Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CA15102
European Cooperation in Science and Technology
451-03-68/2020-14/200156
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
EP/L016567/1
UK Research and Innovation
EP/S013652/1
UK Research and Innovation
EP/T001100/1
UK Research and Innovation
EP/S036180/1
UK Research and Innovation
EP/T024607/1
UK Research and Innovation
IAPP18-19\295
Royal Academy of Engineering
TSP1332
Royal Academy of Engineering
EXPP2021\1\277
Royal Academy of Engineering
PubMed
33668661
PubMed Central
PMC7917933
DOI
10.3390/ma14040899
PII: ma14040899
Knihovny.cz E-zdroje
- Klíčová slova
- alloy, critical raw materials, iron, substitution,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The Critical Raw Materials (CRMs) list has been defined based on economic importance and supply risk by the European Commission. This review paper describes two issues regarding critical raw materials: the possibilities of their substitution in iron-based alloys and the use of iron-based alloys instead of other materials in order to save CRMs. This review covers strategies for saving chromium in stainless steel, substitution or lowering the amounts of carbide-forming elements (especially tungsten and vanadium) in tool steel and alternative iron-based CRM-free and low-CRM materials: austempered ductile cast iron, high-temperature alloys based on intermetallics of iron and sintered diamond tools with an iron-containing low-cobalt binder.
Anton Paar GmbH Anton Paar Str 20 8054 Graz Austria
Faculty of Non Ferrous Metals AGH University of Science and Technology 30 059 Krakow Poland
Institute of Mechanics Montanuniversität Leoben Franz Josef Str 18 8700 Leoben Austria
School of Aerospace Transport and Manufacturing Cranfield University Cranfield MK43 0AL UK
School of Engineering London South Bank University 103 Borough Road London SE1 0AA UK
Zobrazit více v PubMed
European Commission . A New Industrial Strategy for Europe. European Commission; Brussels, Belgium: 2020. COM (2020) 102 final.
European Commission . Tackling the Challenges in Commodity Markets and On Raw Materials. European Commission; Brussels, Belgium: 2011. COM (2011) 25 final.
European Commission . Policy and Strategy for Raw Materials. European Commission; Brussels, Belgium: 2008. [(accessed on 1 January 2021)]. Available online: https://ec.europa.eu/growth/sectors/raw-materials/policy-strategy_en.
European Commission and Directorate_General_Joint_Research_Centre . Methodology for Establishing the EU List of Critical Raw Materials. Guidelines. European Commission; Brussels, Belgium: 2017.
Study on the EU’s list of Critical Raw Materials—Final Report. European Union; Luxembourg: 2020. [(accessed on 28 December 2020)]. Available online: https://ec.europa.eu/docsroom/documents/42883/attachments/1/translations/en/renditions/native. DOI
Pippel E., Woltersdorf J., Pöckl G., Lichtenegger G. Microstructure and Nanochemistry of Carbide Precipitates in High-Speed Steel S 6-5-2-5. Mater. Charact. 1999;43:41–55. doi: 10.1016/S1044-5803(99)00003-0. DOI
Dobrzański L.A., Kasprzak W. The influence of 5% cobalt addition on structure and working properties of the 9-2-2-5, 11-2-2-5 and 11-0-2-5 high-speed steels. J. Mater. Process. Technol. 2001;109:52–64. doi: 10.1016/S0924-0136(00)00775-5. DOI
Study on the EU’s list of Critical Raw Materials Non-Critical Raw Materials Factsheets. European Union; Luxembourg: 2020. [(accessed on 28 December 2020)]. Available online: https://ec.europa.eu/docsroom/documents/42883/attachments/3/translations/en/renditions/native. DOI
Working Group on Defining Critical Raw Materials for EU Report on Critical Raw Materials for EU. [(accessed on 28 December 2020)];2014 Available online: http://mima.geus.dk/report-on-critical-raw-materials_en.pdf.
Study on the Review of the List of Critical Raw Materials—Criticality Assessments. [(accessed on 28 December 2020)];2017 doi: 10.2873/876644. Available online: https://op.europa.eu/en/publication-detail/-/publication/08fdab5f-9766-11e7-b92d-01aa75ed71a1. DOI
Study on the Review of the List of Critical Raw Materials—Non-Critical Raw Materials Factsheets. European Union; Luxembourg: 2017. [(accessed on 28 December 2020)]. Available online: https://op.europa.eu/en/publication-detail/-/publication/6f1e28a7-98fb-11e7-b92d-01aa75ed71a1/language-en. DOI
Grilli M.L., Bellezze T., Gamsjäger E., Rinaldi A., Novak P., Balos S., Piticescu R.R., Ruello M.L. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Metals. 2017;10:285. doi: 10.3390/ma10030285. PubMed DOI PMC
Han J., Li Y., Jiang Z., Yang Y., Wang X., Wang L., Li K. Summary of the Function of Sn in Iron and Steel. Adv. Mat. Res. 2013;773:406–411. doi: 10.4028/www.scientific.net/AMR.773.406. DOI
Davis J.R. Stainless Steel—ASM Specialty Handbook. ASM International; Materials Park, OH, USA: 1994.
Di Caprio G. Gli Acciai Inossidabili. 4th ed. Hoepli; Milan, Italy: 2003.
Van Rooyen G.T. The Potential of Chromium as an Alloying Element; Proceedings of the 1st International Chromium Steel and Alloys Congress; Cape Town, South Africa. 8–11 March 1992; pp. 43–47.
Metals Handobook, Corrosion. 9th ed. Volume 13 ASM International; Metals Park, OH, USA: 1987.
Cunat P.J. Alloying Elements in Stainless Steel and Other Chromium-Containing Alloys. Euro Inox; Paris, France: 2004. [(accessed on 28 December 2020)]. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.323.12&rep=rep1&type=pdf.
Floreen S. An Examination of Chromium Substitution in Stainless Steels. Metall. Trans. A. 1982;13A:2003–2013. doi: 10.1007/BF02645946. DOI
Bittence J.C. Can There Be “Stainless” Without Chromium? Mater. Eng. 1989;89:28–32.
Strategic Materials: Technologies to Reduce US Import Vulnerability. US Congress, Office of Technology Assessment; Washington, DC, USA: 1985. Substitution Alternatives for Strategic Materials; pp. 263–328. OTA-ITE-248. Chapter 7.
Glenn M.L., Larson D.E. Reduced-Chromium Stainless Steel Substitutes Containing Silicon and Aluminum. United States Department of the Interior, Bureau of Mines; Albany, OR, USA: 1984. Report of Investigation 8918.
Bullard S.J., Larson D.E., Dunning J.S. Oxidation and Corrosion Resistance of Two Fe-8Cr-16Ni-Si-Cu Alloys. Corrosion. 1992;48:891–897. doi: 10.5006/1.3315890. DOI
Dunning J.S., Alman D.E., Rawers J.C. Influence of Silicon and Aluminum Additions on the Oxidation Resistance of a Lean-Chromium Stainless Steel. Oxid. Met. 2002;57:409–425. doi: 10.1023/A:1015344220073. DOI
Engkvist J., Bexell U., Grehk M., Olsson M. High temperature oxidation of FeCrAl-alloys-Influence of Al-concentration on oxide layer characteristics. Mater. Corros. 2009;60:876–881. doi: 10.1002/maco.200805186. DOI
Wolff I.M., Iorio L.E., Rumpf T., Scheers P.V.T., Potgieter J.H. Oxidation and corrosion behaviour of Fe-Cr and Fe-Cr-Al alloys with minor alloying additions. Mater. Sci. Eng. A. 1998;241:264–276. doi: 10.1016/S0921-5093(97)00500-5. DOI
Jönsson B., Lu Q., Chandrasekaran D., Berglund R., Rave F. Oxidation and Creep Limited Lifetime of Kanthal APMT®, a Dispersion Strengthened FeCrAlMo Alloy Designed for Strength and Oxidation Resistance at High Temperatures. Oxid. Met. 2013;79:29–39. doi: 10.1007/s11085-012-9324-4. DOI
Pothen F., Goeschl T., Löschel A., Jaha V. Strategic Trade Policy and Critical Raw Materials in Stainless Steel Production. Zentrum für Europäische Wirtschaftsforschung; Mannheim, Germany: 2013. Project Report.
Cavallini M., Felli F., Fratesi R., Veniali F. High temperature air oxidation behaviour of “poor man” high manganese-aluminum steels. Mater. Corros. 1982;33:386–390. doi: 10.1002/maco.19820330703. DOI
Casteletti L.C., Neto A.L., Totten G.E., Heck S.C., Fernandes F.A.P. Use of Fe-31Mn-7.5Al-1.3Si-0.9C Alloy for Fabrication of Resistive Elements. J. ASTM Int. 2010;7:1–4.
Bellezze T., Giuliani G., Roventi G., Fratesi R., Andreatta F., Fedrizzi L. Corrosion behaviour of austenitic and duplex stainless steels in an industrial strongly acidic solution. Mater. Corros. 2016;67:831–838. doi: 10.1002/maco.201508708. DOI
Chen W.Y.C., Stephens J.R. Anodic Polarization Behaviour of Austenitic Stainless Steel Alloys with Lower Chromium Content. Corrosion. 1979;35:443–451. doi: 10.5006/0010-9312-35.10.443. DOI
Glenn M.L., Bullard S.J., Larson D.E., Rhoads S.C. Partial replacements of chromium in stainless steel. J. Mater. Energy Syst. 1985;7:75–81. doi: 10.1007/BF02833547. DOI
Hio K., Yamada T., Tsuchida Y., Nakajima K., Hosoi Y. Effect of Chromium Content on Anodic Polarization Characteristics of Fe-Cr-Al and Fe-Cr-Si Alloys. Corrosion. 2002;58:124–131. doi: 10.5006/1.3277312. DOI
Bellezze T., Giuliani G., Roventi G. Study of stainless steels corrosion in a strong acid mixture. Part 1: Cyclic potentiodynamic polarization curves examined by means of an analytical method. Corros. Sci. 2018;130:113–125. doi: 10.1016/j.corsci.2017.10.012. DOI
Sheirer L.L., Jarman R.A., Burnstein G.T., editors. Corrosion—Metal/Environment Reactions. 3rd ed. Volume 1. Butterworth-Heinemann Ltd.; Oxford, UK: 1994. Stainless Steels; pp. 47–70.
Davis J.R., Davis and Associates, editors. ASM Speciality Handbook—Stainless Steels. ASTM International; Novelty, OH, USA: 1994. Atmospheric and Aqueous Corrosion; p. 133.
Abdul-Azim A.A., Rahem Ghanem W.A.E., Abou-Shahba R.M. Corrosion behaviour of low-Cr high·Al stainless steels in 65% boiling HNO3. Steel Res. 1994;65:350–353. doi: 10.1002/srin.199401084. DOI
Reformatskaya I.I., Rodionova I.G., Podobaev A.N., Ashcheulova I.I., Trofimova E.V. Silicon as an Alloying Element in Ferrite Stainless Steels Containing 8–13% Cr. Prot. Met. 2006;42:549–554. doi: 10.1134/S0033173206060051. DOI
Hodgkiess T., Chia P.S. Assessment of lower-alloy stainless steels for use in desalination plant. Desalination. 1991;84:267–278. doi: 10.1016/0011-9164(91)85135-H. DOI
Basile F., Lorthioir G. Quantitative analysis, by cathodic reduction, of passive layers on Fe-17Cr alloy and its application to substituted alloys. Brit. Corros. J. 1993;28:31–36. doi: 10.1179/000705993798268241. DOI
Wan J., Ran Q., Li J., Xu Y., Xiao X., Yu H., Jiang L. A new resource-saving, low chromium and low nickel duplex stainless steel 15Cr-xAl-2Ni-yMn. Mater. Des. 2014;53:43–50. doi: 10.1016/j.matdes.2013.06.043. DOI
Cavallini M., Felli F., Fratesi R., Veniali F. Aqueous solution corrosion behaviour of “poor man” high manganese-aluminum steels. Mater. Corros. 1982;33:281–284. doi: 10.1002/maco.19820330506. DOI
Abuzriba M.B., Musa S.M. Springer Proceedings in Physics, Proceedings of the 2nd International Multidisciplinary Microscopy and Microanalysis Congress Oludeniz, Turkey, 16–19 October 2014. Volume 164. Springer; Cham, Switzerland: 2015. Substitution for chromium and nickel in Austenitic stainless steels; pp. 205–214. DOI
Moon J., Ha H.-Y., Kim K.-W., Park S.-J., Lee T.-H., Kim S.-D., Jang J.H., Jo H.-H., Hong H.-U., Lee B.H., et al. A new class of lightweight, stainless steels with ultra-high strength and large ductility. Sci. Rep. 2020;10:12140. doi: 10.1038/s41598-020-69177-7. PubMed DOI PMC
Tandon V., Patil A.P., Rathod R.C. Enhanced corrosion resistance of Cr-Mn ASS by low temperature salt bath nitriding technique for the replacement of convectional Cr-Ni ASS. Anti-Corros. Methods Mater. 2019;66:439–445. doi: 10.1108/ACMM-10-2018-2013. DOI
Li C., Bell T. Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corros. Sci. 2006;48:2036–2049. doi: 10.1016/j.corsci.2005.08.011. DOI
Sakasegawa H., Tanigawa H., Ando M. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel. J. Nucl. Sci. Technol. 2014;51:737–743. doi: 10.1080/00223131.2014.894950. DOI
Bobzin K., Zhao L., Öte M., Königstein T. Development of a FeCrMnBC-based economical wear and corrosion resistant coating. Surf. Coat. Technol. 2019;362:12–20. doi: 10.1016/j.surfcoat.2019.01.074. DOI
Kotrba A., Quan T., Wei W., Detweiler Z., Keifer D., Bullard D. Spatially Optimized Diffusion Alloys: A Novel Multi-Layered Steel Material for Exhaust Applications. SAE Int. 2020;2:2135–2141. doi: 10.4271/2020-01-1051. DOI
Bellezze T., Roventi G., Quaranta A., Fratesi R. Improvement of pitting corrosion resistance of AISI 444 stainless steel to make it a possible substitute for AISI 304L and 316L in hot natural waters. Mater. Corros. 2008;59:727–731. doi: 10.1002/maco.200804112. DOI
Parsons S., Poyntz-Wright O., Kent A., McManus M.C. Green chemistry for stainless steel corrosion resistance: Life cycle assessment of citric acid versus nitric acid passivation. Mater. Today Sustain. 2019;3–4:100005. doi: 10.1016/j.mtsust.2019.01.001. DOI
Balzar D., Ledbetter H. Accurate Modeling of Size and Strain Broadening in the Rietveld Refinement: The “Double-Voigt” Approach, Advances in X-Ray Analysis 38. Plenum Press; New York, NY, USA: 1995. pp. 397–404.
Wiessner M., Gamsjäger E., Van Der Zwaag S., Angerer P. Effect of reverted austenite on tensile and impact strength in a martensitic stainless steel ? An in-situ X-ray diffraction study. Mater. Sci. Eng. A. 2017;682:117–125. doi: 10.1016/j.msea.2016.11.039. DOI
Wießner M., Leisch M., Emminger H., Kulmburg A. Phase transformation study of a high speed steel powder by high temperature X-ray diffraction. Mater. Charact. 2008;59:937–943.
Novák P., Michalcová A., Marek I., Mudrová M., Saksl K., Bednarčík J., Zikmund P., Vojtěch D. On the formation of intermetallics in Fe Al system an in situ XRD study. Intermetallics. 2013;32:127–136.
Wiessner M., Angerer P., Van der Zwaag S., Gamsjäger E. Transient Phase Fraction and Dislocation Density Estimation from In-Situ X-Ray Diffraction Data with a Low Signal-to-Noise Ratio Using a Bayesian Approach to the Rietveld Analysis. Mater. Charact. 2021;172:s.110860. doi: 10.1016/j.matchar.2020.110860. DOI
Karagöz S., Fischmeister H.F. Cutting Performance and Microstructure of High Speed Steels: Contributions of Matrix Strengthening and Undissolved Carbides. Met. Mater. Trans. A. 1998;29:205–216. doi: 10.1007/s11661-998-0173-3. DOI
Li K., Yu B., Misra R.D.K., Han G., Liu S., Shang C.J. Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates. Mater. Sci. Eng. A. 2018;715:174–185. doi: 10.1016/j.msea.2017.12.109. DOI
Fathy A., Mattar T., EI-Faramawy H., Bleck W. Mechanical properties of new low-nickel cobalt-free maraging steels. Steel Res. 2002;73:549–556. doi: 10.1002/srin.200200027. DOI
Cheng L., Böttger A., De Keijser T.H., Mittemeijer E.J. Lattice parameters of iron-carbon and iron-nitrogen martensites and austenites. Scr. Metall. Mater. 1990;24:509–514. doi: 10.1016/0956-716X(90)90192-J. DOI
Krisement O. Kalorimetrische Untersuchungen zur Kinetik des Martensitanlassens. Archiv für Eisenhüttenwesen. 1957;27:731–742. doi: 10.1002/srin.195602976. DOI
Dobrzanski L.A., Zarychta A., Ligarski M. High-Speed Steels with Addition of Niobium or Titanium. J. Mater. Process. Technol. 1997;63:531. doi: 10.1016/S0924-0136(96)02678-7. DOI
Mirzaee M., Momeni A., Keshmiri H., Razavinejad R. Effect of Titanium and Niobium on Modifying the Microstructure of Cast K100 Tool Steel. Met. Mater. Trans. B. 2014;45:2304–2314. doi: 10.1007/s11663-014-0150-8. DOI
Pavlickova M., Vojtech D., Stolar P., Jurci P. Properties of rapidly solidified niobium-alloyed tool steel. Kovove Materialy. 2002;40:171–183.
Pavlíčková M., Vojtěch D., Novák P., Gemperlová J., Gemperle A., Zárubová N., Jurči P., Lejček P. Influence of Thermal Treatment on Microstructure and Hardness of Niobium Alloyed PM/Tool Steel. Instrum. Sci. Technol. 2004;32:207–219. doi: 10.1081/CI-120028773. DOI
Novák P., Vojtěch D., Šerák J., Knotek V., Bartová B. Duplex surface treatment of the Nb-alloyed PM tool steel. Surf. Coatings Technol. 2006;201:3342–3349. doi: 10.1016/j.surfcoat.2006.07.101. DOI
Shim K.H., Lee S.K., Kang B.S., Hwang S.M. Investigation of blanking of thin sheet metal using ductile fracture criterion and its experimental verification. J. Mater. Process. Technol. 2004;155–156:1935–1942. doi: 10.1016/j.jmatprotec.2004.04.284. DOI
Monteil G., Greban F., Roizard X. In situ punch wear measurement in a blanking tool by means of thin layer activation. Wear. 2008;265:626–633. doi: 10.1016/j.wear.2007.12.014. DOI
Mayrhofer P.H., Mitterer C., Hultman L., Clemens H. Microstructural design of hard coatings. Prog. Mater. Sci. 2006;51:1032–1114. doi: 10.1016/j.pmatsci.2006.02.002. DOI
Hovsepian P.E., Lewis D.B., Münz W.-D. Recent progress in large scale manufacturing of multilayer/superlattice hard coatings. Surf. Coat. Technol. 2000;133–134:166–175. doi: 10.1016/S0257-8972(00)00959-2. DOI
Tkadletz M., Schalk N., Daniel R., Keckes J., Czettl C., Mitterer C. Advanced characterization methods for wear resistant hard coatings: A review on recent progress. Surf. Coat. Technol. 2016;285:31–46. doi: 10.1016/j.surfcoat.2015.11.016. DOI
Nguyen T.D., Kim S.K., Lee D.B. High-temperature oxidation of nano-multilayered TiAlCrSiN thin films in air. Surf. Coatings Technol. 2009;204:697–704. doi: 10.1016/j.surfcoat.2009.09.008. DOI
Kalss W., Reiter A., Derflinger V., Gey C., Endrino J.L. Modern coatings in high performance cutting applications. Int. J. Refract. Met. Hard Mater. 2006;24:399–404. doi: 10.1016/j.ijrmhm.2005.11.005. DOI
Endrino J.L., Derflinger V. The influence of alloying elements on the phase stability and mechanical properties of AlCrN coatings. Surf. Coatings Technol. 2005;200:2114–2122. doi: 10.1016/j.surfcoat.2005.02.196. DOI
Kim D.G., Seong T.Y., Baik Y.J. Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition. Surf. Coat. Technol. 2002;153:79–83. doi: 10.1016/S0257-8972(01)01543-2. DOI
Shinn M., Hultman L., Barnett S.A. Growth, structure and microhardness of epitaxial TiN/ NbN superlattices. J. Mater. Res. 1992;7:901–911. doi: 10.1557/JMR.1992.0901. DOI
Ali F., Park B.S., Kwak J.S. Effect of number of bi-layers on properties of TiN/TiAlN multilayer coatings. J. Ceram. Process Res. 2013;14:476–479.
Yang Q., He C., Zhao L.R., Immarigeon J.P. Preferred orientation and hardness enhancement of TiN/CrN superlattice coatings deposited by reactive magnetron sputtering. Scr. Mater. 2002;46:293–297. doi: 10.1016/S1359-6462(01)01241-6. DOI
Lin J., Moore J.J., Mishra B., Pinkas M., Zhang X., Sproul W.D. CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses. Thin Solid Films. 2009;517:5798–5804. doi: 10.1016/j.tsf.2009.02.136. DOI
Reiter A.E., Derflinger T.V.H., Hanselmann B., Bachmann T., Sartory B. Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 2005;200:2114–2122. doi: 10.1016/j.surfcoat.2005.01.043. DOI
Jakubéczyová D., Hvizdoš P., Selecká M. Investigation of thin layers deposited by two PVD techniques on high speed steel produced by powder metallurgy. Appl. Surf. Sci. 2012;258:5105–5110. doi: 10.1016/j.apsusc.2012.01.138. DOI
Cabibbo M., Ricci P., Cecchini R., Rymuza Z., Sullivan J., Dub S., Cohen S. An international round-robin calibration protocol for nanoindentation measurements. Micron. 2012;43:215–222. doi: 10.1016/j.micron.2011.07.016. PubMed DOI
Cabibbo M., Clemente N., El Mehtedi M., Hamouda A.H., Musharavati F., Santecchia E., Spigarelli S. Constitutive analysis for the quantification of hardness decay in a superlattice CrN/NbN hard-coating. Surf. Coat. Technol. 2015;275:155–166. doi: 10.1016/j.surfcoat.2015.05.024. DOI
Santecchia E., Hamouda A.M.S., Musharavati F., Zalnezhad E., Cabibbo M., Spigarelli S. Wear resistance investigation of titanium nitride-based coatings. Ceram. Int. Part A. 2015;41:10349–10379. doi: 10.1016/j.ceramint.2015.04.152. DOI
Fabrizi A., Cecchini R., Kiryukhantsev-Korneev P.V., Sheveyko A.N., Spigarelli S., Cabibbo M. Comparative investigation of oxidation resistance and thermal stability of nanostructured Ti-B-N and Ti-Si-B-N coatings. Prot. Met. Phys. Chem. Surf. 2017;53:452–459. doi: 10.1134/S2070205117030066. DOI
Santecchia E., Cabibbo M., Hamouda A.M.S., Musharavati F., Popelka A., Spigarelli S. Investigation of the Temperature-Related Wear Performance of Hard Nanostructured Coatings Deposited on a S600 High Speed Steel. Metals. 2019;9:332. doi: 10.3390/met9030332. DOI
Kawate M., Hashimoto A.K., Suzuki T. Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films. Surf. Coat. Technol. 2003;165:163–167. doi: 10.1016/S0257-8972(02)00473-5. DOI
Choi P.-P., Povstugar I., Ahn J.-P., Kostka A., Raabe D. Thermal stability of TiAlN/CrN multilayer coatings studied by atom probe tomography. Ultramicroscopy. 2011;111:518–523. doi: 10.1016/j.ultramic.2010.11.012. PubMed DOI
Barshilia H., Prakash M.S., Jain A., Rajam K.S. Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films. Vacuum. 2005;77:169–179. doi: 10.1016/j.vacuum.2004.08.020. DOI
Forsén R., Johansson M.P., Odén M., Ghafoor N. Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance. Thin Solid Films. 2013;534:394–402. doi: 10.1016/j.tsf.2013.03.003. DOI
Beake B.D., Fox-Rabinovich G.S. Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining. Surf. Coat. Technol. 2014;255:102–111. doi: 10.1016/j.surfcoat.2014.02.062. DOI
48th Census of World Casting Production. Modern. Cast. 2014;104:17–21.
Sidjanin L., Smallman E.R., Young J.M. Electron Microstructure and Mechanical Properties of Silicon and Aluminium Ductile Irons. Acta Met. Mater. 1994;42:3149–3156. doi: 10.1016/0956-7151(94)90412-X. DOI
Sidjanin L., Rajnovic D., Eric O., Smallman R.E. Austempering study of unalloyed and alloyed ductile irons. Mater. Sci. Technol. 2010;26:567–571. doi: 10.1179/174328409X407524. DOI
Eric O., Sidjanin L., Rajnovic D., Balos S. The Austempering Kinetics of Cu-Ni Alloyed Austempered Ductile Iron. Met. Mater. Int. 2014;20:1131–1138. doi: 10.1007/s12540-014-6017-3. DOI
Rajnovic D., Eric O., Sidjanin L. The standard processing window of alloyed ADI materials. Kovove Mater. 2012;50:199–208. doi: 10.4149/km_2012_3_199. DOI
Rajnovic D., Eric O., Sidjanin L. Transition temperature and fracture mode of as-cast and austempered ductile iron. J. Microsc. 2008;232:605–610. doi: 10.1111/j.1365-2818.2008.02125.x. PubMed DOI
Martinez R.A. Fracture surfaces and the associated failure mechanisms in ductile iron with different matrices and load bearing. Eng. Fract. Mech. 2010;77:2749–2762. doi: 10.1016/j.engfracmech.2010.07.013. DOI
Eric O., Rajnović D., Zec S., Sidjanin L., Jovanović T. Microstructure and fracture of alloyed austempered ductile iron. Mater. Charact. 2006;57:211–217. doi: 10.1016/j.matchar.2006.01.014. DOI
Harding R.A. The production, properties and automotive applications for austempered ductile iron. Kovove Mater. 2007;45:1–16.
Goergen F., Mevissen D., Masaggia S., Veneri E., Brimmers J., Brecher C. Contact Fatigue Strength of Austempered Ductile Iron (ADI) in Gear Applications. Metals. 2020;10:1147. doi: 10.3390/met10091147. DOI
Balos S., Rajnovic D., Dramicanin M., Labus D., Cekic O.E., Grbovic-Novakovic J., Sidjanin L. Abrasive wear behaviour of ADI material with various retained austenite content. Int. J. Cast Metals Res. 2016;29:187–193. doi: 10.1080/13640461.2015.1125982. DOI
Dojcinovica M., Cekic O.E., Rajnovic D., Sidjanin L., Balos S. Effect of austempering temperature on cavitation behaviour of unalloyed ADI material. Mater. Charact. 2013;82:66–72. doi: 10.1016/j.matchar.2013.05.005. DOI
Rajnovic D., Balos S., Sidjanin L., Cekic O.E., Grbovic Novakovic J. Tensile properties of ADI material in water and gaseous environments. Mater. Charact. 2015;101:26–33. doi: 10.1016/j.matchar.2015.01.001. DOI
Janjatovic P., Cekic O.E., Sidjanin L., Balos S., Dramicanin M., Grbovic Novakovic J., Rajnovic D. The Effect of Water Concentration in Ethyl Alcohol on the Environmentally Assisted Embrittlement of Austempered Ductile Irons. Metals. 2021;11:94. doi: 10.3390/met11010094. DOI
Balos S., Radisavljevic I., Rajnovic D., Dramicanin M., Tabakovic S., Cekic O.E., Sidjanin L. Geometry, mechanical and ballistic properties of ADI material perforated plates. Mater. Des. 2015;83:66–74. doi: 10.1016/j.matdes.2015.05.081. DOI
Balos S., Radisavljevic I., Rajnovic D., Janjatovic P., Dramicanin M., Eric-Cekic O., Sidjanin L. Ballistic Behaviour of Austempered Compacted Graphite Iron Perforated Plates. Def. Sci. J. 2019;69:571–576. doi: 10.14429/dsj.69.14010. DOI
Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
Ringwood A.E. Diamond Compacts and Process for Making Same. 4948388. [(accessed on 15 January 2021)];U.S. Patent. 1990 Aug 14; Available online: https://www.freepatentsonline.com/4948388.html.
Jaworska L. Diamond-Ceramic Bonding Phase Composites for Application in Cutting Tools. Ceram. Mater. 2011;63:131–137.
Cygan S., Jaworska L., Putyra P., Ratuszek W., Cyboroń J., Klimczyk P. Thermal Stability and Coefficient of Friction of the Diamond Composites with the Titanium Compound Bonding Phase. J. Mater. Eng. Perform. 2017;26:2593–2598. doi: 10.1007/s11665-017-2712-9. DOI
Tönshoff H.K., HillmannApmann H., Asche j. Diamond tools in stone and civil engineering industry: Cutting principles, wear and applications. Diam. Relat. Mater. 2002;11:736–741. doi: 10.1016/S0925-9635(01)00561-1. DOI
Dormishi A., Ataei M., Mikaeil R., Khalokakaei R., Haghshenas S.S. Evaluation of gang saws’ performance in the carbonate rock cutting process using feasibility of intelligent approaches. Eng. Sci. Technol. Int. J. 2019;22:990–1000. doi: 10.1016/j.jestch.2019.01.007. DOI
Ersoy A., Atici U. Performance characteristics of circular diamond saws in cutting different types of rocks. Diam. Relat. Mater. 2004;13:22–37. doi: 10.1016/j.diamond.2003.08.016. DOI
Konstanty J. Production parameters and materials selection of powder metallurgy diamond tools. Powder Metall. 2006;49:299–306. doi: 10.1179/174329006X113508. DOI
Büttner A. Diamond tools and stone. Ind. Diam. Rev. 1974;3:89–93.
