Novel High-Entropy Aluminide-Silicide Alloy

. 2021 Jun 25 ; 14 (13) : . [epub] 20210625

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34201945

Grantová podpora
A2_FCHT_2020_035 Vysoká Škola Chemicko-technologická v Praze

Novel high-entropy (multi-principal elements) alloy based on Fe-Al-Si-Ni-Ti in equimolar proportions has been developed. The alloy powder obtained by mechanical alloying is composed of orthorhombic FeTiSi phase with the admixture of B2 FeAl. During spark plasma sintering of this powder, the FeSi phase is formed and the amount of FeAl phase increases at the expense of the FeTiSi phase. The material is characterized by a high compressive strength (approx. 1500 MPa) at room temperature, being brittle. At 800 °C, the alloy is plastically deformable, having a yield strength of 459 MPa. The wear resistance of the material is very good, comparable to the tool steel. During the wear test, the spallation of the FeSi particles from the wear track was observed locally.

Zobrazit více v PubMed

Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI

Cantor B., Chang I., Knight P., Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375:213–218. doi: 10.1016/j.msea.2003.10.257. DOI

Huang P.-K., Yeh J.-W., Shun T.-T., Chen S.-K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004;6:74–78. doi: 10.1002/adem.200300507. DOI

Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI

Manzoni A.M., Glatzel U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 2019;147:512–532. doi: 10.1016/j.matchar.2018.06.036. DOI

Zhang H., Zhao Y., Cai J., Ji S., Geng J., Sun X., Li D. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing. Mater. Des. 2021;201:109462. doi: 10.1016/j.matdes.2021.109462. DOI

Pang J., Zhang H., Zhang L., Zhu Z., Fu H., Li H., Wang A., Li Z., Zhang H. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Mater. Lett. 2021;290:129428. doi: 10.1016/j.matlet.2021.129428. DOI

Hua N., Wang W., Wang Q., Ye Y., Lin S., Zhang L., Guo Q., Brechtl J., Liaw P.K. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys. J. Alloy. Compd. 2021;861:157997. doi: 10.1016/j.jallcom.2020.157997. DOI

Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001. DOI

Grilli M.L., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R.R., Ruello M.L. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials. 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC

Moravcik I., Gamanov S., Moravcikova-Gouvea L., Kovacova Z., Kitzmantel M., Neubauer E., Dlouhy I. Influence of Ti on the Tensile Properties of the High-Strength Powder Metallurgy High Entropy Alloys. Materials. 2020;13:578. doi: 10.3390/ma13030578. PubMed DOI PMC

Koch C.C., Whittenberger J.D. Mechanical milling/alloying of intermetallics. Intermetallics. 1996;4:339–355. doi: 10.1016/0966-9795(96)00001-5. DOI

Froes F.H.S., Suryanarayana C., Russell K., Li C.-G. Synthesis of intermetallics by mechanical alloying. Mater. Sci. Eng. A. 1995;192:612–623.

Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall. 2002;45:322–328. doi: 10.1179/003258902225007041. DOI

Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI

Lu Y., Wang X., Zhang Y., Wang J., Kim M.J., Zhang H. Aluminum carbide hydrolysis induced degradation of thermal conductivity and tensile strength in diamond/aluminum composite. J. Compos. Mater. 2018;52:2709–2717. doi: 10.1177/0021998317752504. DOI

Hotař A., Palm M., Kratochvíl P., Vodičková V., Daniš S. High-temperature oxidation behaviour of Zr alloyed Fe3Al-type iron aluminide. Corros. Sci. 2012;63:71–81. doi: 10.1016/j.corsci.2012.05.027. DOI

Kratochvíl P., Vodičková V., Král R., Švec M. The Effect of Laves Phase (Fe,Al)2Zr on the High-Temperature Strength of Carbon-Alloyed Fe3Al Aluminide. Metall. Mater. Trans. A. 2016;47:1128–1131. doi: 10.1007/s11661-015-3309-2. DOI

Kejzlar P., Kratochvíl P., Král R., Vodičková V. Phase Structure and High-Temperature Mechanical Properties of Two-Phase Fe-25Al-xZr Alloys Compared to Three-Phase Fe-30Al-xZr Alloys. Metall. Mater. Trans. A. 2014;45:335–342. doi: 10.1007/s11661-013-1987-1. DOI

Haušild P., Karlík M., Sima V., Alexander D. Microstructure and mechanical properties of hot rolled Fe–40 at-%Al intermetallic alloys with Zr and B addition. Mater. Sci. Technol. 2011;27:1448–1452. doi: 10.1179/026708310X12738371693012. DOI

Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC

Milekhine M.I., Onsøien M.I., Solberg J.K., Skaland T. Mechanical properties of FeSi (ε), FeSi2 (ζα) and Mg2Si. Intermetallics. 2002;10:743–750. doi: 10.1016/S0966-9795(02)00046-8. DOI

Kubošová A., Karlík M., Haušild P., Prahl J. Fracture Behaviour of Fe3Al and FeAl Type Iron Aluminides. Mater. Sci. Forum. 2007;567–568:349–352. doi: 10.4028/www.scientific.net/MSF.567-568.349. DOI

Ivanov E.G. Thermodynamic analysis of phase transformations during aluminizing. Met. Sci. Heat Treat. 1979;21:449–452. doi: 10.1007/BF00780482. DOI

Novák P., Barták Z., Nová K., Průša F. Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials. 2020;13:800. doi: 10.3390/ma13030800. PubMed DOI PMC

Umakoshi Y., Yamaguchi M. Deformation of FeAl single crystals at high temperatures. Philos. Mag. A. 1980;41:573–588. doi: 10.1080/01418618008239334. DOI

Czichos H. Tribology: A Systems Approach to the Science and Technology of Friction, Lubrication, and Wear. 1st ed. Elsevier Scientific Publishing Company; Amsterdam, The Netherlands: 1978. 399p

Massalski T.B. Binary Alloy Phase Diagrams. ASM, Materials Park; Novelty, OH, USA: 1990.

Novák P., Knotek V., Šerák J., Michalcová A., Vojtěch D. Synthesis of Fe-Al-Si intermediary phases by reactive sintering. Powder Metall. 2011;54:167–171. doi: 10.1179/174329009X449314. DOI

Zhao P., Morris D., Munoz M. Forging, textures, and deformation systems in a B2 FeAl alloy. J. Mater. Res. 1999;14:715–728. doi: 10.1557/JMR.1999.0097. DOI

Čech J., Haušild P., Materna A. Deformation of Fe3Si single-crystals under nanoindentation. Acta Polytech. CTU Proc. 2018;17:1–5. doi: 10.14311/APP.2018.17.0001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...