Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys

. 2021 Feb 13 ; 14 (4) : . [epub] 20210213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33668661

Grantová podpora
CA15102 European Cooperation in Science and Technology
451-03-68/2020-14/200156 Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
EP/L016567/1 UK Research and Innovation
EP/S013652/1 UK Research and Innovation
EP/T001100/1 UK Research and Innovation
EP/S036180/1 UK Research and Innovation
EP/T024607/1 UK Research and Innovation
IAPP18-19\295 Royal Academy of Engineering
TSP1332 Royal Academy of Engineering
EXPP2021\1\277 Royal Academy of Engineering

The Critical Raw Materials (CRMs) list has been defined based on economic importance and supply risk by the European Commission. This review paper describes two issues regarding critical raw materials: the possibilities of their substitution in iron-based alloys and the use of iron-based alloys instead of other materials in order to save CRMs. This review covers strategies for saving chromium in stainless steel, substitution or lowering the amounts of carbide-forming elements (especially tungsten and vanadium) in tool steel and alternative iron-based CRM-free and low-CRM materials: austempered ductile cast iron, high-temperature alloys based on intermetallics of iron and sintered diamond tools with an iron-containing low-cobalt binder.

Zobrazit více v PubMed

European Commission . A New Industrial Strategy for Europe. European Commission; Brussels, Belgium: 2020. COM (2020) 102 final.

European Commission . Tackling the Challenges in Commodity Markets and On Raw Materials. European Commission; Brussels, Belgium: 2011. COM (2011) 25 final.

European Commission . Policy and Strategy for Raw Materials. European Commission; Brussels, Belgium: 2008. [(accessed on 1 January 2021)]. Available online: https://ec.europa.eu/growth/sectors/raw-materials/policy-strategy_en.

European Commission and Directorate_General_Joint_Research_Centre . Methodology for Establishing the EU List of Critical Raw Materials. Guidelines. European Commission; Brussels, Belgium: 2017.

Study on the EU’s list of Critical Raw Materials—Final Report. European Union; Luxembourg: 2020. [(accessed on 28 December 2020)]. Available online: https://ec.europa.eu/docsroom/documents/42883/attachments/1/translations/en/renditions/native. DOI

Pippel E., Woltersdorf J., Pöckl G., Lichtenegger G. Microstructure and Nanochemistry of Carbide Precipitates in High-Speed Steel S 6-5-2-5. Mater. Charact. 1999;43:41–55. doi: 10.1016/S1044-5803(99)00003-0. DOI

Dobrzański L.A., Kasprzak W. The influence of 5% cobalt addition on structure and working properties of the 9-2-2-5, 11-2-2-5 and 11-0-2-5 high-speed steels. J. Mater. Process. Technol. 2001;109:52–64. doi: 10.1016/S0924-0136(00)00775-5. DOI

Study on the EU’s list of Critical Raw Materials Non-Critical Raw Materials Factsheets. European Union; Luxembourg: 2020. [(accessed on 28 December 2020)]. Available online: https://ec.europa.eu/docsroom/documents/42883/attachments/3/translations/en/renditions/native. DOI

Working Group on Defining Critical Raw Materials for EU Report on Critical Raw Materials for EU. [(accessed on 28 December 2020)];2014 Available online: http://mima.geus.dk/report-on-critical-raw-materials_en.pdf.

Study on the Review of the List of Critical Raw Materials—Criticality Assessments. [(accessed on 28 December 2020)];2017 doi: 10.2873/876644. Available online: https://op.europa.eu/en/publication-detail/-/publication/08fdab5f-9766-11e7-b92d-01aa75ed71a1. DOI

Study on the Review of the List of Critical Raw Materials—Non-Critical Raw Materials Factsheets. European Union; Luxembourg: 2017. [(accessed on 28 December 2020)]. Available online: https://op.europa.eu/en/publication-detail/-/publication/6f1e28a7-98fb-11e7-b92d-01aa75ed71a1/language-en. DOI

Grilli M.L., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R.R., Ruello M.L. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Metals. 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC

Han J., Li Y., Jiang Z., Yang Y., Wang X., Wang L., Li K. Summary of the Function of Sn in Iron and Steel. Adv. Mat. Res. 2013;773:406–411. doi: 10.4028/www.scientific.net/AMR.773.406. DOI

Davis J.R. Stainless Steel—ASM Specialty Handbook. ASM International; Materials Park, OH, USA: 1994.

Di Caprio G. Gli Acciai Inossidabili. 4th ed. Hoepli; Milan, Italy: 2003.

Van Rooyen G.T. The Potential of Chromium as an Alloying Element; Proceedings of the 1st International Chromium Steel and Alloys Congress; Cape Town, South Africa. 8–11 March 1992; pp. 43–47.

Metals Handobook, Corrosion. 9th ed. Volume 13 ASM International; Metals Park, OH, USA: 1987.

Cunat P.J. Alloying Elements in Stainless Steel and Other Chromium-Containing Alloys. Euro Inox; Paris, France: 2004. [(accessed on 28 December 2020)]. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.323.12&rep=rep1&type=pdf.

Floreen S. An Examination of Chromium Substitution in Stainless Steels. Metall. Trans. A. 1982;13A:2003–2013. doi: 10.1007/BF02645946. DOI

Bittence J.C. Can There Be “Stainless” Without Chromium? Mater. Eng. 1989;89:28–32.

Strategic Materials: Technologies to Reduce US Import Vulnerability. US Congress, Office of Technology Assessment; Washington, DC, USA: 1985. Substitution Alternatives for Strategic Materials; pp. 263–328. OTA-ITE-248. Chapter 7.

Glenn M.L., Larson D.E. Reduced-Chromium Stainless Steel Substitutes Containing Silicon and Aluminum. United States Department of the Interior, Bureau of Mines; Albany, OR, USA: 1984. Report of Investigation 8918.

Bullard S.J., Larson D.E., Dunning J.S. Oxidation and Corrosion Resistance of Two Fe-8Cr-16Ni-Si-Cu Alloys. Corrosion. 1992;48:891–897. doi: 10.5006/1.3315890. DOI

Dunning J.S., Alman D.E., Rawers J.C. Influence of Silicon and Aluminum Additions on the Oxidation Resistance of a Lean-Chromium Stainless Steel. Oxid. Met. 2002;57:409–425. doi: 10.1023/A:1015344220073. DOI

Engkvist J., Bexell U., Grehk M., Olsson M. High temperature oxidation of FeCrAl-alloys-Influence of Al-concentration on oxide layer characteristics. Mater. Corros. 2009;60:876–881. doi: 10.1002/maco.200805186. DOI

Wolff I.M., Iorio L.E., Rumpf T., Scheers P.V.T., Potgieter J.H. Oxidation and corrosion behaviour of Fe-Cr and Fe-Cr-Al alloys with minor alloying additions. Mater. Sci. Eng. A. 1998;241:264–276. doi: 10.1016/S0921-5093(97)00500-5. DOI

Jönsson B., Lu Q., Chandrasekaran D., Berglund R., Rave F. Oxidation and Creep Limited Lifetime of Kanthal APMT®, a Dispersion Strengthened FeCrAlMo Alloy Designed for Strength and Oxidation Resistance at High Temperatures. Oxid. Met. 2013;79:29–39. doi: 10.1007/s11085-012-9324-4. DOI

Pothen F., Goeschl T., Löschel A., Jaha V. Strategic Trade Policy and Critical Raw Materials in Stainless Steel Production. Zentrum für Europäische Wirtschaftsforschung; Mannheim, Germany: 2013. Project Report.

Cavallini M., Felli F., Fratesi R., Veniali F. High temperature air oxidation behaviour of “poor man” high manganese-aluminum steels. Mater. Corros. 1982;33:386–390. doi: 10.1002/maco.19820330703. DOI

Casteletti L.C., Neto A.L., Totten G.E., Heck S.C., Fernandes F.A.P. Use of Fe-31Mn-7.5Al-1.3Si-0.9C Alloy for Fabrication of Resistive Elements. J. ASTM Int. 2010;7:1–4.

Bellezze T., Giuliani G., Roventi G., Fratesi R., Andreatta F., Fedrizzi L. Corrosion behaviour of austenitic and duplex stainless steels in an industrial strongly acidic solution. Mater. Corros. 2016;67:831–838. doi: 10.1002/maco.201508708. DOI

Chen W.Y.C., Stephens J.R. Anodic Polarization Behaviour of Austenitic Stainless Steel Alloys with Lower Chromium Content. Corrosion. 1979;35:443–451. doi: 10.5006/0010-9312-35.10.443. DOI

Glenn M.L., Bullard S.J., Larson D.E., Rhoads S.C. Partial replacements of chromium in stainless steel. J. Mater. Energy Syst. 1985;7:75–81. doi: 10.1007/BF02833547. DOI

Hio K., Yamada T., Tsuchida Y., Nakajima K., Hosoi Y. Effect of Chromium Content on Anodic Polarization Characteristics of Fe-Cr-Al and Fe-Cr-Si Alloys. Corrosion. 2002;58:124–131. doi: 10.5006/1.3277312. DOI

Bellezze T., Giuliani G., Roventi G. Study of stainless steels corrosion in a strong acid mixture. Part 1: Cyclic potentiodynamic polarization curves examined by means of an analytical method. Corros. Sci. 2018;130:113–125. doi: 10.1016/j.corsci.2017.10.012. DOI

Sheirer L.L., Jarman R.A., Burnstein G.T., editors. Corrosion—Metal/Environment Reactions. 3rd ed. Volume 1. Butterworth-Heinemann Ltd.; Oxford, UK: 1994. Stainless Steels; pp. 47–70.

Davis J.R., Davis and Associates, editors. ASM Speciality Handbook—Stainless Steels. ASTM International; Novelty, OH, USA: 1994. Atmospheric and Aqueous Corrosion; p. 133.

Abdul-Azim A.A., Rahem Ghanem W.A.E., Abou-Shahba R.M. Corrosion behaviour of low-Cr high·Al stainless steels in 65% boiling HNO3. Steel Res. 1994;65:350–353. doi: 10.1002/srin.199401084. DOI

Reformatskaya I.I., Rodionova I.G., Podobaev A.N., Ashcheulova I.I., Trofimova E.V. Silicon as an Alloying Element in Ferrite Stainless Steels Containing 8–13% Cr. Prot. Met. 2006;42:549–554. doi: 10.1134/S0033173206060051. DOI

Hodgkiess T., Chia P.S. Assessment of lower-alloy stainless steels for use in desalination plant. Desalination. 1991;84:267–278. doi: 10.1016/0011-9164(91)85135-H. DOI

Basile F., Lorthioir G. Quantitative analysis, by cathodic reduction, of passive layers on Fe-17Cr alloy and its application to substituted alloys. Brit. Corros. J. 1993;28:31–36. doi: 10.1179/000705993798268241. DOI

Wan J., Ran Q., Li J., Xu Y., Xiao X., Yu H., Jiang L. A new resource-saving, low chromium and low nickel duplex stainless steel 15Cr-xAl-2Ni-yMn. Mater. Des. 2014;53:43–50. doi: 10.1016/j.matdes.2013.06.043. DOI

Cavallini M., Felli F., Fratesi R., Veniali F. Aqueous solution corrosion behaviour of “poor man” high manganese-aluminum steels. Mater. Corros. 1982;33:281–284. doi: 10.1002/maco.19820330506. DOI

Abuzriba M.B., Musa S.M. Springer Proceedings in Physics, Proceedings of the 2nd International Multidisciplinary Microscopy and Microanalysis Congress Oludeniz, Turkey, 16–19 October 2014. Volume 164. Springer; Cham, Switzerland: 2015. Substitution for chromium and nickel in Austenitic stainless steels; pp. 205–214. DOI

Moon J., Ha H.-Y., Kim K.-W., Park S.-J., Lee T.-H., Kim S.-D., Jang J.H., Jo H.-H., Hong H.-U., Lee B.H., et al. A new class of lightweight, stainless steels with ultra-high strength and large ductility. Sci. Rep. 2020;10:12140. doi: 10.1038/s41598-020-69177-7. PubMed DOI PMC

Tandon V., Patil A.P., Rathod R.C. Enhanced corrosion resistance of Cr-Mn ASS by low temperature salt bath nitriding technique for the replacement of convectional Cr-Ni ASS. Anti-Corros. Methods Mater. 2019;66:439–445. doi: 10.1108/ACMM-10-2018-2013. DOI

Li C., Bell T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corros. Sci. 2006;48:2036–2049. doi: 10.1016/j.corsci.2005.08.011. DOI

Sakasegawa H., Tanigawa H., Ando M. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel. J. Nucl. Sci. Technol. 2014;51:737–743. doi: 10.1080/00223131.2014.894950. DOI

Bobzin K., Zhao L., Öte M., Königstein T. Development of a FeCrMnBC-based economical wear and corrosion resistant coating. Surf. Coat. Technol. 2019;362:12–20. doi: 10.1016/j.surfcoat.2019.01.074. DOI

Kotrba A., Quan T., Wei W., Detweiler Z., Keifer D., Bullard D. Spatially Optimized Diffusion Alloys: A Novel Multi-Layered Steel Material for Exhaust Applications. SAE Int. 2020;2:2135–2141. doi: 10.4271/2020-01-1051. DOI

Bellezze T., Roventi G., Quaranta A., Fratesi R. Improvement of pitting corrosion resistance of AISI 444 stainless steel to make it a possible substitute for AISI 304L and 316L in hot natural waters. Mater. Corros. 2008;59:727–731. doi: 10.1002/maco.200804112. DOI

Parsons S., Poyntz-Wright O., Kent A., McManus M.C. Green chemistry for stainless steel corrosion resistance: Life cycle assessment of citric acid versus nitric acid passivation. Mater. Today Sustain. 2019;3–4:100005. doi: 10.1016/j.mtsust.2019.01.001. DOI

Balzar D., Ledbetter H. Accurate Modeling of Size and Strain Broadening in the Rietveld Refinement: The “Double-Voigt” Approach, Advances in X-Ray Analysis 38. Plenum Press; New York, NY, USA: 1995. pp. 397–404.

Wiessner M., Gamsjäger E., Van Der Zwaag S., Angerer P. Effect of reverted austenite on tensile and impact strength in a martensitic stainless steel ? An in-situ X-ray diffraction study. Mater. Sci. Eng. A. 2017;682:117–125. doi: 10.1016/j.msea.2016.11.039. DOI

Wießner M., Leisch M., Emminger H., Kulmburg A. Phase transformation study of a high speed steel powder by high temperature X-ray diffraction. Mater. Charact. 2008;59:937–943.

Novák P., Michalcová A., Marek I., Mudrová M., Saksl K., Bednarčík J., Zikmund P., Vojtěch D. On the formation of intermetallics in Fe Al system an in situ XRD study. Intermetallics. 2013;32:127–136.

Wiessner M., Angerer P., Van der Zwaag S., Gamsjäger E. Transient Phase Fraction and Dislocation Density Estimation from In-Situ X-Ray Diffraction Data with a Low Signal-to-Noise Ratio Using a Bayesian Approach to the Rietveld Analysis. Mater. Charact. 2021;172:s.110860. doi: 10.1016/j.matchar.2020.110860. DOI

Karagöz S., Fischmeister H.F. Cutting Performance and Microstructure of High Speed Steels: Contributions of Matrix Strengthening and Undissolved Carbides. Met. Mater. Trans. A. 1998;29:205–216. doi: 10.1007/s11661-998-0173-3. DOI

Li K., Yu B., Misra R.D.K., Han G., Liu S., Shang C.J. Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates. Mater. Sci. Eng. A. 2018;715:174–185. doi: 10.1016/j.msea.2017.12.109. DOI

Fathy A., Mattar T., EI-Faramawy H., Bleck W. Mechanical properties of new low-nickel cobalt-free maraging steels. Steel Res. 2002;73:549–556. doi: 10.1002/srin.200200027. DOI

Cheng L., Böttger A., De Keijser T.H., Mittemeijer E.J. Lattice parameters of iron-carbon and iron-nitrogen martensites and austenites. Scr. Metall. Mater. 1990;24:509–514. doi: 10.1016/0956-716X(90)90192-J. DOI

Krisement O. Kalorimetrische Untersuchungen zur Kinetik des Martensitanlassens. Archiv für Eisenhüttenwesen. 1957;27:731–742. doi: 10.1002/srin.195602976. DOI

Dobrzanski L.A., Zarychta A., Ligarski M. High-Speed Steels with Addition of Niobium or Titanium. J. Mater. Process. Technol. 1997;63:531. doi: 10.1016/S0924-0136(96)02678-7. DOI

Mirzaee M., Momeni A., Keshmiri H., Razavinejad R. Effect of Titanium and Niobium on Modifying the Microstructure of Cast K100 Tool Steel. Met. Mater. Trans. B. 2014;45:2304–2314. doi: 10.1007/s11663-014-0150-8. DOI

Pavlickova M., Vojtech D., Stolar P., Jurci P. Properties of rapidly solidified niobium-alloyed tool steel. Kovove Materialy. 2002;40:171–183.

Pavlíčková M., Vojtěch D., Novák P., Gemperlová J., Gemperle A., Zárubová N., Jurči P., Lejček P. Influence of Thermal Treatment on Microstructure and Hardness of Niobium Alloyed PM/Tool Steel. Instrum. Sci. Technol. 2004;32:207–219. doi: 10.1081/CI-120028773. DOI

Novák P., Vojtěch D., Šerák J., Knotek V., Bartová B. Duplex surface treatment of the Nb-alloyed PM tool steel. Surf. Coatings Technol. 2006;201:3342–3349. doi: 10.1016/j.surfcoat.2006.07.101. DOI

Shim K.H., Lee S.K., Kang B.S., Hwang S.M. Investigation of blanking of thin sheet metal using ductile fracture criterion and its experimental verification. J. Mater. Process. Technol. 2004;155–156:1935–1942. doi: 10.1016/j.jmatprotec.2004.04.284. DOI

Monteil G., Greban F., Roizard X. In situ punch wear measurement in a blanking tool by means of thin layer activation. Wear. 2008;265:626–633. doi: 10.1016/j.wear.2007.12.014. DOI

Mayrhofer P.H., Mitterer C., Hultman L., Clemens H. Microstructural design of hard coatings. Prog. Mater. Sci. 2006;51:1032–1114. doi: 10.1016/j.pmatsci.2006.02.002. DOI

Hovsepian P.E., Lewis D.B., Münz W.-D. Recent progress in large scale manufacturing of multilayer/superlattice hard coatings. Surf. Coat. Technol. 2000;133–134:166–175. doi: 10.1016/S0257-8972(00)00959-2. DOI

Tkadletz M., Schalk N., Daniel R., Keckes J., Czettl C., Mitterer C. Advanced characterization methods for wear resistant hard coatings: A review on recent progress. Surf. Coat. Technol. 2016;285:31–46. doi: 10.1016/j.surfcoat.2015.11.016. DOI

Nguyen T.D., Kim S.K., Lee D.B. High-temperature oxidation of nano-multilayered TiAlCrSiN thin films in air. Surf. Coatings Technol. 2009;204:697–704. doi: 10.1016/j.surfcoat.2009.09.008. DOI

Kalss W., Reiter A., Derflinger V., Gey C., Endrino J.L. Modern coatings in high performance cutting applications. Int. J. Refract. Met. Hard Mater. 2006;24:399–404. doi: 10.1016/j.ijrmhm.2005.11.005. DOI

Endrino J.L., Derflinger V. The influence of alloying elements on the phase stability and mechanical properties of AlCrN coatings. Surf. Coatings Technol. 2005;200:2114–2122. doi: 10.1016/j.surfcoat.2005.02.196. DOI

Kim D.G., Seong T.Y., Baik Y.J. Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition. Surf. Coat. Technol. 2002;153:79–83. doi: 10.1016/S0257-8972(01)01543-2. DOI

Shinn M., Hultman L., Barnett S.A. Growth, structure and microhardness of epitaxial TiN/ NbN superlattices. J. Mater. Res. 1992;7:901–911. doi: 10.1557/JMR.1992.0901. DOI

Ali F., Park B.S., Kwak J.S. Effect of number of bi-layers on properties of TiN/TiAlN multilayer coatings. J. Ceram. Process Res. 2013;14:476–479.

Yang Q., He C., Zhao L.R., Immarigeon J.P. Preferred orientation and hardness enhancement of TiN/CrN superlattice coatings deposited by reactive magnetron sputtering. Scr. Mater. 2002;46:293–297. doi: 10.1016/S1359-6462(01)01241-6. DOI

Lin J., Moore J.J., Mishra B., Pinkas M., Zhang X., Sproul W.D. CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses. Thin Solid Films. 2009;517:5798–5804. doi: 10.1016/j.tsf.2009.02.136. DOI

Reiter A.E., Derflinger T.V.H., Hanselmann B., Bachmann T., Sartory B. Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 2005;200:2114–2122. doi: 10.1016/j.surfcoat.2005.01.043. DOI

Jakubéczyová D., Hvizdoš P., Selecká M. Investigation of thin layers deposited by two PVD techniques on high speed steel produced by powder metallurgy. Appl. Surf. Sci. 2012;258:5105–5110. doi: 10.1016/j.apsusc.2012.01.138. DOI

Cabibbo M., Ricci P., Cecchini R., Rymuza Z., Sullivan J., Dub S., Cohen S. An international round-robin calibration protocol for nanoindentation measurements. Micron. 2012;43:215–222. doi: 10.1016/j.micron.2011.07.016. PubMed DOI

Cabibbo M., Clemente N., El Mehtedi M., Hamouda A.H., Musharavati F., Santecchia E., Spigarelli S. Constitutive analysis for the quantification of hardness decay in a superlattice CrN/NbN hard-coating. Surf. Coat. Technol. 2015;275:155–166. doi: 10.1016/j.surfcoat.2015.05.024. DOI

Santecchia E., Hamouda A.M.S., Musharavati F., Zalnezhad E., Cabibbo M., Spigarelli S. Wear resistance investigation of titanium nitride-based coatings. Ceram. Int. Part A. 2015;41:10349–10379. doi: 10.1016/j.ceramint.2015.04.152. DOI

Fabrizi A., Cecchini R., Kiryukhantsev-Korneev P.V., Sheveyko A.N., Spigarelli S., Cabibbo M. Comparative investigation of oxidation resistance and thermal stability of nanostructured Ti-B-N and Ti-Si-B-N coatings. Prot. Met. Phys. Chem. Surf. 2017;53:452–459. doi: 10.1134/S2070205117030066. DOI

Santecchia E., Cabibbo M., Hamouda A.M.S., Musharavati F., Popelka A., Spigarelli S. Investigation of the Temperature-Related Wear Performance of Hard Nanostructured Coatings Deposited on a S600 High Speed Steel. Metals. 2019;9:332. doi: 10.3390/met9030332. DOI

Kawate M., Hashimoto A.K., Suzuki T. Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films. Surf. Coat. Technol. 2003;165:163–167. doi: 10.1016/S0257-8972(02)00473-5. DOI

Choi P.-P., Povstugar I., Ahn J.-P., Kostka A., Raabe D. Thermal stability of TiAlN/CrN multilayer coatings studied by atom probe tomography. Ultramicroscopy. 2011;111:518–523. doi: 10.1016/j.ultramic.2010.11.012. PubMed DOI

Barshilia H., Prakash M.S., Jain A., Rajam K.S. Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films. Vacuum. 2005;77:169–179. doi: 10.1016/j.vacuum.2004.08.020. DOI

Forsén R., Johansson M.P., Odén M., Ghafoor N. Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance. Thin Solid Films. 2013;534:394–402. doi: 10.1016/j.tsf.2013.03.003. DOI

Beake B.D., Fox-Rabinovich G.S. Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining. Surf. Coat. Technol. 2014;255:102–111. doi: 10.1016/j.surfcoat.2014.02.062. DOI

48th Census of World Casting Production. Modern. Cast. 2014;104:17–21.

Sidjanin L., Smallman E.R., Young J.M. Electron Microstructure and Mechanical Properties of Silicon and Aluminium Ductile Irons. Acta Met. Mater. 1994;42:3149–3156. doi: 10.1016/0956-7151(94)90412-X. DOI

Sidjanin L., Rajnovic D., Eric O., Smallman R.E. Austempering study of unalloyed and alloyed ductile irons. Mater. Sci. Technol. 2010;26:567–571. doi: 10.1179/174328409X407524. DOI

Eric O., Sidjanin L., Rajnovic D., Balos S. The Austempering Kinetics of Cu-Ni Alloyed Austempered Ductile Iron. Met. Mater. Int. 2014;20:1131–1138. doi: 10.1007/s12540-014-6017-3. DOI

Rajnovic D., Eric O., Sidjanin L. The standard processing window of alloyed ADI materials. Kovove Mater. 2012;50:199–208. doi: 10.4149/km_2012_3_199. DOI

Rajnovic D., Eric O., Sidjanin L. Transition temperature and fracture mode of as-cast and austempered ductile iron. J. Microsc. 2008;232:605–610. doi: 10.1111/j.1365-2818.2008.02125.x. PubMed DOI

Martinez R.A. Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing. Eng. Fract. Mech. 2010;77:2749–2762. doi: 10.1016/j.engfracmech.2010.07.013. DOI

Eric O., Rajnović D., Zec S., Sidjanin L., Jovanović T. Microstructure and fracture of alloyed austempered ductile iron. Mater. Charact. 2006;57:211–217. doi: 10.1016/j.matchar.2006.01.014. DOI

Harding R.A. The production, properties and automotive applications for austempered ductile iron. Kovove Mater. 2007;45:1–16.

Goergen F., Mevissen D., Masaggia S., Veneri E., Brimmers J., Brecher C. Contact Fatigue Strength of Austempered Ductile Iron (ADI) in Gear Applications. Metals. 2020;10:1147. doi: 10.3390/met10091147. DOI

Balos S., Rajnovic D., Dramicanin M., Labus D., Cekic O.E., Grbovic-Novakovic J., Sidjanin L. Abrasive wear behaviour of ADI material with various retained austenite content. Int. J. Cast Metals Res. 2016;29:187–193. doi: 10.1080/13640461.2015.1125982. DOI

Dojcinovica M., Cekic O.E., Rajnovic D., Sidjanin L., Balos S. Effect of austempering temperature on cavitation behaviour of unalloyed ADI material. Mater. Charact. 2013;82:66–72. doi: 10.1016/j.matchar.2013.05.005. DOI

Rajnovic D., Balos S., Sidjanin L., Cekic O.E., Grbovic Novakovic J. Tensile properties of ADI material in water and gaseous environments. Mater. Charact. 2015;101:26–33. doi: 10.1016/j.matchar.2015.01.001. DOI

Janjatovic P., Cekic O.E., Sidjanin L., Balos S., Dramicanin M., Grbovic Novakovic J., Rajnovic D. The Effect of Water Concentration in Ethyl Alcohol on the Environmentally Assisted Embrittlement of Austempered Ductile Irons. Metals. 2021;11:94. doi: 10.3390/met11010094. DOI

Balos S., Radisavljevic I., Rajnovic D., Dramicanin M., Tabakovic S., Cekic O.E., Sidjanin L. Geometry, mechanical and ballistic properties of ADI material perforated plates. Mater. Des. 2015;83:66–74. doi: 10.1016/j.matdes.2015.05.081. DOI

Balos S., Radisavljevic I., Rajnovic D., Janjatovic P., Dramicanin M., Eric-Cekic O., Sidjanin L. Ballistic Behaviour of Austempered Compacted Graphite Iron Perforated Plates. Def. Sci. J. 2019;69:571–576. doi: 10.14429/dsj.69.14010. DOI

Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC

Ringwood A.E. Diamond Compacts and Process for Making Same. 4948388. [(accessed on 15 January 2021)];U.S. Patent. 1990 Aug 14; Available online: https://www.freepatentsonline.com/4948388.html.

Jaworska L. Diamond-Ceramic Bonding Phase Composites for Application in Cutting Tools. Ceram. Mater. 2011;63:131–137.

Cygan S., Jaworska L., Putyra P., Ratuszek W., Cyboroń J., Klimczyk P. Thermal Stability and Coefficient of Friction of the Diamond Composites with the Titanium Compound Bonding Phase. J. Mater. Eng. Perform. 2017;26:2593–2598. doi: 10.1007/s11665-017-2712-9. DOI

Tönshoff H.K., Hillmann­Apmann H., Asche j. Diamond tools in stone and civil engineering industry: Cutting principles, wear and applications. Diam. Relat. Mater. 2002;11:736–741. doi: 10.1016/S0925-9635(01)00561-1. DOI

Dormishi A., Ataei M., Mikaeil R., Khalokakaei R., Haghshenas S.S. Evaluation of gang saws’ performance in the carbonate rock cutting process using feasibility of intelligent approaches. Eng. Sci. Technol. Int. J. 2019;22:990–1000. doi: 10.1016/j.jestch.2019.01.007. DOI

Ersoy A., Atici U. Performance characteristics of circular diamond saws in cutting different types of rocks. Diam. Relat. Mater. 2004;13:22–37. doi: 10.1016/j.diamond.2003.08.016. DOI

Konstanty J. Production parameters and materials selection of powder metallurgy diamond tools. Powder Metall. 2006;49:299–306. doi: 10.1179/174329006X113508. DOI

Büttner A. Diamond tools and stone. Ind. Diam. Rev. 1974;3:89–93.

Chalus P.A.D. Metal powders for optimum grain retention. Ind. Diam. Rev. 1994;54:170–172.

Bullen G.J. Choosing the best grit for the job. Ind. Diam. Rev. 1982;1:7–12.

Konstanty J. The materials science of stone sawing. Ind. Diam. Rev. 1991;1:27–31.

Wright D.N., Tagg W.R.J. The development of a rock classification system for use with diamond tools. Ind. Diam. Rev. 1998;4:113–119.

Molinari A., Marchetti F., Gialanella S., Scardi P., Tiziani A. Study of the Diamond-Matrix Interface in Hot-pressed Cobalt-based Tools. Mater. Sci. Eng. A. 1990;130:257–262. doi: 10.1016/0921-5093(90)90066-C. DOI

Hsieh Y.Z., Lin S.T. Diamond tool bits with iron alloys as the binding matrixes. Mater. Chem. Phys. 2001;72:121–125. doi: 10.1016/S0254-0584(01)00419-9. DOI

Spriano S., Chen Q., Settineri L., Bugliosi S. Low content and free Cobalt matrixes for diamond tools. Wear. 2005;259:1190–1196. doi: 10.1016/j.wear.2005.02.076. DOI

Del Villar M., Muro P., Sanchez J.M., Iturriza I., Castro F. Consolidation of diamond tools using Cu-Co-Fe based alloys as metallic binders. Powder Metall. 2001;44:82–90. doi: 10.1179/003258901666211. DOI

Lison D., Buchet J.P., Swennen B., Molders J., Lauwerys R. Biological monitoring of workers exposed to cobalt metal, salt, oxides, and hard metal dust. Occup. Environ. Med. 1994;51:447–450. doi: 10.1136/oem.51.7.447. PubMed DOI PMC

Goerting K., Brewin P. European New Chemicals Policy Response of The Hard Materials Industry; Proceedings of the European Conference on Hard Materials and Diamond Tooling—Euro PM 2002, EPMA; Lausanne, Switzerland. 7–9 October 2002; pp. 9–18.

Weber G., Weiss C. DIAMIX—A family of bonds based on DIABASE-V21. Ind. Diam. Rev. 2005;65:27–28.

Bonneau M. NEXT and NEXT Pre-mixed Powders. Diam. Appl. Technol. 1999;18:45–52.

Clark I.E. Cobalite HDR-a new prealloyed matrix powder for diamond construction tools. Ind. Diam. Rev. 2002;3:177–182.

Eurotungstene Keen®—A new concept in prealloyed powders. Ind. Diam. Rev. 2005;3:45–47.

Kamphuis B., Serneels A. Cobalt and nickel free bond powder for diamond tools: Cobalite® CNF. Ind. Diam. Rev. 2004;1:26–32.

De Oliveira H.C.P., Cabral S.C., Guimaries R.S., Bobrovnitchii G.S., Filgueira M. Processing and characterization of a cobalt based alloy for use in diamond cutting tools. Materialwissenschaft. 2009;40:907–909. doi: 10.1002/mawe.200900531. DOI

Palumbo M., Curiotto S., Battezzati L. Thermodynamic analysis of the stable and metastable Co-Cu and Co-Cu-Fe phase diagrams. Calphad. 2006;30:171–178. doi: 10.1016/j.calphad.2005.10.007. DOI

Huang X., Mashimo T. Metastable BCC and FCC alloy bulk bodies in Fe-Cu system prepared by mechanical alloying and shock compression. J. Alloys Compd. 1999;288:299–305. doi: 10.1016/S0925-8388(99)00108-5. DOI

Gaffet E., Harmelin M., Faudot F. Far-from-equilibrium phase transition induced by mechanical alloying in the Cu-Fe system. J. Alloys Compd. 1993;194:23–30. doi: 10.1016/0925-8388(93)90640-9. DOI

Menapace C., Bocchi E., Costa P., Molinari A. Microstructural and mechanical characterization of iron and copper based powders for diamond tools; Proceedings of the 2004 Powder Metallurgy World Congress, European Powder Metallurgy Association; Vienna, Austria. 17–21 October 2004; p. 681.

Menapace C., Costa P., Molinari A. Wear and Cutting Properties of New Diamond Inserts Based on Iron and Copper Powders; Proceedings of the European Powder Metallurgy Congress and Exhibition; Prague, Czech Republic. 2–5 October 2005; pp. 311–316.

De Oliveira L.J., Bobrovnitchii G.S., Filgueira M. Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix. Int. J. Refract. Hard Met. 2007;25:328–335. doi: 10.1016/j.ijrmhm.2006.08.006. DOI

Meszaros M., Vadasdi K. Process and equipment for electrochemical etching of Diamond-containing Co-WC tools and recovery of diamond from used steel tools. Int. J. Refract. Metals Hard Mater. 1994;14:229–234. doi: 10.1016/0263-4368(95)00024-0. DOI

Baroura L., Boukhobza A., Derardja A., Fedaoui K. Study of Microstructure and Mechanical Properties of Sintered Fe-Cu Alloys. Int. J. Eng. Res. Afr. 2018;34:5–12.

Sung C.M., Tai M.F. Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure. Int. J. Refract. Hard Met. Hard Mater. 1997;15:237–256. doi: 10.1016/S0263-4368(97)00003-6. DOI

Tillmann W., Ferreira M., Steffen A., Rüster K., Möller J., Bieder S., Paulus M., Tolan M. Carbon reactivity of binder metals in diamond-metal composites—Characterization by scanning electron microscopy and X-ray diffraction. Diam. Relat. Mater. 2013;38:118–123. doi: 10.1016/j.diamond.2013.07.002. DOI

Jaworska L., Szutkowska M., Klimczyk P., Sitarz M., Bucko M., Rutkowski P., Figiel P., Lojewska J. Oxidation, graphitization, and thermal resistance of PCD materials with the various bonding phases of up to 800 °C. Int. J. Refract. Met. Hard Mater. 2014;45:109–116. doi: 10.1016/j.ijrmhm.2014.04.003. DOI

De Oliveira L.J., Cabral S.C., Filgueira M. Study of the TiC Coating on Powder Metallurgy Diamonds Tool’s Performance. Mater. Res. 2015;18:441–447. doi: 10.1590/1516-1439.265014. DOI

Borowiecka-Jamrozek J., Lachowski J. Modelling of retention of a diamond particle in matrices based on Fe and Cu; Proceedings of the XXI International Polish-Slovak Conference “Machine Modeling and Simulations”; Hucisko, Poland. 6–8 September 2016; DOI

Borowiecka-Jamrozek J., Konstanty J., Lachowski J. The application of a ball-milled Fe-Cu-Ni powder mixture to fabricate sintered diamond tools. Arch. Foundry Eng. 2018;18:5–8.

Konstanty J., Romański A., Baczek E., Tyrala D. New Wear Resistant Iron-Base Matrix Materials for The Fabrication of Sintered Diamond Tools. Arch. Met. Mater. 2015;60:633–637. doi: 10.1515/amm-2015-0184. DOI

Konstanty J., Romanski A. New nanocrystalline Matrix Materials for Sintered Diamond Tools. Mater. Sci. Appl. 2012;3:779–783. doi: 10.4236/msa.2012.311113. DOI

Borowiecka-Jamrozek J. Sintered Fe-Cu-Re alloys produced from commercially available powders. Arch. Met. Mater. 2017;62:1713–1720. doi: 10.1515/amm-2017-0261. DOI

Mechnik V.A., Bondarenko N.A., Kolodnitskyi V.M., Zakiev V.I., Zakiev I.M., Ignatovich S.R., Yutskevych S.S. Mechanical and Tribological Properties of Fe-Cu-Ni-Sn Materials with Different Amounts of CrB2 Used as Matrices for Diamond-Containing Composites. J. Superhard Mater. 2020;42:251–263. doi: 10.3103/S1063457620040061. DOI

Tyrala D., Romanski A., Konstanty J. The Effects of Powder Composition on Microstructure and Properties of Hot-Pressed Matrix Materials for Sintered Diamond Tools. J. Mater. Eng. Perform. 2020;29:1467–1472. doi: 10.1007/s11665-019-04485-2. DOI

Loginov P.A., Sidorenko D.A., Bychkova M.Y., Zaitsev A.A., Levashov E.A. Performance of diamond drill bits with hybrid nanoreinforced Fe-Ni-Mo binder. Int. J. Adv. Manuf. Technol. 2020;102:2041–2047. doi: 10.1007/s00170-018-03262-0. DOI

Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI

Vodičková V., Švec M., Hanus P., Novák P., Záděra A., Keller V., Prokopčáková P.P. The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides. Molecules. 2020;25:4268. doi: 10.3390/molecules25184268. PubMed DOI PMC

Novák P., Nová K. Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC

Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI

Novák P., Jaworska L., Cabibbo M. Intermetallics as innovative CRM-free materials. IOP Conference Series: Mater. Sci. Eng. 2018;329:012013. doi: 10.1088/1757-899X/329/1/012013. DOI

Šerák J., Vojtěch D., Novák P., Šefl V., Janoušek T. Možnosti snížení obsahu železa ve slitinách AlSiCuMgFe. Slévárenství. 2008;56:343–345.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...