Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-07559S
Grantová Agentura České Republiky
21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32050542
PubMed Central
PMC7040690
DOI
10.3390/ma13030800
PII: ma13030800
Knihovny.cz E-zdroje
- Klíčová slova
- Fe-Al-Si alloy, nickel, oxidation, titanium, wear resistance,
- Publikační typ
- časopisecké články MeSH
This paper describes the structure and properties of an innovative Fe-Al-Si alloy with a reduced amount of silicon (5 wt. %) in order to avoid excessive brittleness. The alloy was produced by a combination of mechanical alloying and spark plasma sintering. Nickel and titanium were independently tested as the alloying elements for this alloy. It was found that wear resistance, which reached values comparable with tool steels, could be further improved by the addition of nickel. Nickel also improved the high-temperature oxidation behavior, because it lowers the liability of the oxide layers to spallation. Both nickel and titanium increased the hardness of the alloy. Titanium negatively influenced oxidation behavior and wear resistance because of the presence of titanium dioxide in the oxide layer and the brittle silicides that caused chipping wear, respectively.
Zobrazit více v PubMed
Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI
Zamanzade M., Barnoush A., Motz C. A Review on the properties of iron aluminide intermetallics. Crystals. 2016;6:10. doi: 10.3390/cryst6010010. DOI
Voděrová M., Novák P., Marek I., Vojtěch D. Microstructure and mechanical properties of rapidly solidified Al-Fe-X alloys. Key Eng. Mater. 2013;592–593:639–642. doi: 10.4028/www.scientific.net/KEM.592-593.639. DOI
Huttunen-Saarivirta E. Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: A review. J. Alloy. Compd. 2004;363:154–178. doi: 10.1016/S0925-8388(03)00445-6. DOI
Hotař A., Kratochvíl P. The corrosion resistance of iron aluminide Fe28Al3Cr0.02Ce (at%) in a molten glass. Intermetallics. 2007;15:439–441. doi: 10.1016/j.intermet.2006.07.006. DOI
Boulesteix C., Kolarik V., Pedraza F. Steam oxidation of aluminide coatings under high pressure and for long exposures. Corros. Sci. 2018;144:328–338. doi: 10.1016/j.corsci.2018.08.053. DOI
Audigié P., Encinas-Sánchez V., Juez-Lorenzo M., Rodríguez S., Gutiérrez M., Pérez F.J., Agüero A. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants. Surf. Coat. Technol. 2018;349:1148–1157. doi: 10.1016/j.surfcoat.2018.05.081. DOI
Hotař A., Palm M., Kratochvíl P., Vodičková V., Daniš S. High-temperature oxidation behaviour of Zr alloyed Fe3Al-type iron aluminide. Corros. Sci. 2012;63:71–81. doi: 10.1016/j.corsci.2012.05.027. DOI
Kowalski K., Łosiewicz B., Budniok A., Kupka M. Effect of alloying on corrosion resistance of B2 FeAl alloy in aqueous solution of sulfuric acid. Mater. Chem. Phys. 2011;126:314–318. doi: 10.1016/j.matchemphys.2010.11.020. DOI
Li H., Zhang J., Young D.J. Oxidation of Fe–Si, Fe–Al and Fe–Si–Al alloys in CO2–H2O gas at 800 °C. Corros. Sci. 2012;54:127–138. doi: 10.1016/j.corsci.2011.09.006. DOI
Sikka V.K., Wilkening D., Liebetrau J., Mackey B. Melting and casting of FeAl-based cast alloy. Mater. Sci. Eng. A. 1998;258:229–235. doi: 10.1016/S0921-5093(98)00938-1. DOI
Kratochvíl P., Dobeš F., Vodičková V. The effect of silicon on the structure of Fe-40 at.% Al type alloys with high contents of carbon (1.9–3.8 at.%) Intermetallics. 2009;17:39–45. doi: 10.1016/j.intermet.2008.09.004. DOI
Kopeček J., Haušild P., Jurek K., Jarošová M., Drahokoupil J., Novák P., Šíma V. Precipitation in the Fe-38 at.% Al-1 at.% C alloy. Intermetallics. 2010;18:1327–1331. doi: 10.1016/j.intermet.2010.03.027. DOI
Yan L., Tan Z., Ji G., Li Z., Fan G., Schryvers D., Shan A., Zhang D. A quantitative method to characterize the Al 4 C 3 -formed interfacial reaction: The case study of MWCNT/Al composites. Mater. Charact. 2016;112:213–218. doi: 10.1016/j.matchar.2015.12.031. DOI
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Novak P., Vanka T., Nova K., Stoulil J., Prusa F., Kopecek J., Hausild P., Laufek F. Structure and properties of Fe-Al-Si alloy prepared by mechanical alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
Novak P., Nova K. Oxidation behavior of Fe-Al, Fe-Si and Fe-Al-Si intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC
Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of intermetallics in Fe-Al-Si system by mechanical alloying. Metals. 2018;9:20. doi: 10.3390/met9010020. DOI
Grilli M.L., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R.R., Ruello M.L. Solutions for critical raw materials under extreme conditions: A review. Materials. 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC
Vojtěch D., Bártová B., Kubatík T. High temperature oxidation of titanium—Silicon alloys. Mater. Sci. Eng. A. 2003;361:50–57. doi: 10.1016/S0921-5093(03)00564-1. DOI
Ivanov E.G. Thermodynamic analysis of phase transformations during aluminizing. Met. Sci. Heat Treat. 1979;21:449–452. doi: 10.1007/BF00780482. DOI
Průša F., Šesták J., Školáková A., Novák P., Haušild P., Karlík M., Minárik P., Kopeček J., Laufek F. Application of SPS consolidation and its influence on the properties of the FeAl20Si20 alloys prepared by mechanical alloying. Mater. Sci. Eng. A. 2019;761:138020. doi: 10.1016/j.msea.2019.06.030. DOI
Novák P., Šerák J., Vojtěch D., Zelinková M., Mejzlíková L., Michalcová A. Effect of alloying elements on microstructure and properties of Fe-Al and Fe-Al-Si alloys produced by reactive sintering. Key Eng. Mater. 2011;465:407–410. doi: 10.4028/www.scientific.net/KEM.465.407. DOI
Vojtěch D., Novák P., Macháč P., Morťaniková M., Jurek K. Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment. J. Alloy. Compd. 2008;464:179–184. doi: 10.1016/j.jallcom.2007.10.020. DOI
Novák P., Vojtěch D., Šerák J. Wear and corrosion resistance of a plasma-nitrided PM tool steel alloyed with niobium. Surf. Coat. Technol. 2006;200:5229–5236. doi: 10.1016/j.surfcoat.2005.06.023. DOI
Spark Plasma Sintering Technology. [(accessed on 12 January 2020)]; Available online: http://www.fct-systeme.de/en/content/Spark_Plasma_Sintertechnologie.
Průša F., Proshchenko O., Školáková A., Kučera V., Laufek F. Properties of FeAlSi-X-Y Alloys (X,Y=Ni, Mo) prepared by mechanical alloying and spark plasma sintering. Materials. 2020;13:292. doi: 10.3390/ma13020292. PubMed DOI PMC
Bei G., Greil P. Advanced Ceramic Materials. Scrivener Publishing LLC; Beverly, MA, USA: 2016. Oxidation-induced crack healing in MAX phase containing ceramic composites; pp. 231–260. DOI
Thermochemical Data of Pure Substances. VCH Verlagsgesellschaft mbH; Weinheim, Germany: 1995. Compilation of thermochemical data; pp. 33–34. DOI
Novel High-Entropy Aluminide-Silicide Alloy