Structure and Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-07559S
Grantová Agentura České Republiky
PubMed
31382423
PubMed Central
PMC6695589
DOI
10.3390/ma12152463
PII: ma12152463
Knihovny.cz E-zdroje
- Klíčová slova
- Fe–Al–Si alloy, characterization, iron silicide, mechanical alloying, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
Fe-Al-Si alloys have been previously reported as an interesting alternative to common high-temperature materials. This work aimed to improve the properties of FeAl20Si20 alloy (in wt.%) by the application of powder metallurgy process consisting of ultrahigh-energy mechanical alloying and spark plasma sintering. The material consisted of Fe3Si, FeSi, and Fe3Al2Si3 phases. It was found that the alloy exhibits an anomalous behaviour of yield strength and ultimate compressive strength around 500 °C, reaching approximately 1100 and 1500 MPa, respectively. The results also demonstrated exceptional wear resistance, oxidation resistance, and corrosion resistance in water-based electrolytes. The tested manufacturing process enabled the fracture toughness to be increased ca. 10 times compared to the cast alloy of the same composition. Due to its unique properties, the material could be applicable in the automotive industry for the manufacture of exhaust valves, for wear parts, and probably as a material for selected aggressive chemical environments.
Czech Geological Survey Geologická 6 Prague 5 152 00 Prague Czech Republic
Institute of Physics of the ASCR v v i Na Slovance 2 Prague 8 182 21 Prague Czech Republic
Zobrazit více v PubMed
Zhu X., Yao Z., Gu X., Cong W., Zhang P. Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology. Trans. Nonferrous Met. Soc. China. 2009;19:143–148. doi: 10.1016/S1003-6326(08)60242-3. DOI
Borsig A. Zusatz von Aluminium zum Roheisen. Stahl Eisen. 1894;14:6.
Kratochvíl P. The history of the search and use of heat resistant Pyroferal alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI
Zamanzade M., Vehoff H., Barnoush A. Effect of chromium on elastic and plastic deformation of Fe3Al intermetallics. Intermetallics. 2013;41:28–34. doi: 10.1016/j.intermet.2013.04.013. DOI
Ferreira P.I., Couto A.A., de Paola J.C.C. The effects of chromium addition and heat treatment on the microstructure and tensile properties of Fe-24Al (at.%) Mater. Sci. Eng. A. 1995;192–193:165–169. doi: 10.1016/0921-5093(94)03231-9. DOI
Balasubramaniam R. On the role of chromium in minimizing room temperature hydrogen embrittlement in iron aluminides. Scr. Mater. 1996;34:127–133. doi: 10.1016/1359-6462(95)00495-5. DOI
Zhang Z., Sun Y., Guo J. Effect of niobium addition on the mechanical properties of Fe3Al-based alloys. Scr. Metall. Mater. 1995;33:2013–2017. doi: 10.1016/0956-716X(95)00437-Z. DOI
Janda D., Fietzek H., Galetz M., Heilmaier M. The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys. Intermetallics. 2013;41:51–57. doi: 10.1016/j.intermet.2013.04.016. DOI
Sundar R.S., Deevi S.C. High-temperature strength and creep resistance of FeAl. Mater. Sci. Eng. A. 2003;357:124–133. doi: 10.1016/S0921-5093(03)00261-2. DOI
Klein O., Baker I. Effect of chromium on the environmental sensitivity of FeAl at room temperature. Scr. Metall. Mater. 1992;27:1823–1828. doi: 10.1016/0956-716X(92)90027-C. DOI
Grilli M.L., Bellezze T., Gamsjager E., Rinaldi A., Novak P., Balos S., Piticescu R.R., Ruello M.L. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials (Basel) 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Li H., Zhang J., Young D.J. Oxidation of Fe–Si, Fe–Al and Fe–Si–Al alloys in CO2–H2O gas at 800 °C. Corros. Sci. 2012;54:127–138. doi: 10.1016/j.corsci.2011.09.006. DOI
Kratochvíl P., Schindler I. Hot rolling of iron aluminide Fe28.4Al4.1Cr0.02Ce (at%) Intermetallics. 2007;15:436–438. doi: 10.1016/j.intermet.2006.06.005. DOI
Schindler I., Kratochvíl P., Prokopčáková P., Kozelský P. Forming of cast Fe—45 at.% Al alloy with high content of carbon. Intermetallics. 2010;18:745–747. doi: 10.1016/j.intermet.2009.11.005. DOI
