The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe3Al-Based Iron Aluminides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Programme Research, Development and Education
PubMed
32957742
PubMed Central
PMC7570615
DOI
10.3390/molecules25184268
PII: molecules25184268
Knihovny.cz E-zdroje
- Klíčová slova
- Fe-Al-Si cast alloys, Ti and Mo alloying, high-temperature strength in compression, long-term annealing, microstructure,
- MeSH
- hliník chemie MeSH
- křemík chemie MeSH
- mechanické jevy MeSH
- mikroskopie elektronová rastrovací MeSH
- molybden chemie MeSH
- slitiny chemie MeSH
- testování materiálů MeSH
- titan chemie MeSH
- vysoká teplota MeSH
- železo chemie MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hliník MeSH
- křemík MeSH
- molybden MeSH
- slitiny MeSH
- titan MeSH
- železo MeSH
The effect of phase composition and morphology on high-temperature strength in the compression of Fe-Al-Si-based iron aluminides manufactured by casting was investigated. The structure and high-temperature strength in the compression of three alloys-Fe28Al5Si, Fe28Al5Si2Mo, and Fe28Al5Si2Ti-were studied. Long-term (at 800 °C for 100 h) annealing was performed for the achievement of structural stability. The phase composition and grain size of alloys were primarily described by means of scanning electron microscopy equipped with energy dispersive analysis and Electron Backscatter Diffraction (EBSD). The phase composition was verified by X-ray diffraction (XRD) analysis. The effect of Mo and Ti addition as well as the effect of long-term annealing on high-temperature yield stress in compression were investigated. Both additives-Mo and Ti-affected the yield stress values positively. Long-term annealing of Fe28Al5Si-X iron aluminide alloyed with Mo and Ti deteriorates yield stress values slightly due to grain coarsening.
Zobrazit více v PubMed
Palm M. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics. 2005;13:1286–1295. doi: 10.1016/j.intermet.2004.10.015. DOI
Marker M.C.J., Duarte L.I., Leinenbach C., Richter K.W. Characterization of the Fe-rich corner of Al–Fe–Si–Ti. Intermetallics. 2013;39:38–49. doi: 10.1016/j.intermet.2013.03.007. PubMed DOI PMC
Mc Kamey C.G. Iron Aluminides. In: Stoloff N.S., Sikka V.K., editors. Physical Metallurgy and Processing of Intermetallic Compounds. Chapman & Hall; New York, NY, USA: 1996. pp. 351–391.
Ghosh G. In: Ternary Alloys. Petzow G., Effenberg G., editors. Volume 5. VCH Publisher; Weinheim, Germany: 1992. pp. 394–437.
Ghosh G. Aluminium—Iron—Silicon, light metal systems: Phase diagrams, crystallographic and thermodynamic data. Landolt e Börnstein. 2005;11A2:359–409.
Maitra T., Gupta S.P. Intermetallic compound formation in Fe—Al—Si ternary system: Part II. Mater. Charact. 2003;49:293–311. doi: 10.1016/S1044-5803(03)00005-6. DOI
Marker M., Skolyszewska-Kühberger B., Effenberger H.S., Schmetterer C., Richter K.W. Phase equilibria and structural investigations in the system Al-Fe-Si. Intermetallics. 2011;19:1919–1929. doi: 10.1016/j.intermet.2011.05.003. PubMed DOI PMC
Eumann M., Sauthoff G., Palm M. Phase equilibria in the Fe–Al–Mo system—Part I: Stability of the Laves phase Fe2Mo and isothermal section at 800 °C. Intermetallics. 2008;16:706–716. doi: 10.1016/j.intermet.2008.02.006. DOI
Eumann M., Sauthoff G., Palm M. Phase equilibria in the Fe–Al–Mo system—Part II: Isothermal sections at 1000 and 1150 °C. Intermetallics. 2008;16:834–846. doi: 10.1016/j.intermet.2008.04.001. DOI
Yildirim M., Akdeniz M.V., Mekhrabov A.O. Effect of Mo addition on microstructure, ordering, and room-temperature mechanical properties of Fe-50Al. Trans. Nonferrous Metals Soc. China. 2018;28:1970–1979. doi: 10.1016/S1003-6326(18)64842-3. DOI
Maziasz P.J., McKamey C.G. Microstructural characterization of precipitates formed during high temperature testing and processing of iron-aluminide alloys. Mater. Sci. Eng. A. 1992;152:322–334. doi: 10.1016/0921-5093(92)90086-G. DOI
Eumann M., Palm M., Sauthoff G. Alloys based on Fe3Al or FeAl with strengthening Mo3Al precipitates. Intermetallics. 2004;12:625–633. doi: 10.1016/j.intermet.2004.03.013. DOI
Raghavan V. Al-Fe-Ti (aluminum-iron-titanium) JPE. 2002;23:367–374. doi: 10.1361/105497102770331613. DOI
Palm M., Lacaze J. Assessment of the Al–Fe–Ti system. Intermetallics. 2006;14:1291–1303. doi: 10.1016/j.intermet.2005.11.026. DOI
Ghosh G. Landolt-Börnstein—Group IV Physical Chemistry. Volume 11D1. Springer; Stuttgart, Germany: 2008. Al-Fe-Ti, Light metal systems; pp. 1–39.
Palm M., Sauthoff G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe–Al–Ti alloys. Intermetallics. 2004;12:1345–1359. doi: 10.1016/j.intermet.2004.03.017. DOI
Raghavan V. Fe-Si-Ti (Iron-Silicon-Titanium) J. Phase Equilib. Diffus. 2009;30:393–396. doi: 10.1007/s11669-009-9555-5. DOI
Schuster J.C., Weitzer F., Naka M., Stein F., Palm M. On the reaction scheme and liquidus surface in the ternary system FeSiTi. Intermetallics. 2008;16:273–282.
Zakharov A.M., Gu’ldin I.T., Arnol’d A.A., Matsenko Y.A. Phase equilibria in the aluminum-silicon-iron-titanium system in the concentration ranges of 10–14% silicon, 0–3% iron, and 0–0.6% titanium. Izvestiya Vysshikh Uchebnykh Zavedenii Tsvetnaya Metallurgiya. 1988;2:94–96.
Nová K., Novák P., Průša F., Kopeček J., Čech J. Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals. 2018;9:20. doi: 10.3390/met9010020. DOI
Novák P., Nová K. Oxidation Behavior of Fe–Al, Fe–Si and Fe–Al–Si Intermetallics. Materials. 2019;12:1748. doi: 10.3390/ma12111748. PubMed DOI PMC
Novák P., Vanka T., Nová K., Stoulil J., Průša F., Kopeček J., Haušild P., Laufek F. Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying. Materials. 2019;12:2463. doi: 10.3390/ma12152463. PubMed DOI PMC
Pan Y., Wang S., Zhang X., Jia L. First-principles investigation of new structure, mechanical and electronic properties of Mo-based silicides. Ceram. Int. 2018;44:1744–1750. doi: 10.1016/j.ceramint.2017.10.106. DOI
Stein F. unpublished results in Palm, M. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Intermetallics. 2005;13:1286–1295.
Novák P., Barták Z., Nová K., Průša F. Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials. 2020;13:800. doi: 10.3390/ma13030800. PubMed DOI PMC
Fe-Al-Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides
The Effect of Hydrogen on the Stress-Strain Response in Fe3Al: An ab initio Molecular-Dynamics Study
Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys