The Critical Raw Materials in Cutting Tools for Machining Applications: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
45759e9bc434860c db0766ea52049ded 92cd32ae43576819
novak pavel
COST Action CA15102 "Solutions for Critical Raw Materials under Extreme Conditions
COST Action CA15102 "Solutions for Critical Raw Materials under Extreme Conditions
PubMed
32197537
PubMed Central
PMC7142786
DOI
10.3390/ma13061377
PII: ma13061377
Knihovny.cz E-zdroje
- Klíčová slova
- critical raw materials, cutting tools, modelling and simulation, new machining methods, new materials,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A variety of cutting tool materials are used for the contact mode mechanical machining of components under extreme conditions of stress, temperature and/or corrosion, including operations such as drilling, milling turning and so on. These demanding conditions impose a seriously high strain rate (an order of magnitude higher than forming), and this limits the useful life of cutting tools, especially single-point cutting tools. Tungsten carbide is the most popularly used cutting tool material, and unfortunately its main ingredients of W and Co are at high risk in terms of material supply and are listed among critical raw materials (CRMs) for EU, for which sustainable use should be addressed. This paper highlights the evolution and the trend of use of CRMs) in cutting tools for mechanical machining through a timely review. The focus of this review and its motivation was driven by the four following themes: (i) the discussion of newly emerging hybrid machining processes offering performance enhancements and longevity in terms of tool life (laser and cryogenic incorporation); (ii) the development and synthesis of new CRM substitutes to minimise the use of tungsten; (iii) the improvement of the recycling of worn tools; and (iv) the accelerated use of modelling and simulation to design long-lasting tools in the Industry-4.0 framework, circular economy and cyber secure manufacturing. It may be noted that the scope of this paper is not to represent a completely exhaustive document concerning cutting tools for mechanical processing, but to raise awareness and pave the way for innovative thinking on the use of critical materials in mechanical processing tools with the aim of developing smart, timely control strategies and mitigation measures to suppress the use of CRMs.
Department of Physics University of Oviedo Federico Garcia Lorca 18 ES 33007 Oviedo Spain
Faculty of Non Ferrous Metals AGH University of Science and Technology 30 059 Krakow Poland
Łukasiewicz Research Network Institute of Advanced Manufacturing Technology 30 011 Krakow Poland
School of Aerospace Transport and Manufacturing Cranfield University Cranfield MK430AL UK
School of Engineering London South Bank University 103 Borough Road London SE1 0AA UK
Sumy State University Department of Nanoelectronics 2 Rymskogo Korsakova st 40007 Sumy Ukraine
Zobrazit více v PubMed
Grilli M., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R., Ruello M. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials. 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC
Commission of the European Communities The Raw Materials Initiative: Meeting Our Critical Needs for Growth and Jobs in Europe, Brussels. [(accessed on 17 March 2020)];2008 Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52008DC0699.
Singla A.K., Singh J., Sharma V.S. Processing of materials at cryogenic temperature and its implications in manufacturing: A review. Mater. Manuf. Process. 2018;33:1603–1640. doi: 10.1080/10426914.2018.1424908. DOI
European Commission . DG Enterprise and Industry, Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on Defining Critical Raw Materials. European Commission; Brussels, Belgium: 2010.
European Commission . Report on Critical Raw Materials for the EU: Report of the Ad hoc Working Group on Defining Critical Raw Materials. European Commission; Brussels, Belgium: May, 2014.
Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2017) 490 Final. [(accessed on 17 March 2020)]; Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:52017DC0490.
Bobzin K. High-performance coatings for cutting tools. Cirp J. Manuf. Sci. Technol. 2017;18:1–9. doi: 10.1016/j.cirpj.2016.11.004. DOI
Byrne G., Ahearne E., Cotterell M., Mullany B., O’Donnell G.E., Sammler F. High Performance Cutting (HPC) in the New Era of Digital Manufactoring–A Roadmap. Procedia Cirp. 2016;46:1–6. doi: 10.1016/j.procir.2016.05.038. DOI
Vanegas P., Durana G., Zubia J., De Ocariz I.S. Advanced monitoring systems for smart tooling in aeronautical Industry 4.0; Proceedings of the 14th Quantitative InfraRed Thermography Conference; Berlin, Germany. 25–29 June 2018; DOI
Cheng K., Chao Z., Wang C., Rakowski R. Bateman Smart Cutting tools and smart machining: Development approaches and their implementation and application perspectives. Chin. J. Mech. Eng. 2017;30 doi: 10.1007/s10033-017-0183-4. DOI
Paulsen T., Pecat O., Brinksmeier E. Influence of different machining conditions on the subsurface properties of drilled TiAl6V4. Procedia Cirp. 2016;46:472–475. doi: 10.1016/j.procir.2016.04.047. DOI
Li J., Huang Y., Meng X., Xie Y. A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Adv. Eng. Mater. 2019;21:1900343. doi: 10.1002/adem.201900343. DOI
Kurlov S.A., Gusev A.I. Tungsten Carbides: Structure, Properties and Application in Hardmetals. Springer; Cham, Switzerland: 2013. Springer Series in Materials Science 184. DOI
Mills B. Recent Developments in Cutting Tool Materials. J. Mater. Process. Technol. 1996;56:16–23. doi: 10.1016/0924-0136(95)01816-6. DOI
Agte C., Kohlermann R. Hilfsmetallarme Hartmetallegierungen. Die Tech. 1957;10:686–689.
Richter V. Hard sintered materials made of nano-sized powders. Annu. Rep. Fraunhofer IKTS. 1995:44–45.
Li S.K., Li J.Q., Li Y., Liu F.S., Ao W.Q. Dense pure binderless WC bulk material prepared by spark plasma sintering. Mater. Sci. Technol. 2015;31:1749–1756. doi: 10.1179/1743284714Y.0000000753. DOI
Gubernat A., Rutkowski P., Grabowski G., Zientara D. Hot pressing of tungsten carbide with and without sintering additives. Int. J. Refract. Met. Hard Mater. 2014;43:193–199. doi: 10.1016/j.ijrmhm.2013.12.002. DOI
Sun J., Zhao J., Shen X., Huang Z., Yan K., Xing J., Gao Y., Jian Y., Yang H., Liat B. A Review on Binderless Tungsten Carbide: Development and Application. Nano-Micro Lett. 2019;12:13. doi: 10.1007/s40820-019-0346-1. PubMed DOI PMC
Gurland J. A study of the effect of carbon content on the structure and properties of sintered WC–Co alloys. Trans. AIME. 1954;200:285–290.
Gubedrechtrnat L. Stobierski, Fractography of dense metal-like carbides sintered with carbon. Key Eng. Mater. 2009;409:287–290. doi: 10.1016/j.ijrmhm.2013.12.002. DOI
Fox R.T., Nilsson R. Binderless tungsten carbide carbon control with pressureless sintering. Int. J. Refract. Met. Hard Mater. 2018;76:82–89. doi: 10.1016/j.ijrmhm.2018.05.020. DOI
Kim H.C., Shon I.J., Garay J.E., Munir Z.A. Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering. Int. J. Refract. Met. Hard Mater. 2004;22:257–264. doi: 10.1016/j.ijrmhm.2004.08.003. DOI
Szutkowska M., Boniecki M., Cygan S., Kalinka A., Grilli M.L., Balos S. Fracture behaviour of WC-Co partially substituted by titanium carbide. Iop Conf. Ser. Mater. Sci. Eng. 2018;329 doi: 10.1088/1757-899X/329/1/012015. DOI
Tai W.P., Watanabe T. Fabrication and Mechanical Properties of Al2O3-WC-Co Composites by Vacuum Hot Pressing. J. Am. Ceram. Soc. 1998;81:1673–1676. doi: 10.1111/j.1151-2916.1998.tb02531.x. DOI
Basu B., Lee J.H., Kim D.Y. Development of WC–ZrO2 Nanocomposites by Spark Plasma Sintering. Am. Ceram. Soc. 2004;87:317–319. doi: 10.1111/j.1551-2916.2004.00317.x. DOI
Uvarova I., Babutina T., Konchakovskay I., Timofeeva I., Petuchov A. Nanostructure Composition of Diamond-WC-Co. In: Stojanović B.D., Skorokhod V.V., Nikolić M.V., editors. Advanced Science and Technology of Sintering. Springer; Berlin/Heidelberg, Germany: 1999.
Martínez V., Echeberria J. Hot isostatic pressing of cubic boron nitride-tungsten carbide/cobalt (cBN-WC/Co) composites: Effect of cBN particle size and some processing parameters on their microstructure and properties. J. Am. Ceram Soc. 2007;90:415–424. doi: 10.1111/j.1551-2916.2006.01426.x. DOI
Rong H.Y., Pen Z.J., Ren X.Y., Wang C.B., Fu Z.Q., Qi L.H., Miao H.Z. Microstructure and mechanical properties of ultrafine WC-Ni-VC-TaC-cBN cemented carbides fabricated by spark plasma sintering. Int. J. Refract. Met. Hard. Mater. 2011;29:733–738. doi: 10.1016/j.ijrmhm.2011.06.004. DOI
Rosinski M., Michalski A. WCCo/cBN composites produced by pulse plasma sintering method. J. Mater. Sci. 2012;47:7064–7071. doi: 10.1007/s10853-012-6532-x. DOI
Mao C., Ren Y., Gan H., Zhang M., Zhang J., Tang K. Microstructure and mechanical properties of cBN-WC-Co composites used for cutting tools. Int. J. Adv. Manuf. Technol. 2015;76:2043–2049. doi: 10.1007/s00170-014-6410-6. DOI
Bengisu M., Inal O.T. Whisker toughening of ceramics, toughening mechanisms, fabrication, and composite properties. Annu. Rev. Mater. Sci. 1994;24:83–124. doi: 10.1146/annurev.ms.24.080194.000503. DOI
Chao Y.J., Liu J. Study of WC ceramic tool material by SiC whisker toughening. Rare Met. Cem. Carbides. 2005;33:13–16.