Šíma V., Kratochvíl P., Kozelský P., Schindler I., Hána P. FeAl-based intermetallics cast in an ultrsonic field. Int. J. Mater. Res. 2009;100:382–385. doi: 10.3139/146.110041. DOI
Novák P., Michalcová A., Voděrová M., Šíma M., Šerak J., Vojtěch D., Wienerová K. Effect of reactive sintering conditions on microstructure of Fe–Al–Si alloys. J. Alloy Compd. 2010;493:81–86. doi: 10.1016/j.jallcom.2009.12.040. DOI
Xia Y., Li L., Li L. Effect of grain refinement on fracture toughness and fracture mechanism in AZ31 magnesium alloy. Procedia Mater. Sci. 2014;3:1780–1785. doi: 10.1016/j.mspro.2014.06.287. DOI
Schwarz K.T., Kormout K.S., Pippan R., Hohenwarter A. Impact of severe plastic deformation on microstructure and fracture toughness evolution of a duplex-steel. Mater. Sci. Eng. A. 2017;703:173–179. doi: 10.1016/j.msea.2017.07.062. DOI
Vaidya M., Prasad A., Parakh A., Murty B.S. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 2017;126:37–46. doi: 10.1016/j.matdes.2017.04.027. DOI
Fang Q., Kang Z., Gan Y., Long Y. Microstructures and mechanical properties of spark plasma sintered Cu–Cr composites prepared by mechanical milling and alloying. Mater. Des. 2015;88:8–15. doi: 10.1016/j.matdes.2015.08.127. DOI
Froes F.H., Suryanarayan C., Russell K., Li C.-G. Synthesis of Intermetallics by Mechanical Alloying. Mater. Sci. Eng. A. 1995;192–193:612–623.
Al-Joubori A., Suryanarayana C. Synthesis of metastable NiGe2 by mechanical alloying. Mater. Des. 2015;87:520–526. doi: 10.1016/j.matdes.2015.08.051. DOI
Naghiha H., Movahedi B., Asadabad M.A., Mournani M.T. Amorphization and nanocrystalline Nb3Al intermetallic formation during mechanical alloying and subsequent annealing. Adv. Powder Technol. 2017;28:340–345. doi: 10.1016/j.apt.2016.09.022. DOI
Molladavoudi A., Amirkhanlou S., Shamanian M., Ashrafizadeh F. Synthesis and characterization of nanocrystalline CoTi intermetallic compound prepared by mechanical alloying. Mater. Lett. 2012;81:254–257. doi: 10.1016/j.matlet.2012.04.104. DOI
Novák P., Kubatík T., Vystrčil J., Hendrych R., Kříž J., Mlynár J., Vojtěch D. Powder metallurgy preparation of Al-Cu-Fe quasicrystals using mechanical alloying and Spark Plasma Sintering. Intermetallics. 2014;52:131–137. doi: 10.1016/j.intermet.2014.04.003. DOI
Chuvildeev V.N., Panov D.V., Boldin M.S., Nokhrin A.V., Blagoveshchensky Y.V., Sakharov N.V., Shotin S.V., Kotkov D.N. Structure and properties of advanced materials obtained by Spark Plasma Sintering. Acta Astronaut. 2015;109:172–176. doi: 10.1016/j.actaastro.2014.11.008. DOI
Zhang Z., Liu Z., Lu J., Shen X., Wang F., Wang Y. The sintering mechanism in spark plasma sintering–Proof of the occurrence of spark discharge. Scr. Mater. 2014;81:56–59. doi: 10.1016/j.scriptamat.2014.03.011. DOI
Marder R., Estourne C., Chevallier G., Chaim R. Plasma in spark plasma sintering of ceramic particle compacts. Scr. Mater. 2014;82:57–60. doi: 10.1016/j.scriptamat.2014.03.023. DOI
Liu J., Liang C. Microstructure characterization and mechanical properties of bulk nanocrystalline aluminium prepared by SPS and followed by hightemperature extruded techniques. Mater. Lett. 2017;206:95–99. doi: 10.1016/j.matlet.2017.06.129. DOI
Peters C.T. The relationship between Palmqvist indentation toughness and bulk fracture toughness for some WC-Co cemented carbides. J. Mater. Sci. 1979;14:1619–1623. doi: 10.1007/BF00569281. DOI
Novák P., Vojtěch D., Šerák J. Wear and corrosion resistance of a plasma-nitrided PM tool steel alloyed with niobium. Surf. Coat. Technol. 2006;200:5229–5236. doi: 10.1016/j.surfcoat.2005.06.023. DOI
Mrowec S., Stoklosa A. Calculations of Parabolic Rate Constants for Metal Oxidation. Oxid. Met. 1974;8:379–391. doi: 10.1007/BF00603388. DOI
NIST X-ray Photoelectron Spectroscopy Database. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2008. [(accessed on 10 April 2019)]. Version 4. Available online: http//srdata.nist.gov/xps2.
