doi: 10.1107/S0108270196008694. DOI
Apiñaniz E., Legarra E., Plazaola F., Garitaonandia J.S. Influence of addition of Si in FeAl alloys: Theory. J. Magn. Magn. Mater. 2008;320:e692–e695. doi: 10.1016/j.jmmm.2008.04.047. DOI
Gale W.F., Totemeier T.C. Smithells Metals Reference Book. Elsevier Science; Amsterdam, The Netherlands: 2003.
Kupenko I., Merkel S., Achorner M., Plückthun C., Liermann H.-P., Sanchez-Valle C. EGU General Assembly Conference Abstracts. EGU2017; Vienna, Austria: 2017. Plastic deformation of FeSi at high pressures: Implications for planetary cores.
Ehlers S.K., Mendiratta M.G. Tensile behaviour of two DO3-ordered alloys: Fe3Si and Fe-20 at % Al-5 at % Si. J. Mater. Sci. 1984;19:2203–2210. doi: 10.1007/BF01058096. DOI
Zhao L.-Z., Zhao M.-J., Li D.-Y., Zhang J., Xiong G.-Y. Study on Fe–Al–Si in situ composite coating fabricated by laser cladding. Appl. Surf. Sci. 2012;258:3368–3372. doi: 10.1016/j.apsusc.2011.09.057. DOI
Novak P., Nova K. Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC
Advanced Powder Metallurgy Technologies