Chen K., Xiao W., Li Z., Wu J., Hong K., Ruan X. Effect of Graphene and Carbon Nanotubes on the Thermal Conductivity of WC–Co Cemented Carbide. Met. Open Access Metall. J. 2019;9:377. doi: 10.3390/met9030377. DOI
Díaz-Álvarez J., Criado V., Miguélez H., Cantero J. PCBN Performance in High Speed Finishing Turning of Inconel 718. Metals. 2018;8:582. doi: 10.3390/met8080582. DOI
Fortunato A., Valli G., Liverani E., Ascari A. Additive Manufacturing of WC-Co Cutting Tools for Gear Production. Lasers Manuf. Mater. Process. 2019;6:247–262. doi: 10.1007/s40516-019-00092-0. DOI
Goel S., Luo X., Agrawal A., Reuben R.L. Diamond machining of silicon: A review of advances in molecular dynamics simulation. Int. J. Mach. Tools Manuf. 2015;88:131–164. doi: 10.1016/j.ijmachtools.2014.09.013. DOI
Komanduri R., Lee M., Flom D.G., Thompson R.A., Jones M.G., Douglas R.J. General Electric Co, 1982. Pulse laser pretreated machining. 4,356,376. U.S. Patent. 2020 Oct 26;
Wu J.F., Guu Y.B. Laser assisted machining method and device. US20040104207A1. Google Patents. 2006 Feburary;
Patten J. Micro Laser Assisted Machining. US8933366B2. Google Patents. 2015 Jan 13;
Shin Y.C. Laser Assisted Machining Process with Distributed Lasers. US8698041B2. Google Patents. 2014 Apr 15;
Shin Y.C. Machining apparatus and process. US20110048183A1. Google Patents. 2011 Mar 3;
Dahotre N.B., Santhanakrishnan S. Laser-assisted machining (lam) of hard tissues and bones. US9387041B2. Google Patents. 2016 Jul 12;
Santner J.S., Sciammarella F.M., Kyselica S. Laser assisted machining system for ceramics and hard materials. US20130134141A1. Google Patents. 2013 May 30;
Abdulghani O., Sobih M., Youssef A., El-Batahgy A.M. Modeling and Simulation of Laser Assisted Turning of Hard Steels. Modeling Numer. Simul. Mater. Sci. 2013;3:106–113. doi: 10.4236/mnsms.2013.34014. DOI
Razavykia A., Delprete C., Baldissera P. Correlation between Microstructural Alteration, Mechanical Properties and Manufacturability after Cryogenic Treatment: A Review. Materials. 2019;12:3302. doi: 10.3390/ma12203302. PubMed DOI PMC
Varghese V., Akhil K., Ramesh M.R., Chakradhar D. Investigation on the performance of AlCrN and AlTiN coated cemented carbide inserts during end milling of maraging steel under dry, wet and cryogenic environments. J. Manuf. Process. 2019;43:136–144. doi: 10.1016/j.jmapro.2019.05.021. DOI
Goel S., Martinez F.D., Chavoshi S.Z., Khatri N., Giusca C. Molecular dynamics simulation of the elliptical vibration-assisted machining of pure iron. J. Micromanuf. 2018;1:6–19. doi: 10.1177/2516598418765359. DOI
Shokrani A., Dhokia V., Munos-Escalona P., Newmann S.T. State-of-art cryogenic machining and processing. Int. J. Comput. Integr. Manuf. 2013;26:616–648. doi: 10.1080/0951192X.2012.749531. DOI
Rakesh S., Nirmal K. Cryogenic Treatment of Tool Materials: A Review. Mater. Manuf. Process. 2010;25:1077–1100. doi: 10.1080/10426911003720862. DOI
Yildiz Y., Nalbant M. A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 2008;48:947–964. doi: 10.1016/j.ijmachtools.2008.01.008. DOI
Gill S.S., Singh R., Singh H., Singh J. Investigation on wear behavior of cryogenically treated TiAlN coated tungsten carbide inserts in turning. Int. J. Mach. Tools Manuf. 2011;51:25–33. doi: 10.1016/j.ijmachtools.2010.10.003. DOI
Seah K.H.W., Rahaman M., Yong K.H. Performance evaluation of cryogenically treated tungsten carbide cutting tool inserts Proceeding of the Institution of Mechanical Engineers-Part B. J. Eng. Manuf. 2003;217:29–43. doi: 10.1243/095440503762502260. DOI
Yong A.Y.L., Seah K.H.W.M. Rahman Performance of cryogenically treated tungsten carbide tools in milling operations. Int. J. Adv. Manuf. Technol. 2006;32:638–643. doi: 10.1007/s00170-005-0379-0. DOI
Sreeramareddy T.V., Sornakumar T., VenkataramaReddy M., Venkatram R. Machining of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts. Int. J. Refract. Met. Hard Mater. 2009;27:181–185. doi: 10.1016/j.ijrmhm.2008.04.007. DOI
Stewart H.A. Cryogenic treatment of tungsten carbide reduces tool wear when machining medium density fiberboard. For. Prod. J. 2004;54:53–56.
Bryson W.E. Cryogenics. Carl Hanser Verlag GmbH & Co.; Cincinnati, OH, USA: 1999. pp. 81–107.
Thakur D.G., Ramamoorthy B., Vijayaraghavan L. Influence of different post treatments on tungsten carbide-cobalt inserts. Mater. Lett. 2008;62:4403–4406. doi: 10.1016/j.matlet.2008.07.043. DOI
Sert A., Celik O.N. Characterization of the mechanism of cryogenic treatment on the microstructural changes in tungsten carbide cutting tools. Mater. Charact. 2019;150:1–7. doi: 10.1016/j.matchar.2019.02.006. DOI
Reddy T.V.S., Ajaykumar B.S., Reddy M.V., Venkataram R. Machining performance of low temperature treated P-30 tungsten carbide cutting tool inserts. Cryogenic. 2008;48:458–461.
Vadivel K., Rudramoorthy R. Performance analysis of cryogenically treated coated carbide inserts. Int. J. Adv. Manuf. Technol. 2009;42:222–232. doi: 10.1007/s00170-008-1597-z. DOI
Swamini A., Chopra V., Sargade G. Metallurgy behind the Cryogenic Treatment of Cutting Tools: An Overview. Mater. Today Proceed. 2015;2:1814–1824. doi: 10.1016/j.matpr.2015.07.119. DOI
Ahmed M.I., Ismail A.F., Abakr Y.A., Amin A.K.M.N. Effectiveness of cryogenic machining with modified tool holder. J. Mater. Process. Technol. 2007;185:91–96. doi: 10.1016/j.jmatprotec.2006.03.123. DOI
Dhananchezian M. Study the machinability characteristics of Nicked based Hastelloy C-276 under cryogenic cooling. Measurement. 2019;136:694–702. doi: 10.1016/j.measurement.2018.12.072. DOI
VakkasYıldırım Ç. Experimental comparison of the performance of nanofluids, cryogenic and hybrid cooling in turning of Inconel 625. Tribol. Int. 2019;137:366–378.
Biswal B., Sarkar B., Mahanta P., editors. Advances in Mechanical Engineering; Lecture Notes in Mechanical Engineering. Springer; Singapore: 2018. Characteristics During Hard Turning of Alloy Steel with Untreated and Cryotreated Cermet Inserts.
Sui H., Zhang X., Zhang D., Jiang X., Wu R. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy. J. Mater. Process. Technol. 2017;247:111–120. doi: 10.1016/j.jmatprotec.2017.03.017. DOI
Bulla B., Kloche F., Dambon O., Hunter M. Ultrasonic Assisted Diamond turning of hardned steel for mould manufacturing. Key Eng. Mater. 2012;516:437–442. doi: 10.4028/www.scientific.net/KEM.516.437. DOI
Muhammad R., Hussain M.S., Maurotto A., Siemers C., Roy A., Silberschmidt V.V. Analysis of a free machining α+ β titanium alloy using conventional and ultrasonically assisted turning. J. Mater. Process. Technol. 2014;214:906–915. doi: 10.1016/j.jmatprotec.2013.12.002. DOI
Ultrasonically Assisted Machining of Titanium Alloys. [(accessed on 17 March 2020)]; Available online: https://hdl.handle.net/2134/15909.
Joshi S., Tewari A., Joshi S.S. Microstructural characterization of chip segmentation under different machining environments in orthogonal machining of Ti6Al4V. J. Eng. Mater. Technol. 2015;137:011005. doi: 10.1115/1.4028841. DOI
Maurotto A., Muhammad R., Roy A. Comparing machinability of Ti-15-3-3-3 and Ni-625 alloys in UAT. Procedia Cirp. 2012;1:330–335. doi: 10.1016/j.procir.2012.04.059. DOI
Nath C., Rahman M., Andrew S. A study on ultrasonic vibration cutting of low alloy steel. J. Mater. Process. Technol. 2007;192:159–165. doi: 10.1016/j.jmatprotec.2007.04.047. DOI
Tutunea-Fatan O.R., Fakhri M.A., Bordatchev E.V. Porosity and cutting forces: From macroscale to microscale machining correlations. Proceedings of the Institution of Mechanical Engineers. Part B J. Eng. Manuf. 2011;225:619–630. doi: 10.1177/2041297510394057. DOI
Pulse Laser Pretreated Machining. US Patent No. 4356376 against Application No. 263235. [(accessed on 18 March 2020)]; Available online: https://patents.google.com/patent/US4356376A/en.
