Solutions for Critical Raw Materials under Extreme Conditions: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28772645
PubMed Central
PMC5503360
DOI
10.3390/ma10030285
PII: ma10030285
Knihovny.cz E-zdroje
- Klíčová slova
- alloys, chromium, cobalt, composites, critical raw materials, extreme conditions, magnesium, niobium, substitution, tungsten,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In Europe, many technologies with high socio-economic benefits face materials requirements that are often affected by demand-supply disruption. This paper offers an overview of critical raw materials in high value alloys and metal-matrix composites used in critical applications, such as energy, transportation and machinery manufacturing associated with extreme working conditions in terms of temperature, loading, friction, wear and corrosion. The goal is to provide perspectives about the reduction and/or substitution of selected critical raw materials: Co, W, Cr, Nb and Mg.
Faculty of Technical Sciences University of Novi Sad Trg Dositeja Obradovica 6 21000 Novi Sad Serbia
Institute of Mechanics Montanuniversität Leoben Franz Josef Strasse 18 8700 Leoben Austria
Zobrazit více v PubMed
Communication from the Commission to the European Parliament and the Council The Raw Materials Initiative—Meeting Our Critical Needs for Growth and Jobs in Europe. [(accessed on 10 March 2017)]. Available online: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0699:FIN:en:PDF.
Report on Critical Raw Materials for EU, Report of the Ad-Hoc Working Group on Defining Critical Raw Materials for EU. May, 2014. [(accessed on 10 March 2017)]. Available online: http://mima.geus.dk/report-on-critical-raw-materials_en.pdf.
Strategic Implementation Plan for the European Innovation Partnership. 2013. [(accessed on 10 March 2017)]. Available online: https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/system/files/ged/20130731_SIP%20Part%20%20I%20complet%20clean.pdf.
EIT Knowledge and Innovation Community (KIC) by the EIT Governing Board. [(accessed on 10 March 2017)]. Available online: https://eit.europa.eu/eit-community/eit-raw-materials.
ERA-MIN Roadmap. 2013. [(accessed on 10 March 2017)]. Available online: http://www.era-min-eu.org/images/documents/public/Roadmap10.pdf.
EU, Directorate General for Internal Policies, Policy Department A, Economic and Scientific Policy, Substitutionability of critical raw materials, Study IP/A/ITRE/ST/2011-15. Oct, 2012. [(accessed on 10 March 2017)]. Available online: https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/system/files/ged/75%20Substitutability%20of%20CRM%20-%20DG%20Internal%20Policies.pdf.
CRM-EXTREME COST Action. [(accessed on 10 March 2017)]. Available online: http://www.crm-extreme.eu.
EXTREME, A European Network for Substitution of CRMs Used under Extreme Conditions. [(accessed on 10 March 2017)]. Available online: http://www.network-extreme.eu.
Flintstone2020, Project Reference: 689279. Next Generation of Superhard Non-CRM Materials and Solutions in Tooling. [(accessed on 10 March 2017)]. Available online: http://cordis.europa.eu/project/rcn/199891_en.html.
EQUINOX, Project Reference: 689510. A Novel Process for Manufacturing Complex Shaped Fe-Al Intermetallic Parts Resistant to Extreme Environments. [(accessed on 10 March 2017)]. Available online: http://www.equinox-project.eu/
Cemented Carbide, Sandvik New Developments and Applications. [(accessed on 10 March 2017)]. Available online: http://www2.sandvik.com/sandvik/0130/HI/SE03411.nsf/7a5364adb7735b05412568c70034ea1b/651f6e334db04c46c125707600562c88/$FILE/Cemented+Carbide.pdf.
Liu C. Alternative Binder Phases for WC Cemented Carbides. Master’s Thesis. Engineering Materials Science KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, 2014. [(accessed on 10 March 2017)]. Available online: http://www.diva-portal.se/smash/get/diva2:815039/FULLTEXT01.pdf.
Ashby M.F. The CES EduPack Resource Booklet 2: Material and Process Selection Charts. 2009. [(accessed on 10 March 2017)]. Available online: http://www.grantadesign.com/download/pdf/teaching_resource_books/2-Materials-Charts-2010.pdf.
