Structure and Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying

. 2019 Aug 02 ; 12 (15) : . [epub] 20190802

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31382423

Grantová podpora
17-07559S Grantová Agentura České Republiky

Fe-Al-Si alloys have been previously reported as an interesting alternative to common high-temperature materials. This work aimed to improve the properties of FeAl20Si20 alloy (in wt.%) by the application of powder metallurgy process consisting of ultrahigh-energy mechanical alloying and spark plasma sintering. The material consisted of Fe3Si, FeSi, and Fe3Al2Si3 phases. It was found that the alloy exhibits an anomalous behaviour of yield strength and ultimate compressive strength around 500 °C, reaching approximately 1100 and 1500 MPa, respectively. The results also demonstrated exceptional wear resistance, oxidation resistance, and corrosion resistance in water-based electrolytes. The tested manufacturing process enabled the fracture toughness to be increased ca. 10 times compared to the cast alloy of the same composition. Due to its unique properties, the material could be applicable in the automotive industry for the manufacture of exhaust valves, for wear parts, and probably as a material for selected aggressive chemical environments.

Zobrazit více v PubMed

Zhu X., Yao Z., Gu X., Cong W., Zhang P. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology. Trans. Nonferrous Met. Soc. China. 2009;19:143–148. doi: 10.1016/S1003-6326(08)60242-3. DOI

Borsig A. Zusatz von Aluminium zum Roheisen. Stahl Eisen. 1894;14:6.

Kratochvíl P. The history of the search and use of heat resistant Pyroferal alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI

Zamanzade M., Vehoff H., Barnoush A. Effect of chromium on elastic and plastic deformation of Fe3Al intermetallics. Intermetallics. 2013;41:28–34. doi: 10.1016/j.intermet.2013.04.013. DOI

Ferreira P.I., Couto A.A., de Paola J.C.C. The effects of chromium addition and heat treatment on the microstructure and tensile properties of Fe-24Al (at.%) Mater. Sci. Eng. A. 1995;192–193:165–169. doi: 10.1016/0921-5093(94)03231-9. DOI

Balasubramaniam R. On the role of chromium in minimizing room temperature hydrogen embrittlement in iron aluminides. Scr. Mater. 1996;34:127–133. doi: 10.1016/1359-6462(95)00495-5. DOI

Zhang Z., Sun Y., Guo J. Effect of niobium addition on the mechanical properties of Fe3Al-based alloys. Scr. Metall. Mater. 1995;33:2013–2017. doi: 10.1016/0956-716X(95)00437-Z. DOI

Janda D., Fietzek H., Galetz M., Heilmaier M. The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys. Intermetallics. 2013;41:51–57. doi: 10.1016/j.intermet.2013.04.016. DOI

Sundar R.S., Deevi S.C. High-temperature strength and creep resistance of FeAl. Mater. Sci. Eng. A. 2003;357:124–133. doi: 10.1016/S0921-5093(03)00261-2. DOI

Klein O., Baker I. Effect of chromium on the environmental sensitivity of FeAl at room temperature. Scr. Metall. Mater. 1992;27:1823–1828. doi: 10.1016/0956-716X(92)90027-C. DOI

Grilli M.L., Bellezze T., Gamsjager E., Rinaldi A., Novak P., Balos S., Piticescu R.R., Ruello M.L. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials (Basel) 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC

Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI

Li H., Zhang J., Young D.J. Oxidation of Fe–Si, Fe–Al and Fe–Si–Al alloys in CO2–H2O gas at 800 °C. Corros. Sci. 2012;54:127–138. doi: 10.1016/j.corsci.2011.09.006. DOI

Kratochvíl P., Schindler I. Hot rolling of iron aluminide Fe28.4Al4.1Cr0.02Ce (at%) Intermetallics. 2007;15:436–438. doi: 10.1016/j.intermet.2006.06.005. DOI

Schindler I., Kratochvíl P., Prokopčáková P., Kozelský P. Forming of cast Fe—45 at.% Al alloy with high content of carbon. Intermetallics. 2010;18:745–747. doi: 10.1016/j.intermet.2009.11.005. DOI

Šíma V., Kratochvíl P., Kozelský P., Schindler I., Hána P. FeAl-based intermetallics cast in an ultrsonic field. Int. J. Mater. Res. 2009;100:382–385. doi: 10.3139/146.110041. DOI

Novák P., Michalcová A., Voděrová M., Šíma M., Šerak J., Vojtěch D., Wienerová K. Effect of reactive sintering conditions on microstructure of Fe–Al–Si alloys. J. Alloy Compd. 2010;493:81–86. doi: 10.1016/j.jallcom.2009.12.040. DOI