Chalus P.A.D. Metal powders for optimum grain retention. Ind. Diam. Rev. 1994;54:170–172.
Bullen G.J. Choosing the best grit for the job. Ind. Diam. Rev. 1982;1:7–12.
Konstanty J. The materials science of stone sawing. Ind. Diam. Rev. 1991;1:27–31.
Wright D.N., Tagg W.R.J. The development of a rock classification system for use with diamond tools. Ind. Diam. Rev. 1998;4:113–119.
Molinari A., Marchetti F., Gialanella S., Scardi P., Tiziani A. Study of the Diamond-Matrix Interface in Hot-pressed Cobalt-based Tools. Mater. Sci. Eng. A. 1990;130:257–262. doi: 10.1016/0921-5093(90)90066-C. DOI
Hsieh Y.Z., Lin S.T. Diamond tool bits with iron alloys as the binding matrixes. Mater. Chem. Phys. 2001;72:121–125. doi: 10.1016/S0254-0584(01)00419-9. DOI
Spriano S., Chen Q., Settineri L., Bugliosi S. Low content and free Cobalt matrixes for diamond tools. Wear. 2005;259:1190–1196. doi: 10.1016/j.wear.2005.02.076. DOI
Del Villar M., Muro P., Sanchez J.M., Iturriza I., Castro F. Consolidation of diamond tools using Cu-Co-Fe based alloys as metallic binders. Powder Metall. 2001;44:82–90. doi: 10.1179/003258901666211. DOI
Lison D., Buchet J.P., Swennen B., Molders J., Lauwerys R. Biological monitoring of workers exposed to cobalt metal, salt, oxides, and hard metal dust. Occup. Environ. Med. 1994;51:447–450. doi: 10.1136/oem.51.7.447. PubMed DOI PMC
Goerting K., Brewin P. European New Chemicals Policy Response of The Hard Materials Industry; Proceedings of the European Conference on Hard Materials and Diamond Tooling—Euro PM 2002, EPMA; Lausanne, Switzerland. 7–9 October 2002; pp. 9–18.
Weber G., Weiss C. DIAMIX—A family of bonds based on DIABASE-V21. Ind. Diam. Rev. 2005;65:27–28.
Bonneau M. NEXT and NEXT Pre-mixed Powders. Diam. Appl. Technol. 1999;18:45–52.
Clark I.E. Cobalite HDR-a new prealloyed matrix powder for diamond construction tools. Ind. Diam. Rev. 2002;3:177–182.
Eurotungstene Keen®—A new concept in prealloyed powders. Ind. Diam. Rev. 2005;3:45–47.
Kamphuis B., Serneels A. Cobalt and nickel free bond powder for diamond tools: Cobalite® CNF. Ind. Diam. Rev. 2004;1:26–32.
De Oliveira H.C.P., Cabral S.C., Guimaries R.S., Bobrovnitchii G.S., Filgueira M. Processing and characterization of a cobalt based alloy for use in diamond cutting tools. Materialwissenschaft. 2009;40:907–909. doi: 10.1002/mawe.200900531. DOI
Palumbo M., Curiotto S., Battezzati L. Thermodynamic analysis of the stable and metastable Co-Cu and Co-Cu-Fe phase diagrams. Calphad. 2006;30:171–178. doi: 10.1016/j.calphad.2005.10.007. DOI
Huang X., Mashimo T. Metastable BCC and FCC alloy bulk bodies in Fe-Cu system prepared by mechanical alloying and shock compression. J. Alloys Compd. 1999;288:299–305. doi: 10.1016/S0925-8388(99)00108-5. DOI
Gaffet E., Harmelin M., Faudot F. Far-from-equilibrium phase transition induced by mechanical alloying in the Cu-Fe system. J. Alloys Compd. 1993;194:23–30. doi: 10.1016/0925-8388(93)90640-9. DOI
Menapace C., Bocchi E., Costa P., Molinari A. Microstructural and mechanical characterization of iron and copper based powders for diamond tools; Proceedings of the 2004 Powder Metallurgy World Congress, European Powder Metallurgy Association; Vienna, Austria. 17–21 October 2004; p. 681.
Menapace C., Costa P., Molinari A. Wear and Cutting Properties of New Diamond Inserts Based on Iron and Copper Powders; Proceedings of the European Powder Metallurgy Congress and Exhibition; Prague, Czech Republic. 2–5 October 2005; pp. 311–316.
De Oliveira L.J., Bobrovnitchii G.S., Filgueira M. Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix. Int. J. Refract. Hard Met. 2007;25:328–335. doi: 10.1016/j.ijrmhm.2006.08.006. DOI
Meszaros M., Vadasdi K. Process and equipment for electrochemical etching of Diamond-containing Co-WC tools and recovery of diamond from used steel tools. Int. J. Refract. Metals Hard Mater. 1994;14:229–234. doi: 10.1016/0263-4368(95)00024-0. DOI
Baroura L., Boukhobza A., Derardja A., Fedaoui K. Study of Microstructure and Mechanical Properties of Sintered Fe-Cu Alloys. Int. J. Eng. Res. Afr. 2018;34:5–12.
Sung C.M., Tai M.F. Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure. Int. J. Refract. Hard Met. Hard Mater. 1997;15:237–256. doi: 10.1016/S0263-4368(97)00003-6. DOI
Tillmann W., Ferreira M., Steffen A., Rüster K., Möller J., Bieder S., Paulus M., Tolan M. Carbon reactivity of binder metals in diamond-metal composites—Characterization by scanning electron microscopy and X-ray diffraction. Diam. Relat. Mater. 2013;38:118–123. doi: 10.1016/j.diamond.2013.07.002. DOI
Jaworska L., Szutkowska M., Klimczyk P., Sitarz M., Bucko M., Rutkowski P., Figiel P., Lojewska J. Oxidation, graphitization, and thermal resistance of PCD materials with the various bonding phases of up to 800 °C. Int. J. Refract. Met. Hard Mater. 2014;45:109–116. doi: 10.1016/j.ijrmhm.2014.04.003. DOI
De Oliveira L.J., Cabral S.C., Filgueira M. Study of the TiC Coating on Powder Metallurgy Diamonds Tool’s Performance. Mater. Res. 2015;18:441–447. doi: 10.1590/1516-1439.265014. DOI
Borowiecka-Jamrozek J., Lachowski J. Modelling of retention of a diamond particle in matrices based on Fe and Cu; Proceedings of the XXI International Polish-Slovak Conference “Machine Modeling and Simulations”; Hucisko, Poland. 6–8 September 2016; DOI
Borowiecka-Jamrozek J., Konstanty J., Lachowski J. The application of a ball-milled Fe-Cu-Ni powder mixture to fabricate sintered diamond tools. Arch. Foundry Eng. 2018;18:5–8.
Konstanty J., Romański A., Baczek E., Tyrala D. New Wear Resistant Iron-Base Matrix Materials for The Fabrication of Sintered Diamond Tools. Arch. Met. Mater. 2015;60:633–637. doi: 10.1515/amm-2015-0184. DOI
Konstanty J., Romanski A. New nanocrystalline Matrix Materials for Sintered Diamond Tools. Mater. Sci. Appl. 2012;3:779–783. doi: 10.4236/msa.2012.311113. DOI
Borowiecka-Jamrozek J. Sintered Fe-Cu-Re alloys produced from commercially available powders. Arch. Met. Mater. 2017;62:1713–1720. doi: 10.1515/amm-2017-0261. DOI
Mechnik V.A., Bondarenko N.A., Kolodnitskyi V.M., Zakiev V.I., Zakiev I.M., Ignatovich S.R., Yutskevych S.S. Mechanical and Tribological Properties of Fe-Cu-Ni-Sn Materials with Different Amounts of CrB2 Used as Matrices for Diamond-Containing Composites. J. Superhard Mater. 2020;42:251–263. doi: 10.3103/S1063457620040061. DOI
Tyrala D., Romanski A., Konstanty J. The Effects of Powder Composition on Microstructure and Properties of Hot-Pressed Matrix Materials for Sintered Diamond Tools. J. Mater. Eng. Perform. 2020;29:1467–1472. doi: 10.1007/s11665-019-04485-2. DOI
Loginov P.A., Sidorenko D.A., Bychkova M.Y., Zaitsev A.A., Levashov E.A. Performance of diamond drill bits with hybrid nanoreinforced Fe-Ni-Mo binder. Int. J. Adv. Manuf. Technol. 2020;102:2041–2047. doi: 10.1007/s00170-018-03262-0. DOI
Kratochvíl P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics. 2008;16:587–591. doi: 10.1016/j.intermet.2008.01.008. DOI
Vodičková V., Švec M., Hanus P., Novák P., Záděra A., Keller V., Prokopčáková P.P. The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides. Molecules. 2020;25:4268. doi: 10.3390/molecules25184268. PubMed DOI PMC
Novák P., Nová K. Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC
Novák P., Zelinková M., Šerák J., Michalcová A., Novák M., Vojtěch D. Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. Intermetallics. 2011;19:1306–1312. doi: 10.1016/j.intermet.2011.04.011. DOI
Novák P., Jaworska L., Cabibbo M. Intermetallics as innovative CRM-free materials. IOP Conference Series: Mater. Sci. Eng. 2018;329:012013. doi: 10.1088/1757-899X/329/1/012013. DOI
Šerák J., Vojtěch D., Novák P., Šefl V., Janoušek T. Možnosti snížení obsahu železa ve slitinách AlSiCuMgFe. Slévárenství. 2008;56:343–345.