Mannesson K., Borgh I., Borgenstam A., Ågren J. Abnormal grain growth in cemented carbides—Experiments and simulation. Int. J. Refract. Met. Hard Mater. 2011;29:488–494. doi: 10.1016/j.ijrmhm.2011.02.008. DOI
General Carbide The Designer’s Guide to Tungsten Carbide. [(accessed on 10 March 2017)]. Available online: http://www.generalcarbide.com/assets/pdf/GCDesignerGuide.pdf.
Schubert W.F., Lassner E., Böhlke W. CEMENTED CARBIDES—A SUCCESS STORY, Tungsten 2010, ITIA (International Tungsten Industry Association) [(accessed on 10 March 2017)]. Available online: http://www.itia.info/assets/files/Newsletter_2010_06.pdf.
Critical Raw Materials Innovation Network (CRM_InnoNet)—Substitution of Critical Raw Materials, Critical Raw Materials Substitution Profiles. September 2013, Revised May 2015. [(accessed on 10 March 2017)]. Available online: http://www.criticalrawmaterials.eu/wp-content/uploads/D3.3-Raw-Materials-Profiles-final-submitted-document.pdf.
Sakaki M., Bafghi M.S., Khaki J.V., Zhang Q., Sait F. Conversion of W2C to WC phase during mechano-chemical synthesis of nano-size WC–Al2O3 powder using WO3–2Al–(1 + x)C mixtures. Int. J. Refract. Met. Hard Mater. 2013;36:116–121. doi: 10.1016/j.ijrmhm.2012.08.002. DOI
Cornwall R.G. WC-Co enjoys proud history and bright future. Met. Powder Rep. 1998;53:32–36. doi: 10.1016/S0026-0657(98)85097-2. DOI
Bhadeshia H.K.D.H. Nickel Based Superalloys. [(accessed on 10 March 2017)]. Available online: http://www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superalloys.html.
Tang Q., Ukai S., Oono N., Hayashi S., Leng B., Sugino Y., Han W., Okuda T. Oxide Particle Refinement in 4.5 mass% Al Ni-Based ODS Superalloys. Mater. Trans. 2012;53:645–651. doi: 10.2320/matertrans.M2011251. DOI
Tian C., Han G., Cui C., Sun X. Effects of Co content on tensile properties and deformation behaviors of Ni-based disk superalloys at different temperatures. Mater. Des. 2015;88:123–131. doi: 10.1016/j.matdes.2015.08.114. DOI
Park S.J., Seo S.M., Yoo Y.S., Jeong H.W., Jang H. Statistical Study of the Effects of the Composition on the Oxidation Resistance of Ni-Based Superalloys. J. Nanomater. 2015;2015:929546. doi: 10.1155/2015/929546. DOI
Zenk C.H., Neumeier S., Engl N.M., Fries S.G., Dolotko O., Weiser M., Virtanen S., Göken M. Intermediate Co/Ni-base model superalloys—Thermophysical properties, creep and oxidation. Scr. Mater. 2016;112:83–86. doi: 10.1016/j.scriptamat.2015.09.018. DOI
Dong J., Bi Z., Wang N., Xie X., Wang Z. Structure Control of a New-Type High-Cr Superalloy. In: Reed R.C., Green K.A., Caron P., Gabb T.P., Fahrman M.G., Huron E.S., Woodard S.A., editors. Superalloys 2008. TMS (The Minerals, Metals & Materials Society); Champion, PA, USA: 2008.
Kawagishi K., Yeh A.C., Yokokawa T., Kobayashi T., Koizumi Y., Harada H. Development of an Oxidation-Resistant High-Strength Sixth-Generation Single-Crystal Superalloy TMS-238. In: Huron E.S., Reed R.C., Hardy M.C., Mills M.J., Montero R.E., Portella P.D., Telesman J., editors. Superalloy 2012. TMS (The Minerals, Metals & Materials Society); Champion, PA, USA: 2012.
Sato A., Harada H., Yeh A.C., Kawagishi K., Kobayashi T., Koizumi Y., Yokokawa T., Zhang J.-X. A 5th Generation SC Superalloy with Balanced High Temperature Properties and Processability. In: Reed R.C., Green K.A., Caron P., Gabb T.P., Michael G., Fahrmann M.G., Huron E.S., Woodard S.A., editors. Superalloys 2008. TMS (The Minerals, Metals & Materials Society); Champion, PA, USA: 2008.
Matuszewski K., Rettig R., Matysiak H., Peng Z., Povstugar I., Choi P., Müller J., Raabe D., Spiecker E., Kurzydłowski K.J., et al. Effect of ruthenium on the precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation. Acta Mater. 2015;95:274–283. doi: 10.1016/j.actamat.2015.05.033. DOI
Stainless Steel—ASM Specialty Handbook. ASM International; Materials Park, OH, USA: 1994.
Di Caprio G. Gli Acciai Inossidabili. 4th ed. Hoepli; Milano, Italy: 2003.
Van Rooyen G.T. The Potential of Chromium as an Alloying Element; Proceedings of the 1st International Chromium Steel and Alloys Congress; Cape Town, South Africa. 8–11 March 1992; pp. 43–47.
Metals Handobook, Volume 13—Corrosion. 9th ed. ASM International; Metals Park, OH, USA: 1987.
Cunat P.J. Alloying Elements in Stainless Steel and Other Chromium-Containing Alloys. Euro Inox2004. [(accessed on 10 March 2017)]. Available online: http://www.bssa.org.uk/cms/File/Euro%20Inox%20Publications/Alloying%20Elements.pdf.
Bellezze T., Roventi G., Fratesi R. Electrochemical study on the corrosion resistance of Cr III-based conversion layers on zinc coatings. Surf. Coat. Technol. 2002;155:221–230. doi: 10.1016/S0257-8972(02)00047-6. DOI
Wynn P.C., Bishop C.V. Replacing hexavalent chromium. Trans. Inst. Met. Finish. 2001;79:B27–B30.
Militzer M. Thermomechanical Processed Steels. Reference Module in Materials Science and Materials Engineering. Compr. Mater. Process. 2014;1:191–216.
Tamarelli C.M. AHSS 101: The Evolving Use of Advanced High-Strength Steels for Automotive Applications. Steel Market Development Institute, Student Intern-Summer 2011, University of Michigan; Southfield, MI, USA: 2011.
Bigot A., Auger P., Chambreland S., Blavette D., Reeves A. Atomic Scale Imaging and Analysis of T′ Precipitates in Al-Mg-Zn Alloys. Microsc. Microanal. Microstruct. 1997;8:103–113. doi: 10.1051/mmm:1997109. DOI
Dursun T., Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014;56:862–871. doi: 10.1016/j.matdes.2013.12.002. DOI
Smallman R., Ngan A. Physical Metallurgy and Advanced Materials. Elsevier Ltd.; Oxford, UK: 2007. p. 390.
Mosbah A.Y., Wexler D., Calka A. Abrasive wear of WC-FeAl composites. Wear. 2005;258:1337–1341. doi: 10.1016/j.wear.2004.09.061. DOI
Yusoff M., Othman R., Hussain Z. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced carbon composite and its characterization. Mater. Des. 2011;32:3293–3298. doi: 10.1016/j.matdes.2011.02.025. DOI
Makarov S., Poletika I., Krylova T. Tungsten carbide by boron replacement under electron beam surfacing; Proceedings of the 9th International Conference “Interaction of Radiation with Solids”; Minsk, Belarus. 20–22 September 2011.
Goljandin D., Sarjas H., Kulu P., Käerdi H., Mikli V. Metal Matrix Hardmetal/Cermet Reinforced Composite Powder for Thermal Spray. Mater. Sci. Medžiagotyra. 2012;18:84–89. doi: 10.5755/j01.ms.18.1.1348. DOI
Zhang S. Titanium carbonitride-based cermets processes and properties. Mater. Sci. Eng. A. 1993;163:141–148. doi: 10.1016/0921-5093(93)90588-6. DOI
Kumar B.V.M., Basu B., Vizintin J., Kalin M. Tribochemistry in sliding wear of TiCN–Ni-based cermets. J. Mater. Res. 2008;23:1214–1227. doi: 10.1557/JMR.2008.0165. DOI
Ishida T., Moriguchi H., Ikegaya A. Development of Cemented Carbide Tool of Reduced Rare Metal Usage. SEI Tech. Rev. 2011;73:52–56.
Szutkowska M., Jaworska L., Cygan S., Karolus M., Kalinka A., Leśniewski W. WC-Co hardmetal with addition of MAX phase from Ti-Si-C system obtained by HIP method. IAAM Scientist Awarded Lecture; Proceedings of the International Conference on Materials Science & Technology; Delhi, India. 1–4 March 2016.