Xia Y., Li L., Li L. Effect of grain refinement on fracture toughness and fracture mechanism in AZ31 magnesium alloy. Procedia Mater. Sci. 2014;3:1780–1785. doi: 10.1016/j.mspro.2014.06.287. DOI

Schwarz K.T., Kormout K.S., Pippan R., Hohenwarter A. Impact of severe plastic deformation on microstructure and fracture toughness evolution of a duplex-steel. Mater. Sci. Eng. A. 2017;703:173–179. doi: 10.1016/j.msea.2017.07.062. DOI

Vaidya M., Prasad A., Parakh A., Murty B.S. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 2017;126:37–46. doi: 10.1016/j.matdes.2017.04.027. DOI

Fang Q., Kang Z., Gan Y., Long Y. Microstructures and mechanical properties of spark plasma sintered Cu–Cr composites prepared by mechanical milling and alloying. Mater. Des. 2015;88:8–15. doi: 10.1016/j.matdes.2015.08.127. DOI

Froes F.H., Suryanarayan C., Russell K., Li C.-G. Synthesis of Intermetallics by Mechanical Alloying. Mater. Sci. Eng. A. 1995;192–193:612–623.

Al-Joubori A., Suryanarayana C. Synthesis of metastable NiGe2 by mechanical alloying. Mater. Des. 2015;87:520–526. doi: 10.1016/j.matdes.2015.08.051. DOI

Naghiha H., Movahedi B., Asadabad M.A., Mournani M.T. Amorphization and nanocrystalline Nb3Al intermetallic formation during mechanical alloying and subsequent annealing. Adv. Powder Technol. 2017;28:340–345. doi: 10.1016/j.apt.2016.09.022. DOI

Molladavoudi A., Amirkhanlou S., Shamanian M., Ashrafizadeh F. Synthesis and characterization of nanocrystalline CoTi intermetallic compound prepared by mechanical alloying. Mater. Lett. 2012;81:254–257. doi: 10.1016/j.matlet.2012.04.104. DOI

Novák P., Kubatík T., Vystrčil J., Hendrych R., Kříž J., Mlynár J., Vojtěch D. Powder metallurgy preparation of Al-Cu-Fe quasicrystals using mechanical alloying and Spark Plasma Sintering. Intermetallics. 2014;52:131–137. doi: 10.1016/j.intermet.2014.04.003. DOI

Chuvildeev V.N., Panov D.V., Boldin M.S., Nokhrin A.V., Blagoveshchensky Y.V., Sakharov N.V., Shotin S.V., Kotkov D.N. Structure and properties of advanced materials obtained by Spark Plasma Sintering. Acta Astronaut. 2015;109:172–176. doi: 10.1016/j.actaastro.2014.11.008. DOI

Zhang Z., Liu Z., Lu J., Shen X., Wang F., Wang Y. The sintering mechanism in spark plasma sintering–Proof of the occurrence of spark discharge. Scr. Mater. 2014;81:56–59. doi: 10.1016/j.scriptamat.2014.03.011. DOI

Marder R., Estourne C., Chevallier G., Chaim R. Plasma in spark plasma sintering of ceramic particle compacts. Scr. Mater. 2014;82:57–60. doi: 10.1016/j.scriptamat.2014.03.023. DOI

Liu J., Liang C. Microstructure characterization and mechanical properties of bulk nanocrystalline aluminium prepared by SPS and followed by hightemperature extruded techniques. Mater. Lett. 2017;206:95–99. doi: 10.1016/j.matlet.2017.06.129. DOI

Peters C.T. The relationship between Palmqvist indentation toughness and bulk fracture toughness for some WC-Co cemented carbides. J. Mater. Sci. 1979;14:1619–1623. doi: 10.1007/BF00569281. DOI

Novák P., Vojtěch D., Šerák J. Wear and corrosion resistance of a plasma-nitrided PM tool steel alloyed with niobium. Surf. Coat. Technol. 2006;200:5229–5236. doi: 10.1016/j.surfcoat.2005.06.023. DOI

Mrowec S., Stoklosa A. Calculations of Parabolic Rate Constants for Metal Oxidation. Oxid. Met. 1974;8:379–391. doi: 10.1007/BF00603388. DOI

NIST X-ray Photoelectron Spectroscopy Database. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2008. [(accessed on 10 April 2019)]. Version 4. Available online: http//srdata.nist.gov/xps2.

