Intercomparison of Indexable Cutting Inserts' Wear Progress and Chip Formation During Machining Hardened Steel AISI 4337 and Austenitic Stainless Steel AISI 316 L
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010045
the OP VVV Project Development of new nano and micro coatings on the surface of selected me-tallic materials-NANOTECH ITI II
PubMed
39597241
PubMed Central
PMC11595980
DOI
10.3390/ma17225418
PII: ma17225418
Knihovny.cz E-zdroje
- Klíčová slova
- chip production, hardened steel, indexable cutting insert, stainless steel, wear,
- Publikační typ
- časopisecké články MeSH
This article deals with a mutual comparison of indexable cutting inserts of the CNMG 120408 type from two different manufacturers during the machining of hardened steel AISI 4337 and austenitic stainless steel AISI 316 L. The main goal is to analyse the different wear processes depending on the difference in the manufacturer's design and also depending on the properties of the different machined materials. The progress of the wear of the main spine of the tool, the types of wear and the service life of the cutting edge were monitored, with the achievement of the critical value VBmax = 300 µm being the standard. In addition to the wear of the inserts, the production of chips was monitored in terms of their shape, average size and number of chips per 100 g of chips produced. In order to understand the relationships arising from the obtained data, an SEM equipped with an elemental analyser was used to analyse the coating layers and the substrate of the unworn inserts and the types of wear and the intensity of the surface damage of the worn inserts. A several-fold difference in the lifetime of the cutting edge was found, both in terms of design and in terms of the selected machined material, while in both cases the cutting edge with Al2O3 and TiCN layers of half thickness achieved a better result in liveness. From the point of view of chip formation, very similar results in shape and average length were observed despite the different designs of chip breakers. Cutting inserts with half the thickness of the coating layers achieved longer cutting edge life in the non-primary material application compared to the target workpiece material. At the same time, it was observed that a thinner coating layer has a positive effect on chip formation in terms of its length and shape.
Zobrazit více v PubMed
García J., Ciprés V.C., Blomqvist A., Kaplan B. Cemented carbide microstructures: A review. Int. J. Refract. Met. Hard Mater. 2019;80:40–68. doi: 10.1016/j.ijrmhm.2018.12.004. DOI
Vasilko K., Murčinková Z. Reduction in Total Production Cycle Time by the Tool Holder for the Automated Cutting Insert Quick Exchange and by the Double Cutting Tool Holder. J. Manuf. Mater. Process. 2023;7:99. doi: 10.3390/jmmp7030099. DOI
Denkena B., Michaelis A., Herrmann M., Pötschke J., Krödel A., Vornberger A., Picker T. Influence of tool material properties on the wear behavior of cemented carbide tools with rounded cutting edges. Wear. 2020;456–457:203395. doi: 10.1016/j.wear.2020.203395. DOI
Ribeiro C.A.C., Ferreira J.R., e Silva S.M.M.L. Thermal influence analysis of coatings and contact resistance in turning cutting tool using COMSOL. Int. J. Adv. Manuf. Technol. 2021;118:275–289. doi: 10.1007/s00170-021-07835-4. DOI
Shi Z., Li X., Duan N., Yang Q. Evaluation of tool wear and cutting performance considering effects of dynamic nodes movement based on FEM simulation. Chin. J. Aeronaut. 2021;34:140–152. doi: 10.1016/j.cja.2020.08.003. DOI
Boing D., de Oliveira A.J., Schroeter R.B. Limiting conditions for application of PVD (TiAlN) and CVD (TiCN/Al2O3/TiN) coated cemented carbide grades in the turning of hardened steels. Wear. 2018;416:54–61. doi: 10.1016/j.wear.2018.10.007. DOI
Daicu R., Oancea G. Methodology for Measuring the Cutting Inserts Wear. Symmetry. 2022;14:469. doi: 10.3390/sym14030469. DOI
Jahan M.P., Ma J., Hanson C., Arbuckle G.K. Tool wear and resulting surface finish during micro slot milling of polycarbonates using uncoated and coated carbide tools. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019;234:52–65. doi: 10.1177/0954405419862479. DOI
Mazid A.M., Hasan S., Ahsan K.B. An Investigation on Optimum Process Parameters in Terms of Surface Roughness for Turning Titanium Alloy Ti-6Al-4V Using Coated Carbide. Int. J. Eng. Mater. Manuf. 2019;4:137–145. doi: 10.26776/ijemm.04.04.2019.01. DOI
Zhuang K., Fu C., Weng J., Hu C. Cutting edge microgeometries in metal cutting: A review. Int. J. Adv. Manuf. Technol. 2021;116:2045–2092. doi: 10.1007/s00170-021-07558-6. DOI
Amaro P., Ferreira P., Simões F. Tool wear analysis during duplex stainless steel trochoidal milling. AIP Conf. Proc. 2018;1960:070001. doi: 10.1063/1.5034897. DOI
Zeng K., Wu X., Jiang F., Shen J., Zhu L., Li L. A comprehensive review on the cutting and abrasive machining of cemented carbide materials. J. Manuf. Process. 2023;108:335–358. doi: 10.1016/j.jmapro.2023.10.042. DOI
Tian X., Yan K., Wang Z., Xie F., Liu Y., Wang L., Chen X., Yuan J., Liu H. Performance of carbide tools in high-speed dry turning iron-based superalloys. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021;236:427–439. doi: 10.1177/09544054211028515. DOI
Reis B.C.M., dos Santos A.J., dos Santos N.F.P., Câmara M.A., de Faria P.E., Abrão A.M. Cutting performance and wear behavior of coated cermet and coated carbide tools when turning AISI 4340 steel. Int. J. Adv. Manuf. Technol. 2019;105:1655–1663. doi: 10.1007/s00170-019-04392-9. DOI
Fernandes L.J., Stoeterau R.L., Batalha G.F., Rodrigues D., Borille A.V. Influence of sintering condition on the tool wear of NbC-based Ni binder-cemented carbide cutting tools. Int. J. Adv. Manuf. Technol. 2020;106:3575–3585. doi: 10.1007/s00170-019-04838-0. DOI
Rizzo A., Goel S., Grilli M.L., Iglesias R., Jaworska L., Lapkovskis V., Novak P., Postolnyi B.O., Valerini D. The Critical Raw Materials in Cutting Tools for Machining Applications: A Review. Materials. 2020;13:1377. doi: 10.3390/ma13061377. PubMed DOI PMC
Basha M.M., Basha S.M., Sankar M.R. State of Art on Development of Diamond Reinforced Tungsten Carbide based Cutting Tool by Powder Metallurgy Routes. Adv. Mater. Process. Technol. 2022;8:37–48. doi: 10.1080/2374068x.2020.1860595. DOI
Yang X., Wang K., Zhang G., Chou K. Fabrication and performances of WC-Co cemented carbide with a low cobalt content. Int. J. Appl. Ceram. Technol. 2021;19:1341–1353. doi: 10.1111/ijac.13966. DOI
Gren M., Fransson E., Ångqvist M., Erhart P., Wahnström G. Modeling of vibrational and configurational degrees of freedom in hexagonal and cubic tungsten carbide at high temperatures. Phys. Rev. Mater. 2021;5:033804. doi: 10.1103/PhysRevMaterials.5.033804. DOI
Lavigne O., Cinca N., Ther O., Tarrés E. Effect of binder nature and content on the cavitation erosion resistance of cemented carbides. Int. J. Refract. Met. Hard Mater. 2022;109:105978. doi: 10.1016/j.ijrmhm.2022.105978. DOI
Derakhshandeh M., Eshraghi M., Razavi M. Recent developments in the new generation of hard coatings applied on cemented carbide cutting tools. Int. J. Refract. Met. Hard Mater. 2023;111:106077. doi: 10.1016/j.ijrmhm.2022.106077. DOI
Chen Y., Zhang L., Zhu J.-F., Zhong Z.-Q., Gu J.-H. Cohesive failure and film adhesion of PVD coating: Cemented carbide substrate phase effect and its micro-mechanism. Int. J. Refract. Met. Hard Mater. 2023;111:106066. doi: 10.1016/j.ijrmhm.2022.106066. DOI
Katiyar P.K., Randhawa N.S. A comprehensive review on recycling methods for cemented tungsten carbide scraps highlighting the electrochemical techniques. Int. J. Refract. Met. Hard Mater. 2020;90:105251. doi: 10.1016/j.ijrmhm.2020.105251. DOI
Shemi A., Magumise A., Ndlovu S., Sacks N. Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects. Miner. Eng. 2018;122:195–205. doi: 10.1016/j.mineng.2018.03.036. DOI
Muneer L., Al-Ethari H. Tungsten Carbide Recovery from Hard Material Scrape. Des. Eng. 2021;7:14787–14797.
Niu Z., Jiao F., Cheng K. An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools. J. Manuf. Process. 2018;31:382–394. doi: 10.1016/j.jmapro.2017.11.023. DOI
Ahmed Y.S., Paiva J.M., Veldhuis S.C. Characterization and prediction of chip formation dynamics in machining austenitic stainless steel through supply of a high-pressure coolant. Int. J. Adv. Manuf. Technol. 2019;102:1671–1688. doi: 10.1007/s00170-018-03277-7. DOI
Maksarov V.V., Khalimonenko A.D., Olt J. Improvement of efficiency of metal recycling in metallurgical production. Chernye Met. 2021;1:45–51. doi: 10.17580/chm.2021.03.08. DOI
Kuntoğlu M., Sağlam H. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement. 2019;140:427–436. doi: 10.1016/j.measurement.2019.04.022. DOI
Yılmaz B., Karabulut Ş., Güllü A. A review of the chip breaking methods for continuous chips in turning. J. Manuf. Process. 2020;49:50–69. doi: 10.1016/j.jmapro.2019.10.026. DOI
Molnar T.G., Berezvai S., Kiss A.K., Bachrathy D., Stepan G. Experimental investigation of dynamic chip formation in orthogonal cutting. Int. J. Mach. Tools Manuf. 2019;145:103429. doi: 10.1016/j.ijmachtools.2019.103429. DOI
Tool-Life Testing with Single-Point Turning Tools. International Organization for Standardization (ISO Standard); London, UK: 1993.
Singh K., Karakoti A. Optimization of Parameter for Surface Roughness by Using Taguchi Method. Int. J. Adv. Res. Ideas Innov. Technol. 2017;3:351–358.
Patel N., Parihar P.L., Makwana J.S. Parametric optimization to improve the machining process by using Taguchi method: A review. Mater. Today Proc. 2021;47:2709–2714. doi: 10.1016/j.matpr.2021.03.005. DOI
Setyono G., Riyadi S., Muharom, Riyanto O.A.W., Pratama S. Effect of Cutting Parameter Toward The Surface Roughness Applied In Turning Tool Steel Material. Infotekmesin. 2022;13:233–238. doi: 10.35970/infotekmesin.v13i2.1533. DOI
Leksycki K., Feldshtein E., Królczyk G.M., Legutko S. On the Chip Shaping and Surface Topography When Finish Cutting 17-4 PH Precipitation-Hardening Stainless Steel under Near-Dry Cutting Conditions. Materials. 2020;13:2188. doi: 10.3390/ma13092188. PubMed DOI PMC
Indexable inserts for cutting tools—Designation. International Organization for Standardization (ISO Standard); Geneva, Switzerland: 2017.
Standard Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for. ASTM International; West Conshohocken, PA, USA: 2004.
Standard Specification for Stainless Steel for Surgical Instruments. ASTM International; West Conshohocken, PA, USA: 1995.
Jędrzejczyk D., Mikołajczyk J.R. Defining the Correlation Between the Cutting Speed and Roughness Parameter Rz. Mik 21. Spatium; Lublin, Poland: 2022. pp. 39–46.
Vereschaka A., Volosova M., Sitnikov N., Milovich F., Andreev N., Bublikov J., Sotova C. Influence of the thickness of nanolayers in wear-resistant layer of Ti-TiN-(Ti, Cr, Al)N coating on the tool life and wear pattern of the carbide cutting tools in steel turning. Procedia CIRP. 2021;101:262–265. doi: 10.1016/j.procir.2021.02.027. DOI
Cappellini C., Abeni A. Development and implementation of crater and flank tool wear model for hard turning simulations. Int. J. Adv. Manuf. Technol. 2022;120:2055–2073. doi: 10.1007/s00170-022-08885-y. DOI
Tooptong S., Nguyen D., Park K.-H., Kwon P. Crater wear on multi-layered coated carbide inserts when turning three distinct cast irons. Wear. 2021;484:203982. doi: 10.1016/j.wear.2021.203982. DOI
Uçak N., Aslantas K., Çiçek A. The effects of Al2O3 coating on serrated chip geometry and adiabatic shear banding in orthogonal cutting of AISI 316L stainless steel. J. Mater. Res. Technol. 2020;9:10758–10767. doi: 10.1016/j.jmrt.2020.07.087. DOI
Abidi Y. Relationship between surface roughness and chip morphology when turning hardened steel. Prod. Eng. Arch. 2020;26:92–98. doi: 10.30657/pea.2020.26.19. DOI
Moreno M., Andersson J.M., M’Saoubi R., Kryzhanivskyy V., Johansson-Jöesaar M.P., Johnson L.J., Odén M., Rogström L. Adhesive wear of TiAlN coatings during low speed turning of stainless steel 316L. Wear. 2023;524:204838. doi: 10.1016/j.wear.2023.204838. DOI
Kuntoğlu M., Gupta M.K., Aslan A., Salur E., Garcia-Collado A. Influence of tool hardness on tool wear, surface roughness and acoustic emissions during turning of AISI 1050. Surf. Topogr. Metrol. Prop. 2022;10:015016. doi: 10.1088/2051-672X/ac4f38. DOI