Goel S., Rashid W.B., Luo X., Agrawal A., Jain V. A theoretical assessment of surface defect machining and hot machining of nanocrystalline silicon carbide. J. Manuf. Sci.Eng. 2014;136:021015. doi: 10.1115/1.4026297. DOI
Brinksmeier E., Glabe R. Advances in Precision Machining of Steel. Cirp Ann. Manuf. Tecnol. 2001;50:385–388. doi: 10.1016/S0007-8506(07)62146-5. DOI
Kawasegi N., Sugimori H., Morimoto H., Morita N., Hori I. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precis. Eng. 2009;33:248–254. doi: 10.1016/j.precisioneng.2008.07.005. DOI
Evans C., Bryan J.B. Cryogenic Diamond Turning of Stainless Steel. Cirp Ann. Manuf. Technol. 1991;40:571–575. doi: 10.1016/S0007-8506(07)62056-3. DOI
Chang W., Sun J., Luo X., Ritchie J.M., Mack C. Investigation of microstructured milling tool for deferring tool wear. Wear. 2011;271:2433–2437. doi: 10.1016/j.wear.2010.12.026. DOI
Kazuhiro F., Hideo Y., Naomichi F., Yutaka Y., Takashi T., Ryutaro H., Akitake M., Toshiro H. Development of ultra-fine-grain binderless cBN tool for precision cutting of ferrous materials. J. Mater. Process. Technol. 2009;209:5646–5652. doi: 10.1016/j.jmatprotec.2009.05.023. DOI
Fang F.Z., Chen Y.H., Zhang X.D., Hu X.T., Zhang G.X. Nanometric cutting of single crystal silicon surfaces modified by ion implantation. Cirp Ann. Manuf. Technol. 2011;60:527–530. doi: 10.1016/j.cirp.2011.03.057. DOI
To S., Wang H., Jelenković E.V. Enhancement of the machinability of silicon by hydrogen ion implantation for ultra-precision micro-cutting. Int. J. Mach. Tools Manuf. 2013;74:50–55. doi: 10.1016/j.ijmachtools.2013.07.005. DOI
Muhammad R., Maurotto A., Demiral M., Roy A., Silberschmidt V.V. Thermally enhanced ultrasonically assisted machining of Ti alloy. Cirp J. Manuf. Sci. Technol. 2014;7:159–167. doi: 10.1016/j.cirpj.2014.01.002. DOI
Patil S., Joshi S., Tewari A., Joshi S.S. Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics. 2014;54:694–705. doi: 10.1016/j.ultras.2013.09.010. PubMed DOI
Muhammad R., Mistry A., Khan W.S., Ahmed N., Roy A., Silberschmidt V.V. Analysis of tool wear in ultrasonically assisted turning of Iranica. B Transac. Engg. 2016;23:1800–1810. doi: 10.24200/SCI.2016.3927. DOI
Yan J., Zhang Z., Kuriyagawa T. Effect of Nanoparticle Lubrication in Diamond Turning of Reaction-Bonded SiC. Int. J. Autom. Technol. 2011;5:307–312. doi: 10.20965/ijat.2011.p0307. DOI
Inada A., Min S., Ohmori H. Micro cutting of ferrous materials using diamond tool under ionized coolant with carbon particles. Cirp Ann. Manuf. Technol. 2011;60:97–100. doi: 10.1016/j.cirp.2011.03.089. DOI
Zareena A.R., Veldhuis S.C. Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. J. Mater. Process. Technol. 2012;212:560–570. doi: 10.1016/j.jmatprotec.2011.10.014. DOI
Rashid W.B., Goel S. Advances in the surface defect machining (SDM) of hard steels. J. Manuf. Process. 2016;23:37–46. doi: 10.1016/j.jmapro.2016.05.007. DOI
Rashid W.B., Goel S., Luo X., Ritchie J.M. An experimental investigation for the improvement of attainable surface roughness during hard turning process. Proceedings of the Institution of Mechanical Engineers. Part B J. Eng. Manuf. 2013;227:338–342. doi: 10.1177/0954405412464217. DOI
Rashid W.B., Goel S., Luo X., Ritchie J.M. The development of a surface defect machining method for hard turning processes. Wear. 2013;302:1124–1135. doi: 10.1016/j.wear.2013.01.048. DOI
Tamerabeta Y., Briouaa M., Tamerabeta M., Khoualdia S. Experimental Investigation on Tool Wear Behavior and Cutting Temperature during Dry Machining of Carbon Steel SAE 1030 Using KC810 and KC910 Coated Inserts. Tribol. Ind. 2018;40:52–65. doi: 10.24874/ti.2018.40.01.04. DOI
Klocke F., Krieg T. Coated Tools for Metal Cutting–Features and Applications. Cirp Ann. 1999;48:515–525. doi: 10.1016/S0007-8506(07)63231-4. DOI
Vereschaka A., Kataeva E., Sitnikov N., Aksenenko A., Oganyan G., Sotova C. Influence of Thickness of Multilayered Nano-Structured Coatings Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrCrNbAl)N on Tool Life of Metal Cutting Tools at Various Cutting Speeds. Coatings. 2018;8:44. doi: 10.3390/coatings8010044. DOI
Levashov E.A., Merzhanov A.G., Shtanskv D.V. Advanced technologies, materials and coatings developed in scientific-educational center of SHS. Galvanotechnik. 2009;100:2102–2114.
Gu J., Barber G., Tung S., Gu R.-J. Tool life and wear mechanism of uncoated and coated milling inserts. Wear. 1999;225–229:273–284. doi: 10.1016/S0043-1648(99)00074-5. DOI
Vereschaka A.A., Grigoriev S.N., Sitnikov N.N., Oganyan G.V., Batako A. Working efficiency of cutting tools with multilayer nano-structured Ti-TiCN-(Ti,Al)CN and Ti-TiCN-(Ti,Al,Cr)CN coatings: Analysis of cutting properties, wear mechanism and diffusion processes. Surf. Coat. Technol. 2017;332:198–213. doi: 10.1016/j.surfcoat.2017.10.027. DOI
Veprek S. Recent search for new superhard materials: Go nano! J. Vac. Sci. Technol. A Vac. Surf. Film. 2013;31:050822. doi: 10.1116/1.4818590. DOI
Roy M. Materials Under Extreme Condition. Elsevier; Amsterdam, The Netherlands: 2017. Protective Hard Coatings for Tribological Applications; pp. 259–292.
Polini R., Barletta M., Rubino G., Vesco S. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides. Adv. Mater. Sci. Eng. 2012;2012:1–14. doi: 10.1155/2012/151629. PubMed DOI
Kuo C., Wang C., Ko S. Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites. Wear. 2018;398–399:1–12. doi: 10.1016/j.wear.2017.11.015. DOI
Ramasubramanian K., Arunachalam N., Rao M.S.R. Wear performance of nano-engineered boron doped graded layer CVD diamond coated cutting tool for machining of Al-SiC MMC. Wear. 2019;426–427:1536–1547. doi: 10.1016/j.wear.2018.12.004. DOI
Poulon-Quintin A., Faure C., Teulé-Gay L., Manaud J.P. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings. Appl. Surf. Sci. 2015;331:27–34. doi: 10.1016/j.apsusc.2015.01.050. DOI
Linnik S.A., Gaydaychuk A.V., Okhotnikov V.V. Improvement to the adhesion of polycrystalline diamond films on WC-Co cemented carbides through ion etching of loosely bound growth centers. Surf. Coat. Technol. 2018;334:227–232. doi: 10.1016/j.surfcoat.2017.11.043. DOI
Ye F., Li Y., Sun X., Yang Q., Kim C.-Y., Odeshi A.G. CVD diamond coating on WC-Co substrate with Al-based interlayer. Surf. Coat. Technol. 2016;308:121–127. doi: 10.1016/j.surfcoat.2016.06.088. DOI
Wang T., Zhang S., Jiang C., Handschuh-Wang S., Chen G., Zhou X., Tang Y. TiB2 barrier interlayer approach for HFCVD diamond deposition onto cemented carbide tools. Diam. Relat. Mater. 2018;83:126–133. doi: 10.1016/j.diamond.2018.01.020. DOI
Chandran M., Sammler F., Uhlmann E., Akhvlediani R., Hoffman A. Wear performance of diamond coated WC-Co tools with a CrN interlayer. Diam. Relat. Mater. 2017;73:47–55. doi: 10.1016/j.diamond.2016.12.001. DOI
An Mahmud K.A.H., Kalam M.A., Masjuki H.H., Mobarak H.M., Zulkifli N.W.M. An updated overview of diamond-like carbon coating in tribology. Crit. Rev. Solid State Mater. Sci. 2015;40:90–118. doi: 10.1080/10408436.2014.940441. DOI
Fukui H., Okida J., Omori N., Moriguchi H., Tsuda K. Cutting performance of DLC coated tools in dry machining aluminum alloys. Surf. Coat. Technol. 2004;187:70–76. doi: 10.1016/j.surfcoat.2004.01.014. DOI
Erdemir A., Donnet C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D. Appl. Phys. 2006;39:R311–R327. doi: 10.1088/0022-3727/39/18/R01. DOI
Huang L., Yuan J., Li C., Hong D. Microstructure, tribological and cutting performance of Ti-DLC/α-C:H multilayer film on cemented carbide. Surf. Coat. Technol. 2018;353:163–170. doi: 10.1016/j.surfcoat.2018.08.076. DOI
Liu Y., Meletis E.I. Evidence of graphitization of diamond-like carbon films during sliding wear. J. Mater. Sci. 1997;32:3491–3495. doi: 10.1023/A:1018641304944. DOI
Chen J.G. Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities. Chem. Rev. 1996;96:1477–1498. doi: 10.1021/cr950232u. PubMed DOI
Han Y., Dai Y., Shu D., Wang J., Sun B. Electronic and bonding properties of TiB2. J. Alloy. Compd. 2007;438:327–331. doi: 10.1016/j.jallcom.2006.08.056. DOI
Rasaki S.A., Zhang B., Anbalgam K., Thomas T., Yang M. Synthesis and application of nano-structured metal nitrides and carbides: A review. Prog. Solid State Chem. 2018;50:1–15. doi: 10.1016/j.progsolidstchem.2018.05.001. DOI
Holleck H. Material selection for hard coatings. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 1986;4:2661–2669. doi: 10.1116/1.573700. DOI