Hightower A., Fultz B., Bowman R.C. Mechanical alloying of Fe and Mg. J. Alloy Compd. 1997;252:238–244. doi: 10.1016/S0925-8388(96)02732-6. DOI

Novák P., Průša F., Nová K., Bernatiková A., Salvetr P., Kopeček J., Haušild P. Application of mechanical alloying in synthesis of intermetallics. Acta Phys. Pol. A. 2018;134:720–723. doi: 10.12693/APhysPolA.134.720. DOI

de Farias Azevedo C.R., Flower H.M. Calculated ternary diagram of Ti–Al–Si system. Mater. Sci. Technol. 2000;16:372–381. doi: 10.1179/026708300101507956. DOI

Farzin-Nia F., Sterrett T., Sirney R. Effect of machining on fracture toughness of corundum. J. Mater. Sci. 1990;25:2527–2531. doi: 10.1007/BF00638054. DOI

Heuer A.H. Oxygen and aluminum diffusion in α-Al2O3: How much do we really understand? Eur. Ceram. Soc. 2008;28:1495–1507. doi: 10.1016/j.jeurceramsoc.2007.12.020. DOI

Proff C., Abolhassani S., Lemaignan C. Oxidation behaviour of zirconium alloys and their precipitates—A mechanistic study. J. Nucl. Mater. 2013;432:222–238. doi: 10.1016/j.jnucmat.2012.06.026. DOI

Morris D.G., Munoz-Morris M.A. A re-examination of the pinning mechanisms responsible for the stress anomaly in FeAl intermetallics. Intermetallics. 2010;18:1279–1284. doi: 10.1016/j.intermet.2009.12.021. DOI

George E.P., Baker I. Thermal vacancies and the yield anomaly of FeAl. Intermetallics. 1998;6:759–763. doi: 10.1016/S0966-9795(98)00063-6. DOI

Morris D.G., Munoz-Morris M.A. The stress anomaly in FeAl–Fe3Al alloys. Intermetallics. 2005;13:1269–1274. doi: 10.1016/j.intermet.2004.08.012. DOI

Brinck A., Neuhäuser H. Yield stress and dislocation mechanisms in the D03 ordered intermetallic phase Fe3Al in the temperature range 240–500K. Mater. Sci. Eng. A. 2004;387–389:969–972. doi: 10.1016/j.msea.2004.05.041. DOI

Schaefer H.-E., Frenner K., Wurschum R. High-temperature atomic defect properties and diffusion processes in intermetallic compounds. Intermetallics. 1999;7:277–287. doi: 10.1016/S0966-9795(98)00121-6. DOI

Castellano J., Chaudhari A., Bromham J. Adaptive Temperature Control for Diesel Particulate Filter Regeneration. SAE Tech. Pap. 2013;1:517. doi: 10.4271/2013-01-0517. DOI

Barin I. Thermochemical Data of Pure Substances. 3rd ed. VCH Verlagsgesellschaft mbH; Weinheim, Germany: 1995.

Souza Santos H., Souza Santos P. Pseudomorphic formation of aluminas from fibrillar pseudoboehmite. Mater. Lett. 1992;13:175–179. doi: 10.1016/0167-577X(92)90216-7. DOI

Roy S.K., Fasasi A., Pons M., Galerie A., Caillet M. High-temperature oxidation behaviour of laser-surface alloyed iron-silicon coatings on iron. J. Phys. IV. 1993;3:625–633. doi: 10.1051/jp4:1993966. DOI

Corbillon M.S., Olazabal M.A., Madariaga J.M. Potentiometric Study of Aluminium-Fluoride Complexation Equilibria and Definition of the Thermodynamic Model. J. Solut. Chem. 2008;37:567–579. doi: 10.1007/s10953-008-9257-3. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Synthesis of FeSi-FeAl Composites from Separately Prepared FeSi and FeAl Alloys and Their Structure and Properties

. 2023 Dec 17 ; 16 (24) : . [epub] 20231217

Novel High-Entropy Aluminide-Silicide Alloy

. 2021 Jun 25 ; 14 (13) : . [epub] 20210625

Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy

. 2021 Jun 02 ; 14 (11) : . [epub] 20210602

Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys

. 2021 Feb 13 ; 14 (4) : . [epub] 20210213

Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules

. 2021 Jan 25 ; 14 (3) : . [epub] 20210125

The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides

. 2020 Sep 17 ; 25 (18) : . [epub] 20200917

Advanced Powder Metallurgy Technologies

. 2020 Apr 08 ; 13 (7) : . [epub] 20200408

Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering

. 2020 Feb 10 ; 13 (3) : . [epub] 20200210

Influence of Heat Treatment on Microstructure and Properties of NiTi46 Alloy Consolidated by Spark Plasma Sintering

. 2019 Dec 06 ; 12 (24) : . [epub] 20191206

Effect of Initial Powders on Properties of FeAlSi Intermetallics

. 2019 Sep 04 ; 12 (18) : . [epub] 20190904

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...