Novel High-Entropy Aluminide-Silicide Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A2_FCHT_2020_035
Vysoká Škola Chemicko-technologická v Praze
PubMed
34201945
PubMed Central
PMC8269539
DOI
10.3390/ma14133541
PII: ma14133541
Knihovny.cz E-zdroje
- Klíčová slova
- aluminide, high-entropy alloy, silicide,
- Publikační typ
- časopisecké články MeSH
Novel high-entropy (multi-principal elements) alloy based on Fe-Al-Si-Ni-Ti in equimolar proportions has been developed. The alloy powder obtained by mechanical alloying is composed of orthorhombic FeTiSi phase with the admixture of B2 FeAl. During spark plasma sintering of this powder, the FeSi phase is formed and the amount of FeAl phase increases at the expense of the FeTiSi phase. The material is characterized by a high compressive strength (approx. 1500 MPa) at room temperature, being brittle. At 800 °C, the alloy is plastically deformable, having a yield strength of 459 MPa. The wear resistance of the material is very good, comparable to the tool steel. During the wear test, the spallation of the FeSi particles from the wear track was observed locally.
Zobrazit více v PubMed
Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI
Cantor B., Chang I., Knight P., Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375:213–218. doi: 10.1016/j.msea.2003.10.257. DOI
Huang P.-K., Yeh J.-W., Shun T.-T., Chen S.-K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004;6:74–78. doi: 10.1002/adem.200300507. DOI
Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI
Manzoni A.M., Glatzel U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 2019;147:512–532. doi: 10.1016/j.matchar.2018.06.036. DOI
Zhang H., Zhao Y., Cai J., Ji S., Geng J., Sun X., Li D. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing. Mater. Des. 2021;201:109462. doi: 10.1016/j.matdes.2021.109462. DOI
Pang J., Zhang H., Zhang L., Zhu Z., Fu H., Li H., Wang A., Li Z., Zhang H. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Mater. Lett. 2021;290:129428. doi: 10.1016/j.matlet.2021.129428. DOI
Hua N., Wang W., Wang Q., Ye Y., Lin S., Zhang L., Guo Q., Brechtl J., Liaw P.K. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys. J. Alloy. Compd. 2021;861:157997. doi: 10.1016/j.jallcom.2020.157997. DOI
Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001. DOI
Grilli M.L., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R.R., Ruello M.L. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials. 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC
Moravcik I., Gamanov S., Moravcikova-Gouvea L., Kovacova Z., Kitzmantel M., Neubauer E., Dlouhy I. Influence of Ti on the Tensile Properties of the High-Strength Powder Metallurgy High Entropy Alloys. Materials. 2020;13:578. doi: 10.3390/ma13030578. PubMed DOI PMC
Koch C.C., Whittenberger J.D. Mechanical milling/alloying of intermetallics. Intermetallics. 1996;4:339–355. doi: 10.1016/0966-9795(96)00001-5. DOI
Froes F.H.S., Suryanarayana C., Russell K., Li C.-G. Synthesis of intermetallics by mechanical alloying. Mater. Sci. Eng. A. 1995;192:612–623.
Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall. 2002;45:322–328. doi: 10.1179/003258902225007041. DOI
Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI
Lu Y., Wang X., Zhang Y., Wang J., Kim M.J., Zhang H. Aluminum carbide hydrolysis induced degradation of thermal conductivity and tensile strength in diamond/aluminum composite. J. Compos. Mater. 2018;52:2709–2717. doi: 10.1177/0021998317752504. DOI
Hotař A., Palm M., Kratochvíl P., Vodičková V., Daniš S. High-temperature oxidation behaviour of Zr alloyed Fe3Al-type iron aluminide. Corros. Sci. 2012;63:71–81. doi: 10.1016/j.corsci.2012.05.027. DOI
Kratochvíl P., Vodičková V., Král R., Švec M. The Effect of Laves Phase (Fe,Al)2Zr on the High-Temperature Strength of Carbon-Alloyed Fe3Al Aluminide. Metall. Mater. Trans. A. 2016;47:1128–1131. doi: 10.1007/s11661-015-3309-2. DOI
Kejzlar P., Kratochvíl P., Král R., Vodičková V. Phase Structure and High-Temperature Mechanical Properties of Two-Phase Fe-25Al-xZr Alloys Compared to Three-Phase Fe-30Al-xZr Alloys. Metall. Mater. Trans. A. 2014;45:335–342. doi: 10.1007/s11661-013-1987-1. DOI
Haušild P., Karlík M., Sima V., Alexander D. Microstructure and mechanical properties of hot rolled Fe–40 at-%Al intermetallic alloys with Zr and B addition. Mater. Sci. Technol. 2011;27:1448–1452. doi: 10.1179/026708310X12738371693012. DOI
Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
Milekhine M.I., Onsøien M.I., Solberg J.K., Skaland T. Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si. Intermetallics. 2002;10:743–750. doi: 10.1016/S0966-9795(02)00046-8. DOI
Kubošová A., Karlík M., Haušild P., Prahl J. Fracture Behaviour of Fe3Al and FeAl Type Iron Aluminides. Mater. Sci. Forum. 2007;567–568:349–352. doi: 10.4028/www.scientific.net/MSF.567-568.349. DOI
Ivanov E.G. Thermodynamic analysis of phase transformations during aluminizing. Met. Sci. Heat Treat. 1979;21:449–452. doi: 10.1007/BF00780482. DOI
Novák P., Barták Z., Nová K., Průša F. Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials. 2020;13:800. doi: 10.3390/ma13030800. PubMed DOI PMC
Umakoshi Y., Yamaguchi M. Deformation of FeAl single crystals at high temperatures. Philos. Mag. A. 1980;41:573–588. doi: 10.1080/01418618008239334. DOI
Czichos H. Tribology: A Systems Approach to the Science and Technology of Friction, Lubrication, and Wear. 1st ed. Elsevier Scientific Publishing Company; Amsterdam, The Netherlands: 1978. 399p
Massalski T.B. Binary Alloy Phase Diagrams. ASM, Materials Park; Novelty, OH, USA: 1990.
Novák P., Knotek V., Šerák J., Michalcová A., Vojtěch D. Synthesis of Fe-Al-Si intermediary phases by reactive sintering. Powder Metall. 2011;54:167–171. doi: 10.1179/174329009X449314. DOI
Zhao P., Morris D., Munoz M. Forging, textures, and deformation systems in a B2 FeAl alloy. J. Mater. Res. 1999;14:715–728. doi: 10.1557/JMR.1999.0097. DOI
Čech J., Haušild P., Materna A. Deformation of Fe3Si single-crystals under nanoindentation. Acta Polytech. CTU Proc. 2018;17:1–5. doi: 10.14311/APP.2018.17.0001. DOI