Grilli M.L., Valerini D., Piticescu R.R., Bellezze T., Yilmaz M., Rinaldi A., Cuesta-López S., Rizzo A. Possible alternatives to critical elements in coatings for extreme applications. IOP Conf. Ser. Mater. Sci. Eng. 2017;329:012005. doi: 10.1088/1757-899X/329/1/012005. DOI
Mayrhofer P.H., Rachbauer R., Holec D., Rovere F., Schneider J.M. Comprehensive Materials Processing. Elsevier; Amsterdam, The Netherlands: 2014. Protective Transition Metal Nitride Coatings; pp. 355–388. DOI
Kalss W., Reiter A., Derflinger V., Gey C., Endrino J.L. Modern coatings in high performance cutting applications. Int. J. Refract. Met. Hard Mater. 2006;24:399–404. doi: 10.1016/j.ijrmhm.2005.11.005. DOI
Fernandes F., Danek M., Polcar T., Cavaleiro A. Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure. Tribol. Int. 2018;119:345–353. doi: 10.1016/j.triboint.2017.11.008. DOI
Danek M., Fernandes F., Cavaleiro A., Polcar T. Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films. Surf. Coat. Technol. 2017;313:158–167. doi: 10.1016/j.surfcoat.2017.01.053. DOI
Mi P., He J., Qin Y., Chen K. Nanostructure reactive plasma sprayed TiCN coating. Surf. Coat. Technol. 2017;309:1–5. doi: 10.1016/j.surfcoat.2016.11.033. DOI
Kumar T.S., Jebaraj A.V., Sivakumar K., Shankar E., Tamiloli N. Characterization of ticn coating synthesized by the plasma enhanced physical vapour deposition process on a cemented carbide tool. Surf. Rev. Lett. 2018;25:1950028. doi: 10.1142/S0218625X19500288. DOI
Patscheider J. Nanocomposite Hard Coatings for Wear Protection. MRS Bull. 2003;8:180–183. doi: 10.1557/mrs2003.59. DOI
Beake B.D., Vishnyakov V.M., Valizadeh R., Colligon J.S. Influence of mechanical properties on the nanoscratch behaviour of hard nanocomposite TiN/Si3N4coatings on Si. J. Phys. D: Appl. Phys. 2006;39:1392–1397. doi: 10.1088/0022-3727/39/7/009. DOI
Pogrebnjak A., Smyrnova K., Bondar O. Nanocomposite Multilayer Binary Nitride Coatings Based on Transition and Refractory Metals. Struct. Prop. Coat. 2019;9:155. doi: 10.3390/coatings9030155. DOI
Yeh J.-W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Des Matériaux. 2006;31:633–648. doi: 10.3166/acsm.31.633-648. DOI
Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI
Yeh J.-W., Lin S.-J. Breakthrough applications of high-entropy materials. J. Mater. Res. 2018;33:3129–3137. doi: 10.1557/jmr.2018.283. DOI
Yip S. The strongest size. Nature. 1998;391:532–533. doi: 10.1038/35254. DOI
Martinu L., Zabeida O., Klemberg-Sapieha J.E. Plasma Enhanced Chemical Vapor Deposition of Functional Coatings. Handb. Depos. Technol. Film. Coat. 2010:392–465. doi: 10.1016/b978-0-8155-2031-3.00009-0. DOI
Musil J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 2012;207:50–65. doi: 10.1016/j.surfcoat.2012.05.073. DOI
Uhlmann E., Fuentes J.A.O., Gerstenberger R., Frank H. nc-AlTiN/a-Si3N4 and nc-AlCrN/a-Si3N4 nanocomposite coatings as protection layer for PCBN tools in hard machining. Surf. Coat. Technol. 2013;237:142–148. doi: 10.1016/j.surfcoat.2013.09.017. DOI
Ma Q., Li L., Xu Y., Gu J., Wang L., Xu Y. Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS. Appl. Surf. Sci. 2017;392:826–833. doi: 10.1016/j.apsusc.2016.09.028. DOI
Settineri L., Faga M.G. Laboratory tests for performance evaluation of nanocomposite coatings for cutting tools. Wear. 2006;260:326–332. doi: 10.1016/j.wear.2005.04.025. DOI
Abadias G., Daniliuk A.Y., Solodukhin I.A., Uglov V.V., Zlotsky S.V. Thermal Stability of TiZrAlN and TiZrSiN Films Formed by Reactive Magnetron Sputtering, Inorg. Mater. Appl. Res. 2018;9:418–426. doi: 10.1134/S2075113318030024. DOI
Musil J., Novák P., Čerstvý R., Soukup Z. Tribological and mechanical properties of nanocrystalline-TiC/a-C nanocomposite thin films. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2010;28:244–249. doi: 10.1116/1.3294717. DOI
El Mel A.A., Gautron E., Christien F., Angleraud B., Granier A., Souček P., Vašina P., Buršíková V., Takashima M., Ohtake N., et al. Titanium carbide/carbon nanocomposite hard coatings: A comparative study between various chemical analysis tools. Surf. Coat. Technol. 2014;246:41–46. doi: 10.1016/j.surfcoat.2013.12.068. DOI
Qiu L., Du Y., Wang S., Li K., Yin L., Wu L., Zhong Z., Albir L. Mechanical properties and oxidation resistance of chemically vapor deposited TiSiN nanocomposite coating with thermodynamically designed compositions. Int. J. Refract. Met. Hard Mater. 2019;80:30–39. doi: 10.1016/j.ijrmhm.2018.12.018. DOI
Schwaller P., Haug F.-J., Michler J., Patscheider J. Nanocomposite Hard Coatings: Deposition Issues and Validation of their Mechanical Properties. Adv. Eng. Mater. 2005;7:318–322. doi: 10.1002/adem.200500045. DOI
Mahato P., Nyati G., Singh R.J., Mishra S.K. Nanocomposite TiSiBC Hard Coatings with High Resistance to Wear, Fracture and Scratching. J. Mater. Eng. Perform. 2016;25:3774–3782. doi: 10.1007/s11665-016-2239-5. DOI
Verma D., Banerjee D., Mishra S.K. Effect of Silicon Content on the Microstructure and Mechanical Properties of Ti-Si-B-C Nanocomposite Hard Coatings. Met. Mater. Trans. A. 2019;50:894–904. doi: 10.1007/s11661-018-5028-y. DOI
Mahato P., Singh R.J., Mishra S.K. Nanocomposite Ti–Si–B–C hard coatings deposited by magnetron sputtering: Oxidation and mechanical behaviour with temperature and duration of oxidation. Surf. Coat. Technol. 2016;288:230–240. doi: 10.1016/j.surfcoat.2016.01.039. DOI
Mahato P., Singh R.J., Pathak L.C., Mishra S.K. Effect of nitrogen on mechanical, oxidation and structural behaviour of Ti-Si-B-C-N nanocomposite hard coatings deposited by DC sputtering. Surf. Interface Anal. 2016;48:1080–1089. doi: 10.1002/sia.6030. DOI
Yi J., Chen S., Chen K., Xu Y., Chen Q., Zhu C., Liu L. Effects of Ni content on microstructure, mechanical properties and Inconel 718 cutting performance of AlTiN-Ni nanocomposite coatings. Ceram. Int. 2019;45:474–480. doi: 10.1016/j.ceramint.2018.09.192. DOI
Saladukhin I.A., Abadias G., Uglov V.V., Zlotski S.V., Michel A., Van Vuuren A.J. Thermal stability and oxidation resistance of ZrSiN nanocomposite and ZrN/SiNx multilayered coatings: A comparative study. Surf. Coat. Technol. 2017;332:428–439. doi: 10.1016/j.surfcoat.2017.08.076. DOI
Anwar S., Islam A., Bajpai S., Anwar S. Structural and mechanical studies of W2N embedded Si3N4 nanocomposite hard coating prepared by reactive magnetron sputtering. Surf. Coat. Technol. 2017;311:268–273. doi: 10.1016/j.surfcoat.2016.12.119. DOI
Pogrebnjak A.D., Postol’nyi B.A., Kravchenko Y.A., Shipilenko A.P., Sobol’ O.V., Beresnev V.M., Kuz’menko A.P. Structure and properties of (Zr-Ti-Cr-Nb)N multielement superhard coatings. J. Superhard Mater. 2015;37:101–111. doi: 10.3103/S1063457615020045. DOI
Bondar O.V., Postolnyi B.O., Kravchenko Y.A., Shypylenko A.P., Sobol O.V., Beresnev V.M., Kuzmenko A.P., Zukowski P. Fabrication and Research of Superhard (Zr-Ti-Cr-Nb)N Coatings. Acta Phys. Pol. A. 2015;128:867–871. doi: 10.12693/APhysPolA.128.867. DOI
Gleich S., Breitbach B., Peter N.J., Soler R., Bolvardi H., Schneider J.M., Dehm G., Scheu C. Thermal stability of nanocomposite Mo2BC hard coatings deposited by magnetron sputtering. Surf. Coat. Technol. 2018;349:378–383. doi: 10.1016/j.surfcoat.2018.06.006. DOI
Kawasaki M., Nose M., Onishi I., Shiojiri M. Structural Investigation of AlN/SiOx Nanocomposite Hard Coatings Fabricated by Differential Pumping Cosputtering. Microsc. Microanal. 2016;22:673–678. doi: 10.1017/S1431927616000611. PubMed DOI
Veprek S., Zhang R.F., Veprek-Heijman M.G.J., Sheng S.H., Argon A.S. Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surf. Coat. Technol. 2010;204:1898–1906. doi: 10.1016/j.surfcoat.2009.09.033. DOI
Veprek S., Veprek-Heijman M.G.J. Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature. Thin Solid Film. 2012;522:274–282. doi: 10.1016/j.tsf.2012.08.048. DOI
Pogrebnjak A.D., Bagdasaryan A.A., Pshyk A., Dyadyura K. Adaptive multicomponent nanocomposite coatings in surface engineering. Phys. Uspekhi. 2017;60:586–607. doi: 10.3367/UFNe.2016.12.038018. DOI
Pogrebnyak A.D., Shpak A.P., Azarenkov N.A., Beresnev V.M. Structures and properties of hard and superhard nanocomposite coatings. Phys. Uspekhi. 2009;52:29–54. doi: 10.3367/UFNe.0179.200901b.0035. DOI
Kumar C.S., Patel S.K. Application of surface modification techniques during hard turning: Present work and future prospects. Int. J. Refract. Met. Hard Mater. 2018;76:112–127. doi: 10.1016/j.ijrmhm.2018.06.003. DOI