Szutkowska M., Jaworska L., Karolus M., Podsiadło M. Effect of MAX phase from Ti-Si-C system on microstructure and mechanical properties of WC-Co hardmetal sintered by SPS method; Proceedings of the International Symposium on Green Manufacturing and Applications ISGMA; Bali, Indonesia. 21–25 July 2016.
Dutkiewicz J., Szutkowska M., Leśniewski W., Wieliczko P., Pieczara A., Rogal Ł. The effect of TiC on structure and hardness of WC-Co composites prepared using various consolidation methods. Kompozyty (Compos.) 2014;2:91–95.
Tarragó J.M., Ferrari C., Reig B., Coureaux D., Schneider L., Llanes L. Mechanics and mechanisms of fatigue in a WC–Ni hardmetal and a comparative study with respect to WC–Co hard metals. Int. J. Fatigue. 2015;70:252–257. doi: 10.1016/j.ijfatigue.2014.09.011. DOI
Tarragó J.M., Roa J.J., Valle V., Marshall J.M., Llanes L. Fracture and fatigue behavior of WC–Co and WC–CoNi cemented carbides. Int. J. Refract. Met. Hard Mater. 2015;49:184–191. doi: 10.1016/j.ijrmhm.2014.07.027. DOI
Viswanadham R.K., Lindquist R.G. Transformation-Toughening in Cemented Carbides: Part I. Binder Composition Control. Metall. Trans. A. 1987;18:2163–2173. doi: 10.1007/BF02647089. DOI
Schubert W.D., Fugger M., Wittmann B., Useldinger R. Aspects of sintering of cemented carbides with Fe-based binders. Int. J. Refract. Met. Hard Mater. 2015;49:110–123. doi: 10.1016/j.ijrmhm.2014.07.028. DOI
Novák P., Šotka D., Novák M., Michalcová A., Šerák J., Vojtěch D. Production of NiAl–matrix composites by reactive sintering. Powder Metall. 2011;54:308–313. doi: 10.1179/003258909X12518163. DOI
Novák P., Salvetr P., Pecenová Z. Intermetallics–Synthesis, Production, Properties. Manuf. Technol. 2015;15:1024–1028.
Novák P., Kříž J., Průša F., Kubásek J., Marek I., Michalcová A., Voděrová M., Vojtěch D. Structure and properties of Ti-Al-Si-X alloys produced by SHS method. Intermetallics. 2013;39:11–19. doi: 10.1016/j.intermet.2013.03.009. DOI
Knaislová A., Novák P., Nová K. Using of Microscopy in optimization of the Ti-Al-Si alloys preparation by powder metallurgy. Manuf. Technol. 2016;16:946–949.
Novák P., Vojtěch D., Šerák J., Knotek V., Bártová B. Duplex surface treatment of the Nb-alloyed PM tool steel. Surf. Coat. Technol. 2006;201:3342–3349. doi: 10.1016/j.surfcoat.2006.07.101. DOI
Hayama A.O.F., Sandim H.R.Z., Lins J.F.C., Hupalo M.F., Padilha A.F. Annealing behavior of the ODS nickel-based superalloy PM 1000. Mater. Sci. Eng. A. 2004;371:198–209. doi: 10.1016/j.msea.2003.11.052. DOI
The GEnx Commercial Aircraft Engine The GEnx Engine Delivers Proven Performance for the Boeing 787 Dreamliner and Boeing 747-8. [(accessed on 10 March 2017)]. Available online: http://www.geaviation.com/commercial/engines/genx/
Schwaighofer E., Clemens H., Mayer S., Lindemann J., Klose J., Smarsly W., Güther V. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics. 2014;44:128–140. doi: 10.1016/j.intermet.2013.09.010. DOI
Kratochvil P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Meher S., Carroll L.J., Pollock T.M., Carroll M.C. Solute partitioning in multi-component γ/γ′ Co–Ni-base superalloys with near-zero lattice misfit. Scr. Mater. 2016;113:185–189. doi: 10.1016/j.scriptamat.2015.10.039. DOI
Frick L. Ceramic Composites Give Super-Alloys Strong Competition. 2012. [(accessed on 10 March 2017)]. Available online: http://machinedesign.com/news/ceramic-composites-give-super-alloys-strong-competition.
