Additive Manufacturing of WC-Co Specimens with Internal Channels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Research and Development for Innovation in Engineering Technology - Machining Technology IV - SGS-2022-007
Ministry of Education Youth and Sports
PubMed
37297041
PubMed Central
PMC10253827
DOI
10.3390/ma16113907
PII: ma16113907
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, additive manufacturing, efficient cooling, indexable insert, preheating, tungsten carbide,
- Publikační typ
- časopisecké články MeSH
Most material removal in modern manufacturing is currently performed using tools with indexable inserts. Additive manufacturing allows for the creation of new, experimental insert shapes and, more importantly, internal structures, such as channels for coolant. This study deals with developing a process for efficiently manufacturing WC-Co specimens with internal coolant channels with a focus on obtaining a suitable microstructure and surface finish, especially inside the channels. The first part of this study covers the development of process parameters to achieve a microstructure without cracks and with minimal porosity. The next stage focuses solely on improving the surface quality of the parts. Special attention is given to the internal channels, where true surface area and surface quality are evaluated, as these characteristics greatly influence coolant flow. To conclude, WC-Co specimens were successfully manufactured and a microstructure with low porosity and no cracks was achieved and an effective parameter set was found. We have developed a process that produces parts with a surface roughness comparable to those of standard SLS manufacturing of steel parts, while still providing a high-quality internal microstructure. The most suitable parameter set resulted in a profile surface roughness of Ra 4 μm and Rz 31 μm and areal surface roughness of Sa 7 µm and Sz 125 µm.
Zobrazit více v PubMed
Williams J.C., Boyer R.R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components. Metals. 2020;10:705. doi: 10.3390/met10060705. DOI
De Bartolomeis A., Newman S.T., Jawahir I.S., Biermann D., Shokrani A. Future Research Directions in the Machining of Inconel 718. J. Mater. Process. Technol. 2021;297:117260. doi: 10.1016/j.jmatprotec.2021.117260. DOI
Hourmand M., Sarhan A.A.D., Sayuti M., Hamdi M. A Comprehensive Review on Machining of Titanium Alloys. Arab. J. Sci. Eng. 2021;46:7087–7123. doi: 10.1007/s13369-021-05420-1. DOI
Pervaiz S., Rashid A., Deiab I., Nicolescu M. Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys: A Review. Mater. Manuf. Process. 2014;29:219–252. doi: 10.1080/10426914.2014.880460. DOI
Mahesh K., Philip J.T., Joshi S.N., Kuriachen B. Machinability of Inconel 718: A Critical Review on the Impact of Cutting Temperatures. Mater. Manuf. Process. 2021;36:753–791. doi: 10.1080/10426914.2020.1843671. DOI
Hegab H., Khanna N., Monib N., Salem A. Design for Sustainable Additive Manufacturing: A Review. Sustain. Mater. Technol. 2023;35:e00576. doi: 10.1016/j.susmat.2023.e00576. DOI
Ahmad M.N., Ishak M.R., Mohammad Taha M., Mustapha F., Leman Z. Investigation of ABS–Oil Palm Fiber (Elaeis guineensis) Composites Filament as Feedstock for Fused Deposition Modeling. Rapid Prototyp. J. 2022;29:897–909. doi: 10.1108/RPJ-05-2022-0164. DOI
Silva F.J.G., Campilho R.D.S.G., Gouveia R.M., Pinto G., Baptista A. A Novel Approach to Optimize the Design of Parts for Additive Manufacturing. Procedia Manuf. 2018;17:53–61. doi: 10.1016/j.promfg.2018.10.012. DOI
Rupp M., Buck M., Klink R., Merkel M., Harrison D.K. Additive Manufacturing of Steel for Digital Spare Parts—A Perspective on Carbon Emissions for Decentral Production. Clean. Environ. Syst. 2022;4:100069. doi: 10.1016/j.cesys.2021.100069. DOI
Rizzo A., Goel S., Grilli M., Iglesias R., Jaworska L., Lapkovskis V., Novak P., Postolnyi B., Valerini D. The Critical Raw Materials in Cutting Tools for Machining Applications: A Review. Met.-Open Access Metall. J. 2020;13:1377. doi: 10.3390/ma13061377. PubMed DOI PMC
Berger C., Abel J., Pötschke J. Properties of Additive Manufactured Hardmetal Components Produced by Fused Filament Fabrication (FFF); Proceedings of the Euro PM2018 Proceedings; Bilbao, Spain. 14–18 October 2018; p. 6.
Padmakumar M. Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting (SLM), Selective Laser Sintering (SLS) and Binder Jet 3D Printing (BJ3DP) Techniques. Lasers Manuf. Mater. Process. 2020;7:338–371. doi: 10.1007/s40516-020-00124-0. DOI
Jiménez A., Bidare P., Hassanin H., Tarlochan F., Dimov S., Essa K. Powder-Based Laser Hybrid Additive Manufacturing of Metals: A Review. Int. J. Adv. Manuf. Technol. 2021;114:63–96. doi: 10.1007/s00170-021-06855-4. DOI
Pratheesh Kumar S., Elangovan S., Mohanraj R., Ramakrishna J.R. Review on the Evolution and Technology of State-of-the-Art Metal Additive Manufacturing Processes. Mater. Today Proc. 2021;46:7907–7920. doi: 10.1016/j.matpr.2021.02.567. DOI
Schwanekamp T., Marginean G., Reuber M., Ostendorf A. Impact of Cobalt Content and Grain Growth Inhibitors in Laser-Based Powder Bed Fusion of WC-Co. Int. J. Refract. Met. Hard Mater. 2022;105:105814. doi: 10.1016/j.ijrmhm.2022.105814. DOI
Kumar S. Manufacturing of WC–Co Moulds Using SLS Machine. J. Mater. Process. Technol. 2009;209:3840–3848. doi: 10.1016/j.jmatprotec.2008.08.037. DOI
Kruth J.-P., Levy G., Klocke F., Childs T.H.C. Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing. CIRP Ann. 2007;56:730–759. doi: 10.1016/j.cirp.2007.10.004. DOI
Bricín D., Ackermann M., Jansa Z., Kubátová D., Kříž A., Špirit Z., Šafka J. Development of the Structure of Cemented Carbides during Their Processing by SLM and HIP. Metals. 2020;10:1477. doi: 10.3390/met10111477. DOI
Tomas J., Schubert T., Bernthaler T., Merkel M., Schneider G., Sellmer D. Laser Sintering of Tungsten Carbide Cutter Shafts with Integrated Cooling Channels; Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018); Singapore. 14–17 May 2018; DOI
Fries S., Genilke S., Wilms M.B., Seimann M., Weisheit A., Kaletsch A., Bergs T., Schleifenbaum J.H., Broeckmann C. Laser-Based Additive Manufacturing of WC–Co with High-Temperature Powder Bed Preheating†. Steel Res. Int. 2020;91:1900511. doi: 10.1002/srin.201900511. DOI
Chen J., Huang M., Fang Z.Z., Koopman M., Liu W., Deng X., Zhao Z., Chen S., Wu S., Liu J., et al. Microstructure Analysis of High Density WC-Co Composite Prepared by One Step Selective Laser Melting. Int. J. Refract. Met. Hard Mater. 2019;84:104980. doi: 10.1016/j.ijrmhm.2019.104980. DOI
SLM Solutions Group AG . SLM 280 Selective Laser Melting Machine. SLM Solutions Group AG; Lübeck, Germany: 2022.
Höganäs Germany GmbH . Powders For Thermal Spraying—Amperit 526. Höganäs Germany GmbH; Goslar, Germany: 2020.
Zetková I. Complexity of Metal Mechanical Components Production by 3D Printing. Západočeská Univerzita v Plzni, Fakulta Strojní; Plzeň, Czech Republic: 2017. pp. 52–63.
Meier C., Weissbach R., Weinberg J., Wall W.A., Hart A.J. Critical Influences of Particle Size and Adhesion on the Powder Layer Uniformity in Metal Additive Manufacturing. J. Mater. Process. Technol. 2019;266:484–501. doi: 10.1016/j.jmatprotec.2018.10.037. DOI
Campanelli S.L., Contuzzi N., Posa P., Angelastro A. Printability and Microstructure of Selective Laser Melting of WC/Co/Cr Powder. Materials. 2019;12:2397. doi: 10.3390/ma12152397. PubMed DOI PMC
Matras A. Research and Optimization of Surface Roughness in Milling of SLM Semi-Finished Parts Manufactured by Using the Different Laser Scanning Speed. Materials. 2020;13:9. doi: 10.3390/ma13010009. PubMed DOI PMC
Koutiri I., Pessard E., Peyre P., Amlou O., De Terris T. Influence of SLM Process Parameters on the Surface Finish, Porosity Rate and Fatigue Behavior of as-Built Inconel 625 Parts. J. Mater. Process. Technol. 2018;255:536–546. doi: 10.1016/j.jmatprotec.2017.12.043. DOI
EOS GmbH . EOS MaragingSteel MS1 2020. EOS GmbH; Krailling, Germany: 2020.