Ziebert C., Stüber M., Leiste H., Ulrich S., Holleck H. Encyclopedia Material Science Technology. Elsevier; Amsterdam, The Netherlands: 2011. Nanoscale PVD Multilayer Coatings; pp. 1–8. DOI
Inspektor A., Salvador P.A. Architecture of PVD coatings for metalcutting applications: A review. Surf. Coat. Technol. 2014;257:138–153. doi: 10.1016/j.surfcoat.2014.08.068. DOI
Khadem M., Penkov O.V., Yang H.-K., Kim D.-E. Tribology of multilayer coatings for wear reduction: A review. Friction. 2017;5:248–262. doi: 10.1007/s40544-017-0181-7. DOI
Wang J., Yazdi M.A.P., Lomello F., Billard A., Kovács A., Schuster F., Guet C., White T.J., Sanchette F., Dong Z. Influence of microstructures on mechanical properties and tribology behaviors of TiN/Ti X Al 1−X N multilayer coatings. Surf. Coat. Technol. 2017;320:441–446. doi: 10.1016/j.surfcoat.2016.11.101. DOI
Andersen K.N., Bienk E.J., Schweitz K.O., Reitz H., Chevallier J., Kringhøj P., Bøttiger J. Deposition, microstructure and mechanical and tribological properties of magnetron sputtered TiN/TiAlN multilayers. Surf. Coat. Technol. 2000;123:219–226. doi: 10.1016/S0257-8972(99)00473-9. DOI
Contreras E., Bejarano G., Gómez M. Synthesis and microstructural characterization of nanoscale multilayer TiAlN/TaN coatings deposited by DC magnetron sputtering. Int. J. Adv. Manuf. Technol. 2019;101:663–673. doi: 10.1007/s00170-018-2972-z. DOI
Pshyk A.V., Kravchenko Y., Coy E., Kempiński M., Iatsunskyi I., Załęski K., Pogrebnjak A.D., Jurga S. Microstructure, phase composition and mechanical properties of novel nanocomposite (TiAlSiY)N and nano-scale (TiAlSiY)N/MoN multifunctional heterostructures. Surf. Coat. Technol. 2018;350:376–390. doi: 10.1016/j.surfcoat.2018.07.010. DOI
Illana A., Almandoz E., Fuentes G.G., Pérez F.J., Mato S. Comparative study of CrAlSiN monolayer and CrN/AlSiN superlattice multilayer coatings: Behavior at high temperature in steam atmosphere. J. Alloy. Compd. 2019;778:652–661. doi: 10.1016/j.jallcom.2018.11.199. DOI
Seidl W.M., Bartosik M., Kolozsvári S., Bolvardi H., Mayrhofer P.H. Mechanical properties and oxidation resistance of Al-Cr-N/Ti-Al-Ta-N multilayer coatings. Surf. Coat. Technol. 2018;347:427–433. doi: 10.1016/j.surfcoat.2018.05.025. DOI
Braic M., Balaceanu M., Parau A.C., Dinu M., Vladescu A. Investigation of multilayered TiSiC/NiC protective coatings. Vacuum. 2015;120:60–66. doi: 10.1016/j.vacuum.2015.06.019. DOI
Pogrebnjak A.D., Bondar O.V., Abadias G., Eyidi D., Beresnev V.M., Sobol O.V., Postolnyi B.O., Zukowski P. Investigation of Nanoscale TiN/MoN Multilayered Systems, Fabricated Using Arc Evaporation. Acta Phys. Pol. A. 2015;128:836–841. doi: 10.12693/APhysPolA.128.836. DOI
Postolnyi B.O., Konarski P., Komarov F.F., Sobol O.V., Kyrychenko O.V., Shevchuk D.S. Study of elemental and structural phase composition of multilayer nanostructured TiN/MoN coatings, their physical and mechanical properties. J. Nano- Electron. Phys. 2014;6:04016.
Buchinger J., Koutná N., Chen Z., Zhang Z., Mayrhofer P.H., Holec D., Bartosik M. Toughness enhancement in TiN/WN superlattice thin films. Acta Mater. 2019;172:18–29. doi: 10.1016/j.actamat.2019.04.028. DOI
Pogrebnjak A., Ivashchenko V., Bondar O., Beresnev V., Sobol O., Załęski K., Jurga S., Coy E., Konarski P., Postolnyi B. Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations. Mater. Charact. 2017;134:55–63. doi: 10.1016/j.matchar.2017.10.016. DOI
Major L., Major R., Kot M., Lackner J.M., Major B. Ex situ and in situ nanoscale wear mechanisms characterization of Zr/Zr x N tribological coatings. Wear. 2018;404–405:82–91. doi: 10.1016/j.wear.2018.03.011. DOI
Pogrebnjak A.D., Kravchenko Y.O., Bondar O.V., Zhollybekov B., Kupchishin A.I. Kupchishin, Structural Features and Tribological Properties of Multilayer Coatings Based on Refractory Metals. Prot. Met. Phys. Chem. Surf. 2018;54:240–258. doi: 10.1134/S2070205118020107. DOI
Postolnyi B., Bondar O., Opielak M., Rogalski P., Araújo J.P. Structural analysis of multilayer metal nitride films CrN/MoN using electron backscatter diffraction (EBSD); Proceedings of the SPIE 10010, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VIII, 100100E; Constanta, Romania. 14 December 2016; DOI
Pogrebnjak A.D., Beresnev V.M., Bondar O.V., Postolnyi B.O., Zaleski K., Coy E., Jurga S., Lisovenko M.O., Konarski P., Rebouta L., et al. Superhard CrN/MoN coatings with multilayer architecture. Mater. Des. 2018;153:47–59. doi: 10.1016/j.matdes.2018.05.001. DOI
Postolnyi B.O., Bondar O.V., Zaleski K., Coy E., Jurga S., Rebouta L., Araujo J.P. Multilayer Design of CrN/MoN Superhard Protective Coatings and Their Characterisation. In: Pogrebnjak A.D., Novosad V., editors. Advances in Thin Films, Nanostructured Materials, and Coatings. Springer; Singapore: 2019. pp. 17–29. DOI
Bagdasaryan A.A., Pshyk A.V., Coy L.E., Kempiński M., Pogrebnjak A.D., Beresnev V.M., Jurga S. Structural and mechanical characterization of (TiZrNbHfTa)N/WN multilayered nitride coatings. Mater. Lett. 2018;229:364–367. doi: 10.1016/j.matlet.2018.07.048. DOI
Lin Y., Zia A.W., Zhou Z., Shum P.W., Li K.Y. Development of diamond-like carbon (DLC) coatings with alternate soft and hard multilayer architecture for enhancing wear performance at high contact stress. Surf. Coat. Technol. 2017;320:7–12. doi: 10.1016/j.surfcoat.2017.03.007. DOI
Zha X., Jiang F., Xu X. Investigating the high frequency fatigue failure mechanisms of mono and multilayer PVD coatings by the cyclic impact tests. Surf. Coat. Technol. 2018;344:689–701. doi: 10.1016/j.surfcoat.2018.03.101. DOI
Chang Y.-Y., Chiu W.-T., Hung J.-P. Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation. Surf. Coat. Technol. 2016;303:18–24. doi: 10.1016/j.surfcoat.2016.02.047. DOI
Chang Y.-Y., Weng S.-Y., Chen C.-H., Fu F.-X. High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings. Surf. Coat. Technol. 2017;332:494–503. doi: 10.1016/j.surfcoat.2017.06.080. DOI
Chang Y.-Y., Chang H., Jhao L.-J., Chuang C.-C. Tribological and mechanical properties of multilayered TiVN/TiSiN coatings synthesized by cathodic arc evaporation. Surf. Coat. Technol. 2018;350:1071–1079. doi: 10.1016/j.surfcoat.2018.02.040. DOI
Kong Y., Tian X., Gong C., Chu P.K. Enhancement of toughness and wear resistance by CrN/CrCN multilayered coatings for wood processing. Surf. Coat. Technol. 2018;344:204–213. doi: 10.1016/j.surfcoat.2018.03.027. DOI
Beake B.D., Fox-Rabinovich G.S. Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining. Surf. Coat. Technol. 2014;255:102–111. doi: 10.1016/j.surfcoat.2014.02.062. DOI
Chowdhury S., Beake B., Yamamoto K., Bose B., Aguirre M., Fox-Rabinovich G., Veldhuis S. Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development. Coatings. 2018;8:59. doi: 10.3390/coatings8020059. DOI
Kursuncu B., Caliskan H., Guven S.Y., Panjan P. Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment. Int. J. Adv. Manuf. Technol. 2018;97:467–479. doi: 10.1007/s00170-018-1931-z. DOI
Rezapoor M., Razavi M., Zakeri M., Rahimipour M.R., Nikzad L. Fabrication of functionally graded Fe-TiC wear resistant coating on CK45 steel substrate by plasma spray and evaluation of mechanical properties. Ceram. Int. 2018;44:22378–22386. doi: 10.1016/j.ceramint.2018.09.001. DOI
Narasimhan K., Boppana S.P., Bhat D.G. Development of a graded TiCN coating for cemented carbide cutting tools—a design approach. Wear. 1995;188:123–129. doi: 10.1016/0043-1648(95)06635-7. DOI
Miao H., Shi F., Peng Z., Yang S., Liu C., Qi L. Nanometer grain titanium carbonitride coatings with continuously graded interface onto silicon nitride cutting tools by pulsed high energy density plasma. Mater. Sci. Eng. A. 2004;384:202–208. doi: 10.1016/j.msea.2004.06.005. DOI
Damerchi E., Abdollah-zadeh A., Poursalehi R., Mehr M.S. Effects of functionally graded TiN layer and deposition temperature on the structure and surface properties of TiCN coating deposited on plasma nitrided H13 steel by PACVD method. J. Alloy. Compd. 2019;772:612–624. doi: 10.1016/j.jallcom.2018.09.083. DOI
Bell T., Dong H., Sun Y. Realising the potential of duplex surface engineering. Tribol. Int. 1998;31:127–137. doi: 10.1016/S0301-679X(98)00015-2. DOI
Lembke M.I., Lewis D.B., Titchmarsh J.M. Joint Second Prize Significance of Y and Cr in TiAlN Hard Coatings for Dry High Speed Cutting. Surf. Eng. 2001;17:153–158. doi: 10.1179/026708401101517656. DOI
Schönjahn C., Ehiasarian A.P., Lewis D.B., New R., Münz W.-D., Twesten R.D., Petrov I. Optimization of in situ substrate surface treatment in a cathodic arc plasma: A study by TEM and plasma diagnostics. J. Vac. Sci. Technol. A Vac. Surf. Film. 2001;19:1415–1420. doi: 10.1116/1.1349726. DOI
Lattemann M., Ehiasarian A.P., Bohlmark J., Persson P.Å.O., Helmersson U. Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel. Surf. Coat. Technol. 2006;200:6495–6499. doi: 10.1016/j.surfcoat.2005.11.082. DOI
Stoiber M., Wagner J., Mitterer C., Gammer K., Hutter H., Lugmair C., Kullmer R. Plasma-assisted pre-treatment for PACVD TiN coatings on tool steel. Surf. Coat. Technol. 2003;174–175:687–693. doi: 10.1016/S0257-8972(03)00353-0. DOI
El-Hossary F.M., Negm N.Z., El-Rahman A.M.A., Hammad M. Duplex treatment of 304 AISI stainless steel using rf plasma nitriding and carbonitriding. Mater. Sci. Eng. C. 2009;29:1167–1173. doi: 10.1016/j.msec.2008.09.049. DOI
Zheng Y., Zhong J., Lv X., Zhao Y., Zhou W., Zhang Y. Microstructure and performance of functionally graded Ti(C,N)-based cermets prepared by double-glow plasma carburization. Int. J. Refract. Met. Hard Mater. 2014;44:109–112. doi: 10.1016/j.ijrmhm.2014.01.002. DOI
Yang Y., Yan M.F., Zhang Y.X. Tribological behavior of diamond-like carbon in-situ formed on Fe3C-containing carburized layer by plasma carburizing. Appl. Surf. Sci. 2019;479:482–488. doi: 10.1016/j.apsusc.2019.01.290. DOI
Glühmann J., Schneeweiß M., Van den Berg H., Kassel D., Rödiger K., Dreyer K., Lengauer W. Functionally graded WC–Ti(C,N)–(Ta,Nb)C–Co hardmetals: Metallurgy and performance. Int. J. Refract. Met. Hard Mater. 2013;36:38–45. doi: 10.1016/j.ijrmhm.2011.12.009. DOI
Garcia J., Pitonak R. The role of cemented carbide functionally graded outer-layers on the wear performance of coated cutting tools. Int. J. Refract. Met. Hard Mater. 2013;36:52–59. doi: 10.1016/j.ijrmhm.2011.12.007. DOI
Chen J., Deng X., Gong M., Liu W., Wu S. Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer. Appl. Surf. Sci. 2016;380:108–113. doi: 10.1016/j.apsusc.2016.02.040. DOI
Rech J., Battaglia J.L., Moisan A. Thermal influence of cutting tool coatings. J. Mater. Process. Technol. 2005;159:119–124. doi: 10.1016/j.jmatprotec.2004.04.414. DOI
Rech J., Kusiak A., Battaglia J. Tribological and thermal functions of cutting tool coatings. Surf. Coat. Technol. 2004;186:364–371. doi: 10.1016/j.surfcoat.2003.11.027. DOI
Shalaby M.A., Veldhuis S.C. Wear and Tribological Performance of Different Ceramic Tools in Dry High Speed Machining of Ni-Co-Cr Precipitation Hardenable Aerospace Superalloy. Tribol. Trans. 2019;62:62–77. doi: 10.1080/10402004.2018.1486494. DOI
Song W., Wang Z., Deng J., Zhou K., Wang S., Guo Z. Cutting temperature analysis and experiment of Ti–MoS2/Zr-coated cemented carbide tool. Int. J. Adv. Manuf. Technol. 2017;93:799–809. doi: 10.1007/s00170-017-0509-5. DOI
Gengler J.J., Hu J., Jones J.G., Voevodin A.A., Steidl P., Vlček J. Thermal conductivity of high-temperature Si–B–C–N thin films. Surf. Coat. Technol. 2011;206:2030–2033. doi: 10.1016/j.surfcoat.2011.07.058. DOI
Bouzakis K.-D., Michailidis N., Skordaris G., Bouzakis E., Biermann D., M’Saoubi R. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. Cirp Ann. 2012;61:703–723. doi: 10.1016/j.cirp.2012.05.006. DOI
Chen Y., Wang J., Chen M. Enhancing the machining performance by cutting tool surface modifications: A focused review. Mach. Sci. Technol. 2019:1–33. doi: 10.1080/10910344.2019.1575412. DOI
Oliaei S.N.B., Karpat Y., Davim J.P., Perveen A. Micro tool design and fabrication: A review. J. Manuf. Process. 2018;36:496–519. doi: 10.1016/j.jmapro.2018.10.038. DOI
Swan S., Abdullah M.S.B., Kim D., Nguyen D., Kwon P. Tool Wear of Advanced Coated Tools in Drilling of CFRP. J. Manuf. Sci. Eng. 2018;140:111018. doi: 10.1115/1.4040916. DOI
Volosova M., Grigoriev S., Metel A., Shein A. The Role of Thin-Film Vacuum-Plasma Coatings and Their Influence on the Efficiency of Ceramic Cutting Inserts. Coatings. 2018;8:287. doi: 10.3390/coatings8080287. DOI
Mitterer C. Compr Hard Mater. Elsevier; Amsterdam, The Netherlands: 2014. PVD and CVD Hard Coatings; pp. 449–467. DOI
Rokni M.R., Nutt S.R., Widener C.A., Champagne V.K., Hrabe R.H. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray. J. Spray Technol. 2017;26:1308–1355. doi: 10.1007/s11666-017-0575-0. DOI
Abukhshim N.A., Mativenga P.T., Sheikh M.A. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int. J. Mach. Tools Manuf. 2006;46:782–800. doi: 10.1016/j.ijmachtools.2005.07.024. DOI
Jaworska L., Cyboron J., Cygan S., Laszkiewicz-Lukasik J., Podsiadlo M., Novak P., Holovenko Y. New materials through a variety of sintering methods. IOP Conf. Series Mater. Sci. Eng. 2018;329:012004. doi: 10.1088/1757-899X/329/1/012004. DOI
Billman E.R., Mehrotra P.K., Shuster A.F., Beechly C.W. Machining with Al2O3-Sic Whisker Cutting Tools. In: Wachtman J.B.J., editor. Proceedings of the 12th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings; Cocoa Beach, FL, USA. 1 January 1988; Hoboken, NJ, USA: John Wiley & Sons, Inc.; pp. 543–552.
McMillan P.F. New materials from high-pressure experiments. Nat. Mater. 2002;1:19–25. doi: 10.1038/nmat716. PubMed DOI
Wang L., Zhang J., Jiang W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2013;39:103–112. doi: 10.1016/j.ijrmhm.2013.01.017. DOI
Grasso S., Hu C., Maizza G., Sakka Y. Spark Plasma Sintering of Diamond Binderless WC Composites. J. Am. Ceram. Soc. 2012;95:2423–2428. doi: 10.1111/j.1551-2916.2011.05009.x. DOI
Zhou X., Wang Y., Li T., Li X., Cheng X., Dong L., Yuan Y., Zang J., Lu J., Yu Y., et al. Fabrication of diamond–SiC–TiC composite by a spark plasma sintering-reactive synthesis method. J. Eur. Ceram. Soc. 2015;35:69–76. doi: 10.1016/j.jeurceramsoc.2014.08.006. DOI
Sing S.L., Yeong W.Y., Wiria F.E., Tay B.Y., Zhao Z., Zhao L., Tian Z., Yang S. Direct selective laser sintering and melting of ceramics: A review. Rapid Prototyp. J. 2017;23:611–623. doi: 10.1108/RPJ-11-2015-0178. DOI
Klimczyk P., Cura M.E., Vlaicu A.M., Mercioniu I., Wyżga P., Jaworska L., Hannula S.-P. Al2O3 –cBN composites sintered by SPS and HPHT methods. J. Eur. Ceram. Soc. 2016;36:1783–1789. doi: 10.1016/j.jeurceramsoc.2016.01.027. DOI
Wozniak J., Cygan T., Petrus M., Cygan S., Kostecki M., Jaworska L., Olszyna A. Tribological performance of alumina matrix composites reinforced with nickel-coated grapheme. Ceram. Int. 2018;44:9728–9732. doi: 10.1016/j.ceramint.2018.02.204. DOI
Cygan T., Wozniak J., Kostecki M., Petrus M., Jastrzębska A., Ziemkowska W., Olszyna A. Mechanical properties of graphene oxide reinforced alumina matrix composites. Ceram. Int. 2017;43:6180–6186. doi: 10.1016/j.ceramint.2017.02.015. DOI
Broniszewski K., Wozniak J., Kostecki M., Czechowski K., Jaworska L., Olszyna A. Al2O3–V cutting tools for machining hardened stainless steel. Ceram. Int. 2015;41:14190–14196. doi: 10.1016/j.ceramint.2015.07.044. DOI
Benedicto E., Carou D., Rubio E.M. Technical, Economic and Environmental Review of the Lubrication/Cooling Systems Used in Machining Processes. Procedia Eng. 2017;184:99–116. doi: 10.1016/j.proeng.2017.04.075. DOI
Putyra P., Figiel P., Podsiadło M., Klimczyk P. Alumina composites with solid lubricant participations, sintered by SPS-method. Kompozyty. 2011;11:107–110.
Deng J., Cao T. Self-lubricating mechanisms via the in situ formed tribofilm of sintered ceramics with CaF2 additions when sliding against hardened steel. Int. J. Refract. Met. Hard Mater. 2007;25:189–197. doi: 10.1016/j.ijrmhm.2006.04.010. DOI
Deng J., Can T., Sun J. Microstructure and mechanical properties of hot-pressed Al2O3/TiC ceramic composites with the additions of solid lubricants. Ceram. Int. 2005;31:249–256. doi: 10.1016/j.ceramint.2004.05.009. DOI
Wu G., Xu C., Xiao G., Yi M., Chen Z., Xu L. Self-lubricating ceramic cutting tool material with the addition of nickel coated CaF2 solid lubricant powders. Int. J. Refract. Met. Hard Mater. 2016;56:51–58. doi: 10.1016/j.ijrmhm.2015.12.003. DOI
Katzman H., Libby W.F. Sintered Diamond Compacts with a Cobalt Binder. Science. 1971;172:1132–1134. doi: 10.1126/science.172.3988.1132. PubMed DOI
Hibbs L.E., Jr., Wentorf R.E., Jr. High pressure sintering of diamond by cobalt infiltration. High Temp.-High Press. 1974;6:409–413.