Cao X.Q., Vassen R., Stoever D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004;24:1–10. doi: 10.1016/S0955-2219(03)00129-8. DOI
Vassen R., Jarligo M.O., Steinke T., Mack D.E., Stover D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010;205:938–942. doi: 10.1016/j.surfcoat.2010.08.151. DOI
Ilina S., Ionescu G., Manoliu V., Piticescu R.R. Nanostructured Zirconia Layers as Thermal Barrier Coatings. INCAS Bull. 2011;3:63–69.
Strategic Materials: Technologies to Reduce U.S. Import Vulnerability. U.S. Congress, Office of Technology Assessment, OTA-ITE-248; Washington, DC, USA: 1985. Substitution Alternatives for Strategic Materials; pp. 263–328. Chapter 7.
Glenn M.L., Larson D.E. Reduced-Chromium Stainless Steel Substitutes Containing Silicon and Aluminum. United States Department of the Interior, Bureau of Mines; Albany, OR, USA: 1984.
Bullard S.J., Larson D.E., Dunning J.S. Oxidation and Corrosion Resistance of Two Fe-8Cr-16Ni-Si-Cu Alloys. Corrosion. 1992;48:891–897. doi: 10.5006/1.3315890. DOI
Dunning J.S., Alman D.E., Rawers J.C. Influence of Silicon and Aluminum Additions on the Oxidation Resistance of a Lean-Chromium Stainless Steel. Oxid. Met. 2002;57:409–425. doi: 10.1023/A:1015344220073. DOI
Engkvist J., Bexell U., Grehk M., Olsson M. High temperature oxidation of FeCrAl-alloys—Influence of Al-concentration on oxide layer characteristics. Mater. Corros. 2009;60:876–881. doi: 10.1002/maco.200805186. DOI
Wolff I.M., Iorio L.E., Rumpf T., Scheers P.V.T., Potgieter J.H. Oxidation and corrosion behaviour of Fe–Cr and Fe–Cr–Al alloys with minor alloying additions. Mater. Sci. Eng. A. 1998;241:264–276. doi: 10.1016/S0921-5093(97)00500-5. DOI
Jönsson B., Lu Q., Chandrasekaran D., Berglund R., Rave F. Oxidation and Creep Limited Lifetime of Kanthal APMT®, a Dispersion Strengthened FeCrAlMo Alloy Designed for Strength and Oxidation Resistance at High Temperatures. Oxid. Met. 2013;79:29–39. doi: 10.1007/s11085-012-9324-4. DOI
Pothen F., Goeschl T., Löschel A., Jaha V. Strategic Trade Policy and Critical Raw Materials in Stainless Steel Production. Zentrum für Europäische Wirtschaftsforschung; Mannheim, Germany: 2013. Project Report.
Cavallini M., Felli F., Fratesi R., Veniali F. High temperature air oxidation behaviour of “poor man” high manganese-aluminum steels. Mater. Corros. 1982;33:386–390. doi: 10.1002/maco.19820330703. DOI
Casteletti L.C., Neto A.L., Totten G.E., Heck S.C., Fernandes F.A.P. Use of Fe–31Mn–7.5Al–1.3Si–0.9C Alloy for Fabrication of Resistive Elements. J. ASTM Int. 2010;7:1–4.
Bellezze T., Giuliani G., Roventi G., Fratesi R., Andreatta F., Fedrizzi L. Corrosion behaviour of austenitic and duplex stainless steels in an industrial strongly acidic solution. Mater. Corros. 2016;67:831–838. doi: 10.1002/maco.201508708. DOI
Chen W.Y.C., Stephens J.R. Anodic Polarization Behaviour of Austenitic Stainless Steel Alloys with Lower Chromium Content. Corrosion. 1979;35:443–451. doi: 10.5006/0010-9312-35.10.443. DOI
Reformatskaya I.I., Rodionova I.G., Podobaev A.N., Ashcheulova I.I., Trofimova E.V. Silicon as an Alloying Element in Ferrite Stainless Steels Containing 8–13% Cr. Prot. Met. 2006;42:549–554. doi: 10.1134/S0033173206060051. DOI
Wan J., Ran Q., Li J., Xu Y., Xiao X., Yu H., Jiang L. A new resource-saving, low chromium and low nickel duplex stainless steel 15Cr–xAl–2Ni–yMn. Mater. Des. 2014;53:43–50. doi: 10.1016/j.matdes.2013.06.043. DOI
Cavallini M., Felli F., Fratesi R., Veniali F. Aqueous solution corrosion behaviour of “poor man” high manganese-aluminum steels. Mater. Corros. 1982;33:281–284. doi: 10.1002/maco.19820330506. DOI
Li C., Bell T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corros. Sci. 2006;48:2036–2049. doi: 10.1016/j.corsci.2005.08.011. DOI
Bellezze T., Roventi G., Quaranta A., Fratesi R. Improvement of pitting corrosion resistance of AISI 444 stainless steel to make it a possible substitute for AISI 304L and 316L in hot natural waters. Mater. Corros. 2008;59:727–731. doi: 10.1002/maco.200804112. DOI
Park L.J., Ryu H.J., Hong S.H., Kim Y.G. Microstructure and Mechanical Behavior of Mechanically Alloyed ODS Ni-Base Superalloy for Aerospace Gas Turbine Application. Adv. Perform. Mater. 1998;5:279–290. doi: 10.1023/A:1008653015451. DOI
Hoornaert T., Hua Z.K., Zhang J.H. Hard Wear-Resistance Coatings: A Review. In: Luo L., Meng Y., Shao T., Zhao Q., editors. Advanced Tribology. Springer; Berlin, Germany: 2010. pp. 774–779.
Subrahmanyam J., Srivastava M.P., Sivakumar R. Characterization of plasma-sprayed WC-Co coatings. Mater. Sci. Eng. 1986;84:209–214. doi: 10.1016/0025-5416(86)90240-5. DOI
Çalışkan H. Effect of test parameters on the micro-abrasion behavior of PVD CrN coatings. Measurement. 2014;55:444–451. doi: 10.1016/j.measurement.2014.05.036. DOI
Guilemany J.M., Espallargas N., Suegama P.H., Benedetti A.V., Fernández J. High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings. J. Therm. Spray Technol. 2005;14:335–341. doi: 10.1361/105996305X59350. DOI
Veprek S., Jilek M. Superhard nanocomposite coatings. From basic science toward industrialization. Pure Appl. Chem. 2002;74:475–481. doi: 10.1351/pac200274030475. DOI
Merl D.K., Milošev I., Panjan P., Zupanič F. Morphology and Corrosion Properties PVD Cr-N Coatings Deposited on Aluminium Alloys. Mater. Tehnol. 2011;45:593–597.
Fragiel A., Staia M.H., Muñoz-Saldaña J., Puchi-Cabrera E.S., Cortes-Escobedo C., Cota L. Influence of the N2 partial pressure on the mechanical properties and tribological behavior of zirconium nitride deposited by reactive magnetron sputtering. Surf. Coat. Technol. 2008;202:3653–3660. doi: 10.1016/j.surfcoat.2008.01.001. DOI
Valerina D., Signore M.A., Tapfer L., Piscopiello E., Galietti U., Rizzo A. Adhesion and wear of ZrN films sputtered on tungsten carbide substrates. Thin Solid Films. 2013;538:42–47. doi: 10.1016/j.tsf.2012.10.116. DOI
Gusmano G., Montesperelli G., Rapone M., Padeletti G., Cusmà A., Kaciulis S., Mezzi A., Maggio R.D. Zirconia Primers for Corrosion Resistant Coatings. Surf. Coat. Technol. 2007;201:5822–5828. doi: 10.1016/j.surfcoat.2006.10.036. DOI
Holleck H., Schier V. Multilayer PVD coatings for wear protection. Surf. Coat. Technol. 1995;76–77:328–336. doi: 10.1016/0257-8972(95)02555-3. DOI
Mahamood R.M., Akinlabi E.T., Shukla M., Pityana S. Functionally Graded Material: An Overview. In: Ao S.I., Gelman L., Hukins D.W.L., Hunter A., Korsunsky A.M., editors. Proceedings of the World Congress on Engineering; London, UK. 4–6 July 2012; London, UK: International Association of Engineers; 2012. [(accessed on 10 March 2017)]. pp. 1593–1597. Available online: http://www.iaeng.org/publication/WCE2012/WCE2012_pp1593-1597.pdf.
Ho S.-Y., Kotousov A., Nguyen P., Harding S., Codrington J., Tsukamoto H. FGM (Functionally Graded Material) Thermal Barrier Coatings for Hypersonic Structures—Design and Thermal Structural Analysis. AOARD REPORT Contract No. 064043. Department of Mechanical Engineering, University of Adelaide; Adelaide, Australia: 2007.