Hightower A., Fultz B., Bowman R.C. Mechanical alloying of Fe and Mg. J. Alloy Compd. 1997;252:238–244. doi: 10.1016/S0925-8388(96)02732-6. DOI
Novák P., Průša F., Nová K., Bernatiková A., Salvetr P., Kopeček J., Haušild P. Application of mechanical alloying in synthesis of intermetallics. Acta Phys. Pol. A. 2018;134:720–723. doi: 10.12693/APhysPolA.134.720. DOI
de Farias Azevedo C.R., Flower H.M. Calculated ternary diagram of Ti–Al–Si system. Mater. Sci. Technol. 2000;16:372–381. doi: 10.1179/026708300101507956. DOI
Farzin-Nia F., Sterrett T., Sirney R. Effect of machining on fracture toughness of corundum. J. Mater. Sci. 1990;25:2527–2531. doi: 10.1007/BF00638054. DOI
Heuer A.H. Oxygen and aluminum diffusion in α-Al2O3: How much do we really understand? Eur. Ceram. Soc. 2008;28:1495–1507. doi: 10.1016/j.jeurceramsoc.2007.12.020. DOI
Proff C., Abolhassani S., Lemaignan C. Oxidation behaviour of zirconium alloys and their precipitates—A mechanistic study. J. Nucl. Mater. 2013;432:222–238. doi: 10.1016/j.jnucmat.2012.06.026. DOI
Morris D.G., Munoz-Morris M.A. A re-examination of the pinning mechanisms responsible for the stress anomaly in FeAl intermetallics. Intermetallics. 2010;18:1279–1284. doi: 10.1016/j.intermet.2009.12.021. DOI
George E.P., Baker I. Thermal vacancies and the yield anomaly of FeAl. Intermetallics. 1998;6:759–763. doi: 10.1016/S0966-9795(98)00063-6. DOI
Morris D.G., Munoz-Morris M.A. The stress anomaly in FeAl–Fe3Al alloys. Intermetallics. 2005;13:1269–1274. doi: 10.1016/j.intermet.2004.08.012. DOI
Brinck A., Neuhäuser H. Yield stress and dislocation mechanisms in the D03 ordered intermetallic phase Fe3Al in the temperature range 240–500K. Mater. Sci. Eng. A. 2004;387–389:969–972. doi: 10.1016/j.msea.2004.05.041. DOI
Schaefer H.-E., Frenner K., Wurschum R. High-temperature atomic defect properties and diffusion processes in intermetallic compounds. Intermetallics. 1999;7:277–287. doi: 10.1016/S0966-9795(98)00121-6. DOI
Castellano J., Chaudhari A., Bromham J. Adaptive Temperature Control for Diesel Particulate Filter Regeneration. SAE Tech. Pap. 2013;1:517. doi: 10.4271/2013-01-0517. DOI
Barin I. Thermochemical Data of Pure Substances. 3rd ed. VCH Verlagsgesellschaft mbH; Weinheim, Germany: 1995.
Souza Santos H., Souza Santos P. Pseudomorphic formation of aluminas from fibrillar pseudoboehmite. Mater. Lett. 1992;13:175–179. doi: 10.1016/0167-577X(92)90216-7. DOI
Roy S.K., Fasasi A., Pons M., Galerie A., Caillet M. High-temperature oxidation behaviour of laser-surface alloyed iron-silicon coatings on iron. J. Phys. IV. 1993;3:625–633. doi: 10.1051/jp4:1993966. DOI
Corbillon M.S., Olazabal M.A., Madariaga J.M. Potentiometric Study of Aluminium-Fluoride Complexation Equilibria and Definition of the Thermodynamic Model. J. Solut. Chem. 2008;37:567–579. doi: 10.1007/s10953-008-9257-3. DOI
Novel High-Entropy Aluminide-Silicide Alloy
Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys
Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules
Advanced Powder Metallurgy Technologies
Effect of Initial Powders on Properties of FeAlSi Intermetallics