Griffin N.D., Hughes P.R. Polycrystalline Diamond Partially Depleted of Catalizing Material, US6592985B2, 2003. [(accessed on 17 March 2020)]; Available online: https://patents.google.com/patent/US6592985B2/en.
Bertagnolli K.E., Vail M.A. Polycrystalline Diamond Compact (PDC) Cutting Element Having Multiple Catalytic Elements, US8342269B1, 2013. [(accessed on 17 March 2020)]; Available online: https://patents.google.com/patent/US8342269.
Osipov A.S., Klimczyk P., Cygan S., Melniychuk Y.A., Petrusha I.A., Jaworska L., Bykov A.I. Diamond-CaCO 3 and diamond-Li 2 CO 3 materials sintered using the HPHT method. J. Eur. Ceram. Soc. 2017;37:2553–2558. doi: 10.1016/j.jeurceramsoc.2017.02.028. DOI
Jaworska L., Szutkowska M., Klimczyk P., Sitarz M., Bucko M., Rutkowski P., Figiel P., Lojewska J. Oxidation, graphitization and thermal resistance of PCD materials with the various bonding phases of up to 800 °C. Int. J. Refract. Met. Hard Mater. 2014;45:109–116. doi: 10.1016/j.ijrmhm.2014.04.003. DOI
Sumiya H. Novel Development of High-Pressure Synthetic Diamonds Ultra-Hard Nano-Polycrystalline Diamonds. Sei Tech. Rev. 2012, 15–23. [(accessed on 17 March 2020)]; Available online: https://global-sei.com/technology/tr/bn74/pdf/74-03.pdf.
Morris D.G., Muñoz-Morris M.A. The stress anomaly in FeAl–Fe3Al alloys. Intermetallics. 2005;13:1269–1274. doi: 10.1016/j.intermet.2004.08.012. DOI
Novák P., Nová K. Oxidation Behavior of Fe–Al, Fe–Si and Fe–Al–Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC
Grabke H.J. Oxidation of Aluminides. Mater. Sci. Forum. 1997;251–254:149–162. doi: 10.4028/www.scientific.net/MSF.251-254.149. DOI
Novák P., Šotka D., Novák M., Michalcová A., Šerák J., Vojtěch D. Production of NiAl–matrix composites by reactive sintering. Powder Metall. 2011;54:308–313. doi: 10.1179/003258909X12518163. DOI
Sheng L.Y., Yang F., Xi T.F., Guo J.T. Investigation on microstructure and wear behavior of the NiAl–TiC–Al2O3 composite fabricated by self-propagation high-temperature synthesis with extrusion. J. Alloy. Compd. 2013;554:182–188. doi: 10.1016/j.jallcom.2012.11.144. DOI
Choo H., Nash P., Dollar M. Mechanical properties of NiAl–AlN–Al2O3 composites. Mater. Sci. Eng. A. 1997;239–240:464–471. doi: 10.1016/S0921-5093(97)00618-7. DOI
Furushima R., Shimojima K., Hosokawa H., Matsumoto A. Oxidation-enhanced wear behavior of WC-FeAl cutting tools used in dry machining oxygen-free copper bars. Wear. 2017;374–375:104–112. doi: 10.1016/j.wear.2017.01.019. DOI
Mottaghi M., Ahmadian M. Comparison of the wear behavior of WC/(FeAl-B) and WC-Co composites at high temperatures. Int. J. Refract. Met. Hard Mater. 2017;67:105–114. doi: 10.1016/j.ijrmhm.2017.05.003. DOI
Ahmadian M., Wexler D., Chandra T., Calka A. Abrasive wear of WC–FeAl–B and WC–Ni3Al–B composites. Int. J. Refract. Met. Hard Mater. 2005;23:155–159. doi: 10.1016/j.ijrmhm.2004.12.002. DOI
Subramanian R., Schneibel J.H. FeAl–TiC and FeAl–WC composites—melt infiltration processing, microstructure and mechanical properties. Mater. Sci. Eng. A. 1998;244:103–112. doi: 10.1016/S0921-5093(97)00833-2. DOI
Buchholz S., Farhat Z.N., Kipouros G.J., Plucknett K.P. The reciprocating wear behaviour of TiC–Ni3Al cermets. Int. J. Refract. Met. Hard Mater. 2012;33:44–52. doi: 10.1016/j.ijrmhm.2012.02.008. DOI
Robertson S.W., Pelton A.R., Ritchie R.O. Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 2013;57:1–37. doi: 10.1179/1743280411Y.0000000009. DOI
Baumann M.A. Nickel-titanium: Options and challenges. Dent. Clin. N. Am. 2004;48:55–67. doi: 10.1016/j.cden.2003.11.001. PubMed DOI
Novák P., Kristianová E., Valalik M., Darme C., Salvetr P. New Composite Materials Based on NiTi. Manuf. Technol. 2015;15:644–647.
Novák P., Kříž J., Průša F., Kubásek J., Marek I., Michalcová A., Voděrová M., Vojtěch D. Structure and properties of Ti–Al–Si-X alloys produced by SHS method. Intermetallics. 2014;39:11–19. doi: 10.1016/j.intermet.2013.03.009. DOI
Mochizuki N., Takasugi T., Kaneno Y., Oki S., Hirata T. Proceedings of the 1st International Joint Symposium on Joining and Welding. Woodhead Publishing; Sawston, Cambridge, UK: 2013. Friction stir welding of 430 stainless steel and pure titanium using Ni3Al-Ni3V dual two-phase intermetallic alloy tool; pp. 465–471.
Knaislová A., Novák P., Cabibbo M., Průša F., Paoletti C., Jaworska L., Vojtěch D. Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. J. Alloy. Compd. 2018;752:317–326. doi: 10.1016/j.jallcom.2018.04.187. DOI
Holmström E., Linder D., Salmasi A., Wang W., Kaplan B., Mao H., Larsson H., Vitos L. High entropy alloys: Substituting for cobalt in cutting edge technology. Appl. Mater. Today. 2008;12:322–329. doi: 10.1016/j.apmt.2018.07.001. DOI
Arragó J.M., Ferrari C., Reig B., Coureaux D., Schneider L., Llanes L. Mechanics and mechanisms of fatigue in a WC–Ni hardmetal and a comparative study with respect to WC–Co hard metals. Int. J. Fatigue. 2015;70:252–257. doi: 10.1016/j.ijfatigue.2014.09.011. DOI
Viswanadham R.K., Lindquist R.G. Transformation-Toughening in Cemented Carbides: Part I. Binder Composition Control. Met. Trans. A. 1987;18:2163–2173. doi: 10.1007/BF02647089. DOI
Schubert W.D., Fugger B.M., Wittmann R. Useldinger, Aspects of sintering of cemented carbides withFe-based binders. Int. J. Refract. Met. Hard Mater. 2015;49:110–123. doi: 10.1016/j.ijrmhm.2014.07.028. DOI
Graedel T.E., Harper E.M., Nassar N.T., Reck B.K. On the materials basis of modern society. Proc. Natl. Acad. Sci. 2015;112:6295–6300. doi: 10.1073/pnas.1312752110. PubMed DOI PMC
Provis J.L. Grand Challenges in Structural Materials. Front. Mater. 2015;2 doi: 10.3389/fmats.2015.00031. DOI
Materials Genome Initiative Homepage. [(accessed on 4 March 2020)]; Available online: https://www.mgi.gov.
Psi-k Homepage. [(accessed on 4 March 2020)]; Available online: http://psi-k.net/
Overview of the EU funded Centres of Excellence for Computing Applications. [(accessed on 4 March 2020)]; Available online: https://ec.europa.eu/programmes/horizon2020/en/news/overview-eu-funded-centres-excellence-computing-applications.
EXDCI Homepage. [(accessed on 4 March 2020)]; Available online: https://exdci.eu.
NIMS. [(accessed on 4 March 2020)];2019 Available online: https://www.nims.go.jp/eng/index.html.
The Novel Materials Discovery (NOMAD) Laboratory Homepage. [(accessed on 4 March 2020)]; Available online: https://nomad-coe.eu/
FAIR-DI (Data Infrastructure) Pillar, A, Computational Materials Science–NOMAD. [(accessed on 4 March 2020)]; Available online: https://fairdi.eu/index.php?page=pillar-a.
AiiDA (Automated Interactive Infrastructure and Database for Computational Science) Homepage. [(accessed on 4 March 2020)]; Available online: http://www.aiida.net/
MaterialsCloud Homepage. [(accessed on 4 March 2020)]; Available online: https://www.materialscloud.org/
CMR (Computational Materials Repository) Homepage. [(accessed on 4 March 2020)]; Available online: https://cmr.fysik.dtu.dk/
MPDS (Materials Platform for Data Science) Homepage. [(accessed on 4 March 2020)]; Available online: https://mpds.io/
OMD (Open Materials Database) Homepage. [(accessed on 4 March 2020)]; Available online: http://openmaterialsdb.se/
ESL (Electronic Structure Library) Homepage. [(accessed on 4 March 2020)]; Available online: https://esl.cecam.org/
ESP (Electronic Structure Project) Homepage. [(accessed on 4 March 2020)]; Available online: http://gurka.fysik.uu.se/ESP/
Materials Project Homepage. [(accessed on 4 March 2020)]; Available online: https://www.materialsproject.org/
AFLOW (Automatic-FLOW for Materials Discovery) Homepage. [(accessed on 4 March 2020)]; Available online: http://www.aflow.org/
OQMD (Open Quantum Materials Database) Homepage. [(accessed on 4 March 2020)]; Available online: http://oqmd.org/
MatNavi (NIMS Materials Database) Homepage. [(accessed on 4 March 2020)]; Available online: https://mits.nims.go.jp/index_en.html.
factsage Homepage. [(accessed on 4 March 2020)]; Available online: http://www.factsage.com/
Computherm Homepage. [(accessed on 4 March 2020)]; Available online: https://computherm.com/
Thermocalc Homepage. [(accessed on 4 March 2020)]; Available online: https://www.thermocalc.com/
Opencalphad Homepage. [(accessed on 4 March 2020)]; Available online: http://www.opencalphad.com/
MMM@HPC (Multiscale Materials Modelling on High Performance Computing Architectures) Homepage. [(accessed on 4 March 2020)]; Available online: http://www.multiscale-modelling.eu/
EUDAT Homepage. [(accessed on 4 March 2020)]; Available online: https://eudat.eu/
Kaye and Laby. [(accessed on 4 March 2020)]; Available online: http://www.npl.co.uk/resources.
MEDEA Homepage. [(accessed on 4 March 2020)]; Available online: https://www.materialsdesign.com/
NanoHUB Homepage. [(accessed on 4 March 2020)]; Available online: http://nanohub.org/
Pymatgen Homepage. [(accessed on 4 March 2020)]; Available online: http://pymatgen.org/
Imeall Homepage. [(accessed on 4 March 2020)]; Available online: https://github.com/kcl-tscm/imeall.
MPInterfaces Homepage. [(accessed on 4 March 2020)]; Available online: https://github.com/henniggroup/MPInterfaces.
pylada Homepage. [(accessed on 4 March 2020)]; Available online: https://github.com/pylada/pylada-defects.
Jain A., Ong S.P., Hautier G., Chen W., Richards W.D., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013:011002. doi: 10.1063/1.4812323. DOI
Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L., editors. Binary Alloy Phase Diagrams. 2nd ed. ASM International; Cleveland, OH, USA: 1990.
Villars P., Prince A., Okamoto H., editors. Handbook of Ternary Alloy Phase Diagrams. ASM International; Cleveland, OH, USA: 1995.
NIST-ASM (National Institute of Standards and Technology – Materials Data Repository) Homepage. [(accessed on 4 March 2020)]; Available online: https://materialsdata.nist.gov.
Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. High-entropy alloy: Challenges and prospects. Mater. Today. 2016;19:349–362. doi: 10.1016/j.mattod.2015.11.026. DOI
Fu X., Schuh C.A., Olivetti E.A. Materials selection considerations for high entropy alloys, Scr. Mater. 2017;138:145–150. doi: 10.1016/j.scriptamat.2017.03.014. DOI
Abu-Odeh A., Galvan E., Kirk T., Mao H., Chen Q., Mason P., Malak R., Arróyave R. Efficient exploration of the High Entropy Alloy composition-phase space. Acta Mater. 2018;152:41–57. doi: 10.1016/j.actamat.2018.04.012. DOI
Ikeda Y., Grabowski B., Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys. Mater. Charact. 2019;147:464–511. doi: 10.1016/j.matchar.2018.06.019. DOI
Gorbachev I., Popov V., Katz-Demyanetz A., Popov V.V., Jr., Eshed E. Prediction of the Phase Composition of High-Entropy Alloys Based on Cr–Nb–Ti–V–Zr Using the Calphad Method. Phys. Met. Metallogr. 2019;120:378–386. doi: 10.1134/S0031918X19040069. DOI
USPEX (Universal Structure Predictor: Evolutionary Xtallography) Homepage. [(accessed on 4 March 2020)]; Available online: http://uspex-team.org/en/
GASP (Genetic Algorithm for Structure and Phase Prediction) Homepage. [(accessed on 4 March 2020)]; Available online: http://gasp.mse.ufl.edu/
CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) Homepage. [(accessed on 4 March 2020)]; Available online: http://www.calypso.cn/
ATAT (Alloy Theoretic Automated Toolkit) Homepage. [(accessed on 4 March 2020)]; Available online: https://www.brown.edu/Departments/Engineering/Labs/avdw/atat/
UNCLE-MEDEA. [(accessed on 4 March 2020)]; Available online: https://www.materialsdesign.com/products.
RuNNer Homepage. [(accessed on 4 March 2020)]; Available online: http://www.uni-goettingen.de/de/560580.html.
AIRSS (Ab Initio Random Structure Searching) Homepage. [(accessed on 4 March 2020)]; Available online: https://www.mtg.msm.cam.ac.uk/Codes/AIRSS.
Kvashnin A.G., Zakaryan H.A., Zhao C., Duan Y., Kvashnina Y.A., Xie C., Dong H., Oganov A.R. New tungsten borides, their stability and outstanding mechanical properties. J. Phys. Chem. Lett. 2018;9:3470. doi: 10.1021/acs.jpclett.8b01262. PubMed DOI
Mikhail Kuklin. [(accessed on 4 March 2020)]; Available online: https://wiki.aalto.fi/display/IMM/USPEX+guide.
Atomistica Homepage. [(accessed on 4 March 2020)]; Available online: http://www.atomistica.org/
Atomicrex Homepage. [(accessed on 4 March 2020)]; Available online: https://atomicrex.org/
Potfit Homepage. [(accessed on 4 March 2020)]; Available online: https://www.potfit.net.
OpenKIM (Knowledgebase of Interatomic Models) Homepage. [(accessed on 4 March 2020)]; Available online: https://openkim.org/
GAP (Gaussian Approximation Potentials) Homepage. [(accessed on 4 March 2020)]; Available online: http://www.libatoms.org/Home/Software.
SNAP (Spectral Neighbor Analysis Potential) Homepage. [(accessed on 4 March 2020)]; Available online: https://github.com/materialsvirtuallab/snap.
González C., Panizo-Laiz M., Gordillo N., Guerrero C.L., Tejado E., Munnik F., Piaggi P., Bringa E., Iglesias R., Perlado J.M., et al. H trapping and mobility in nanostructured tungsten grain boundaries: A combined experimental and theoretical approach. Nucl. Fusion. 2015;55:113009. doi: 10.1088/0029-5515/55/11/113009. DOI
Valles G., Panizo-Laiz M., González C., Martin-Bragado I., González-Arrabal R., Gordillo N., Iglesias R., Guerrero C.L., Perlado J.M., Rivera A. Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten. Acta Mater. 2017;122:277–286. doi: 10.1016/j.actamat.2016.10.007. DOI
The Minerals, Metals & Materials Society (TMS) Advanced Computation and Data in Materials and Manufacturing: Core Knowledge Gaps and Opportunities. TMS; Pittsburgh, PA, USA: 2018.
Bessa M.A., Glowacki P., Houlder M. Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible. Adv. Mater. 2019;31:1904845. doi: 10.1002/adma.201904845. PubMed DOI
White Paper on Gaps and Obstacles in Materials Modelling. [(accessed on 4 March 2020)]; Available online: https://emmc.info/wp-content/uploads/2019/12/EMMC-CSA-whitepaper-DRAFTV20191220v2.pdf.
Shin S.-H., Kim H.-Y., Rim K.-Y. Worker Safety in the Rare Earth Elements Recycling Process from the Review of Toxicity and Issues. Saf. Health Work. 2019;10:409–419. doi: 10.1016/j.shaw.2019.08.005. PubMed DOI PMC
Dominik B., Kleinert F., Imiela J., Westkämper E. Life Cycle Management of Cutting Tools: Comprehensive Acquisition and Aggregation of Tool Life Data. Procedia Cirp. 2017;61:311–316.
Ishida T., Itakura T., Moriguchi H., Ikegaya A. Development of technologies for recycling cemented carbidescrap and reducing tungstenuse in cemented carbide tools. SEI Tech. Rev. 2012;75:38–46.
Hayashi T., Sato F., Sasaya K., Ikegaya A. Industrialization of Tungsten Recovering from Used Cemented Carbide Tools. SEI Tech. Rev. 2016;82:33–38.
Freemantle C., Sacks N. Recycling of cemented tungsten carbide mining tool scrap. J. South. Afr. Inst. Min. Metall. 2015;115:1207–1213. doi: 10.17159/2411-9717/2015/v115n12a9. DOI
Angelo P.C., Subramanian R. Powder Metallurgy: Science, Technology and Applications. PHI Learning Pvt. Ltd.; New Delhi, India: 2008.
Altuncu E., Ustel F., Turk A., Ozturk S., Erdogan G. Cutting-tool recycling process with the zinc-melt method for obtaining thermal-spray feedstock powder (wc-co) mtaec9. UDK. 2013;47:115.
Lee J., Kim S., Kim B. A New Recycling Process for Tungsten Carbide Soft Scrap That Employs a Mechanochemical Reaction with Sodium Hydroxide. Metals. 2017;7:230.
Popov V., Jr., Katz-Demyanetz A., Garkun A., Bamberger M. The effect of powder recycling on the mechanical properties and microstructure of electron beam melted Ti-6Al-4 V specimens. Addit. Manuf. 2018;22:834–843. doi: 10.1016/j.addma.2018.06.003. DOI
Joost R.J., Pirso J., Letunovitš S., Juhani K. Recycling of WC-Co Hardmetals by Oxidation and Carbothermal Reduction in Combination with Reactive Sintering. Est. J. Eng. 2012;18:127. doi: 10.3176/eng.2012.2.03. DOI
Malyshev V., Shakhnin D., Gab A., Uskova N., Gudymenko O., Glushakov V., Kushchevska N. Tungsten Resource-Saving: Cobalt Cermets Wastes Recycling and Concentrates Extraction. J. Env. Sci. Eng. B. 2015;4 doi: 10.17265/2162-5263/2015.10.002. DOI
Gregor K., Luidold S., Czettl C., Storf C. Successful Control of the Reaction Mechanism for Semi-Direct Recycling of Hard Metals. Int. J. Refract. Met. Hard Mater. 2020;86:105131.
Liu H., Hanyu H., Murakami Y., Kamiya S., Saka M. Recycling Technique for CVD Diamond Coated Cutting Tools. Surf. Coat. Technol. 2001;137:246–248. doi: 10.1016/S0257-8972(00)01081-1. DOI
Van Staden A.C., Hagedorn-Hansen D., Oosthuizen G.A., Sacks N. Characteristics of single layer selective laser melted tool grade cemented tungsten carbide; Proceedings of the Competitive Manufacturing, International Conference on Competitive Manufacturing (COMA ’16); Stellenbosch University, Stellenbosch, South Africa. 27–29 January 2016; Stellenbosch, South Africa: Stellenbosch University;
Additive Manufacturing of WC-Co Specimens with Internal Channels
Investigation of Multiparameter Laser Stripping of AlTiN and DLC C Coatings
Advanced Powder Metallurgy Technologies