Costa J.S., Dei Agnoli R., Ferreira J.Z. Corrosion behavior of a conversion coating based on zirconium and colorants on galvanized steel by electrodeposition. Technol. Metal. Mater. Miner. 2015;12:167–175. doi: 10.4322/2176-1523.0852. DOI
Schaffnit P., Stallybrass C., Konrad J., Kulgemeyer A., Meuser H. Dual-scale phase field simulation of grain growth upon reheating of a microalloyed line pipe steel. Int. J. Mater. Res. 2010;101:549–554. doi: 10.3139/146.110309. DOI
Banerjee K., Perez M., Wang X., Militzer M. Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel. Metall. Mater. Trans. A. 2010;41:3161–3172. doi: 10.1007/s11661-010-0376-2. DOI
Rioja R.R., Liu J. The Evolution of Al-Li Base Products for Aerospace and Space Applications. Metall. Mater. Trans. A. 2012;43:3325–3337. doi: 10.1007/s11661-012-1155-z. DOI
Bodily B., Heinimann M., Bray G., Colvin E., Witters J. Advanced aluminum and aluminum–lithium solutions for derivative and next generation aerospace structures; Proceedings of the SAE 2012 Aerospace Manufacturing and Automated Fastening Conference and Exhibition, AMAF 2012; Fort Worth, TX, USA. 18–20 September 2012; Code 96078, SAE Paper No. 2012-01-1874.
Moreto J.A., Gamboni O., Ruchert C.O.F.T., Romagnoli F., Moreira M.F., Beneduce F., Bose Filho W.W. Corrosion and fatigue behavior of new Al alloys. Procedia Eng. 2011;10:1521–1526. doi: 10.1016/j.proeng.2011.04.254. DOI
Yu N., Shang J., Cao Y., Ma D., Liu Q. Comparative analysis of Al-Li alloy and aluminum honeycomb panel for aerospace application by structural optimization. Math. Probl. Eng. 2015;2015:815257. doi: 10.1155/2015/815257. DOI
Soltani P., Keikhosravy M., Oskouei R.H., Soutis C. Studying the tensile behaviour of GLARE laminates: A finite element modelling approach. Appl. Compos. Mater. 2011;18:271–282. doi: 10.1007/s10443-010-9155-x. DOI
Liu H., Hu Y., Dou C., Sekulic D.P. An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy. Mater. Charact. 2017;123:9–19. doi: 10.1016/j.matchar.2016.11.011. DOI
Lertora E., Gambaro C. AA8090 Al-Li alloy FSW parameters to minimize defects and increase fatigue life. Int. J. Mater. Form. 2010;3:1003–1006. doi: 10.1007/s12289-010-0939-1. DOI
Cai B., Zheng Z.Q., He D.Q., Li S.C., Li H.P. Friction stir weld of 2060 Al–Cu–Li alloy: Microstructure and mechanical properties. J. Alloys Compd. 2015;649:19–27. doi: 10.1016/j.jallcom.2015.02.124. DOI
Purdy G., Ågren J., Borgenstam A., Bréchet Y., Enomoto M., Furuhara T., Gamsjäger E., Gouné M., Hillert M., Hutchinson C., et al. ALEMI: A Ten-Year History of Discussions of Alloying-Element Interactions with Migrating Interfaces. Metall. Mater. Trans. A. 2011;42:3703–3718. doi: 10.1007/s11661-011-0766-0. DOI
Gouné M., Danoix F., Ågren J., Bréchet Y., Hutchinson C.R., Militzer M., Purdy G., van der Zwaag S., Zurob H. Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels. Mater. Sci. Eng. R Rep. 2015;92:1–38. doi: 10.1016/j.mser.2015.03.001. DOI
Wang M.-M., Tasan C.C., Ponge D., Kostka A., Raabe D. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater. 2014;79:268–281. doi: 10.1016/j.actamat.2014.07.020. DOI
Wiessner M., Gamsjäger E., van der Zwaag S., Angerer P. Effect of reverted austenite on tensile and impact strength in a martensitic stainless steel—An in-situ X-ray diffraction study. Mater. Sci. Eng. A. 2017;682:117–125. doi: 10.1016/j.msea.2016.11.039. DOI
Load-Independent Hardness and Indentation Size Effect in Iron Aluminides
Novel High-Entropy Aluminide-Silicide Alloy
Development of TiAl-Si Alloys-A Review
Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys
The Critical Raw Materials in Cutting Tools for Machining Applications: A Review
Structure and Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying